Energy-Momentum Tensors and
 Motion in Special Relativity

Domenico Giulini

ZARM Bremen and University of Hannover

Domenico Giulini

The basic issue
Getting started
Conserved
quantities

Momenta

Poincaré group
Supplementary conditions

Possible worldlines
MAstler radine
Position
observables
Summary

Bad Honnef February $18^{\text {th }} 2013$

What is motion?

Energy-
Momentum
Tensors and
Motion in Special Relativity

Domenico Giulini

The basic issue
Getting started
Conserved
quantities
Momenta
Poincaré group
Supplementary conditions

Possible worldlines
MA ther radfus
Position
observables
Summary

Talking about motion presupposes a notion of position!

What is motion?

Energy-
Momentum
Tensors and
Motion in Special Relativity

Domenico Giulini

The basic issue
Getting started
Conserved
quantities
Momenta
Poincaré group
supplementary conditions

Possible worldlines
MA thler radius
Position
observables
Summary

Talking about motion presupposes a notion of position!

What centres?

Domenico Giulini

The basic issue
Getting started
Conserved
quantities
Momenta

Poincaré group
Supplementary conditions

Possible worldlines
Voller radius
Position
observables
Summary

General starting point

- Let there be given a spacetime (M, g) and a symmetric and conserved energy-momentum tensor

$$
\begin{equation*}
T=T_{a b} d x^{a} \otimes d x^{b}, \quad T_{a b}=T_{b a}, \quad \nabla^{a} T_{a b}=0 \tag{1}
\end{equation*}
$$

of "spatially compact support"

$$
\begin{align*}
& \operatorname{supp}(T) \cap \Sigma=\text { compact } \tag{2}\\
& \Sigma \text { spacelike and ending at } i_{0}
\end{align*}
$$

- This may be weakened to allow for sufficiently rapid fall-off in "spacelike directions". Note that this needs careful phrasing for matter models involving radiating fields.

General question

- In this conference we are interested in the problem of how to associate a piecewise C^{2} timelike line in the convex hull of $\operatorname{supp}(T)$.
- A related problem is, as we will see, how to associate conserved quantities like energy, momentum, and angular momentum.
- In a Special Relativistic setting these quantities are best defined as (Hamiltonian) generators of Poincaré transformations. In this case we have a momentum map.
- This talk intends to raise awareness for the structures implicitly used in the SR context. On the other hand, in GR, some of these structures will be missing, most prominently, of course, a globally acting group of isometries of (M, g)). All workarounds then have to face the questions of existence and uniqueness.
Getting started

Global charges

- A related problem to that of motion is that of global charges (conserved quantities). Often one encounters expressions like

$$
\begin{align*}
p_{a} & =\int_{\Sigma} T_{a b} n^{b} \mathrm{~d} \mu \\
J_{a b} & =\int_{\Sigma}\left(x_{a} T_{b c}-x_{b} T_{a c}\right) n^{c} \mathrm{~d} \mu \tag{3}
\end{align*}
$$

even though prima facie they make no sense.

- What is the habitat of "momenta"? What is the meaning of global "energymomentum" transforms as a four vector? In what vector space and under what group/action?
- Let's see in the most trivial example ...

The basic issue
Getting started
Conserved quantities

Momenta
Poincaré group
Supplementary conditions

Possible worldlines
Nitler radfus
Position

Spacetime symmetries 1

- Let (M, g) spacetime and H a finite dimensional Lie group acting as isometries

$$
\Phi: H \times M \rightarrow M, \quad \Phi_{h}^{*} g=g
$$

- We assume a left action

$$
\Phi\left(h_{1} h_{2}, m\right)=\Phi\left(\left(h_{1}, \Phi\left(h_{2}, m\right)\right), \quad \Rightarrow \Phi(h, m)=: h \cdot m\right.
$$

- This induces vector fields V on M, one for each $X \in \mathfrak{h}$

$$
V_{X}(m)=\left.\frac{d}{d s}\right|_{s=0} \exp (s X) \cdot m
$$

The basic issue
Getting started
Conserved quantities

Momenta
Poincaré group
Supplementary conditions

Possible worldlines
MAsller radine
Position
observables
Summary

Spacetime symmetries 2

- Hence there is a map

$$
V: \mathfrak{h} \rightarrow \operatorname{Vec}(M), \quad X \mapsto V_{X}
$$

which is not only linear, but also satisfies other structurally important properties:

$$
\begin{array}{ll}
\left(\Phi_{h}\right)_{*}\left(V_{X}(m)\right)=X_{\operatorname{Ad}_{h}(X)}(h \cdot m) & \text { Ad equivariance } \\
{\left[V_{X}, V_{Y}\right]=-V_{[X, Y]}} & \text { anti-homomorphism } \tag{5}
\end{array}
$$

- Indeed

$$
\left(\Phi_{h}\right)_{*}\left(V_{X}(m)\right)=\left.\frac{d}{d s}\right|_{s=0}\left(h \exp (s X) h^{-1} h \cdot m\right)=\left.\frac{d}{d s}\right|_{s=0}\left(\exp \left(s A d_{h}(X)\right) h \cdot m\right)
$$

and the "anti" is due to the "left"-action.

Domenico Giulini

The basic issue
Geteling started
Conserved quantities

Momenta
Poincaré group
Supplementary conditions

Possible worldlines
MA thler radius
Position
observables
Summary

Conserved currents

- Since H acts by isometries, all V_{X} are Killing fields

$$
L_{v_{x}} g=0
$$

Domenico Giulini

The basic issue
Getting eterted
Conserved

- Hence have linear map J from the Lie-algebra \mathfrak{h} to the linear space of conserved currents (co-closed one forms)

$$
J_{X}=V_{X}^{a} T_{a b} d x^{b}, \quad \delta J_{X}=-\nabla_{a} J_{X}^{a}=0
$$

- Alternatively, to the closed 3-forms

$$
\star i V_{X} T=V_{X}^{a} T_{a b} \eta^{b c} \varepsilon_{c d e f} \frac{1}{3!} d x^{d} \wedge d x^{e} \wedge d x^{f}
$$

where

$$
d \star i v_{X} T=0
$$

Global "momenta"

- Given the quadruple of input data $d:=((M, g) ;(H, \Phi) ; \Sigma ; T)$, get element in $\mathfrak{h} *$ by

$$
\begin{equation*}
\mathfrak{M}_{d}: X \mapsto \mathfrak{M}[T, \Sigma](X):=\int_{\Sigma} \star J_{X}[T] \tag{6}
\end{equation*}
$$

- For given (M, g) and (H, Φ), and sufficiently restricted family of spacelike hypersurfaces (ending at i_{0}) together with sufficiently well behaved T (spatially compact support) this is independent of Σ.
- Considering T as function of fields F, have

$$
\begin{equation*}
\mathfrak{M}: F \rightarrow \mathfrak{M}(F) \in \mathfrak{h}^{*} \quad(\text { "momentum map" }) \tag{7}
\end{equation*}
$$

- The image of the momentum map lies in the dual of the symmetry Liealgebra. This is the habitat of global charges = "momenta".
- How does G act on these momenta?

Domenico Giulini

Momenta and co-adjoint G-action

- For each field configuration F and each $X \in \mathfrak{h}$ have momentum

$$
\mathfrak{M}[F, \Sigma](X)=\int_{\Sigma} \star \circ i v_{V_{X}} \circ T[F]
$$

- The fields F carry a representation D of H. The momentum of $D_{h}(F)$ is

$$
\begin{align*}
\mathfrak{M}\left[D_{h}(F), \Sigma\right](X) & \stackrel{1}{=} \int_{\Sigma} \star \circ i_{V_{X}} \circ T \circ D_{h}[F] \\
& \stackrel{2}{=} \int_{\Sigma} \star \circ i_{V_{X}} \circ \Phi_{h *} \circ T[F] \\
& \stackrel{3}{=} \int_{\Sigma} \star \circ \Phi_{h *} \circ i_{\Phi_{h^{*}}^{-1}} v_{\boldsymbol{X}} \circ T[F] \\
& \stackrel{4}{=} \int_{\Sigma} \Phi_{h^{-1}}^{*}\left(\star \circ i_{\Phi_{h_{*}}^{-1}} v_{\boldsymbol{X}} \circ T[F]\right) \tag{8}\\
& \stackrel{5}{=} \int_{\Phi_{h^{-1}}(\Sigma)}\left(\star \circ i_{V_{\mathrm{Ad}_{h^{-1}}(\boldsymbol{x})}} \circ T[F]\right) \\
& \stackrel{6}{=} \mathfrak{M}\left[F, \Phi_{h^{-1}}(\Sigma)\right]\left(\operatorname{Ad}_{h}^{-1}(X)\right) \\
& \stackrel{7}{=} \mathfrak{M}[F, \Sigma]\left(\operatorname{Ad}_{h}^{-1}(X)\right) \equiv \operatorname{Ad}_{h}^{*}(\mathfrak{M})[F, \Sigma](X)
\end{align*}
$$

- Space of momenta carries co-adjoint representation.

$H=$ Poincaré group (Poin)

- Let M 4-dim. be real affine space and V corresponding vector space Lorentz inner product η. Have

$$
\begin{aligned}
\text { Lor } & :=\{h \in G L(V) \mid \eta(h v, h w)=\eta(v, w), \quad v, w \in V\} \\
\mathfrak{l o r} & :=\{X \in \operatorname{End}(V) \mid \eta(X v, w)=-\eta(v, X w), \quad v, w \in V\}
\end{aligned}
$$

- We consider the case

$$
H=V \rtimes \text { Lor }=: \text { Poin } \Rightarrow \mathfrak{h}=V \rtimes \mathfrak{l o r}=: \mathfrak{p o i n}
$$

- We may identify as vector spaces

$$
\mathfrak{p o i n} \equiv V \oplus \bigwedge^{2} V \equiv \mathfrak{p o i n}^{*}
$$

with Lie-product on poin given by

$$
\begin{aligned}
& {\left[t^{a}, t^{b}\right]=0, \quad\left[t^{a}, M^{b c}\right]=-\eta^{a b} t^{c}+\eta^{a c} t^{b}} \\
& {\left[M^{a b}, M^{c d}\right]=\eta^{a c} M^{b d}+\eta^{b d} M^{a c}-\eta^{a d} M^{b c}-\eta^{b c} M^{a d}}
\end{aligned}
$$

Motion in Special Relativity

Domenico Giulini

Adjoint and co-adjoint representation of Poin

 η-inner product$$
(p, J) \times(t, M) \rightarrow p^{a} t^{b} \eta_{a b}+\frac{1}{2} J^{a b} M^{c d} \eta_{a c} \eta_{b d}
$$

- The adjoint and co-adjoint representation of Poin on poin and poin* are then given, respectively, by

$$
\begin{align*}
\operatorname{Ad}_{(a, L)}(t, M) & =(L t-(L \otimes L M) a, L \otimes L M) \\
\operatorname{Ad}_{(a, L)}^{*}(p, J) & =(L p, L \otimes L J-a \wedge L p) \tag{9}
\end{align*}
$$

- In particular, for pure translations

$$
\begin{align*}
\operatorname{Ad}_{(a, 1)}(t, M) & =(t-M a, M) \\
\operatorname{Ad}_{(a, 1)}^{*}(p, J) & =(p, J-a \wedge p) \tag{10}
\end{align*}
$$

Connection with standard way of writing

- To implement an action of $V \rtimes$ Lor on M (affine space!) one needs to specify an origin $z \in M$. The Killing vector-fields V_{X} for $X=(t, M)$ are then given in terms of the privileged affine coordinates by

$$
V_{X}^{z}=t^{a} \partial / \partial x^{a}+\frac{1}{2} M^{a b}\left[(x-z)_{a} \partial / \partial x^{b}-\left[(x-z)_{b} \partial / \partial x^{a}\right]\right.
$$

- Only the M-dependent part of momentum depends on z: Have

$$
\mathfrak{M}(X=(t, M))=\eta_{a b} t^{a} p^{b}+\frac{1}{2} \eta_{a c} \eta_{b d} M^{a b} J^{c d}(z)
$$

where

$$
p^{a}=\int_{\Sigma} T^{a b} n_{b} d \mu
$$

and

$$
J^{a b}(z)=\int_{\Sigma}\left[(x-z)^{a} T^{b c}-(x-z)^{b} T^{a c}\right] n_{c} d \mu
$$

- Note

$$
J(z+a)=J(z)-a \wedge p \quad \text { (co-adjoint representation) }
$$

Supplementary conditions

- A supplementary condition puts a restriction on $J(z)$, the solution of which is a timelike line of possible z.
- If $u \in V$ is a unit timelike vector characterising an inertial frame of reference, we consider the supplementary condition

$$
J(z+a) \cdot u=0 \Leftrightarrow J(z) \cdot u-a(p \cdot u)+p(a \cdot u)=0
$$

- This is equivalent to linear inhomogeneous equation for a

$$
\underbrace{\left[\operatorname{Id}-\frac{p \otimes u}{p \cdot u}\right]}_{\pi} \cdot a=\frac{J(z) \cdot u}{p \cdot u}
$$

where π is the projector onto $u^{\perp}:=\{v \in V \mid v \cdot u=0\}$ parallel to p.

- Hence solution space is one-dimensional (timelike worldline)

$$
\begin{equation*}
a(\lambda)=\frac{J(z) \cdot u}{p \cdot u}+\lambda p, \quad \lambda \in \mathbb{R} \tag{11}
\end{equation*}
$$

- Dependence of $a(\lambda)$ on z is clear. Replacing z by $z^{\prime}=z+b$ results in translated worldline $a^{\prime}(\lambda)=a(\lambda)+b$.
- But how does $a(\lambda)$ depend on u for fixed z ?

Worldline dependence on u

- For any $u \in V_{1}=\{v \in V \mid v \cdot v=1\}$ equation (11) yields a line $a(\lambda)$ parallel to p. As u varies over the 3 -dimensional hyperbola V_{1} ("mass shell') we obtain a sheaf of geodesics in M.
- In that sheaf one line $a=a_{*}$ is distinguished: that for $u=p$. We call it the centre of inertia and the corresponding angular momentum

$$
J\left(z+a_{*}\right)=S
$$

the Spin

- It can be shown by elementary geometric means that the spatial diameter of this sheaf is isotropic with respect to the centre of inertia and has a radius of

$$
\begin{equation*}
R_{M}=\frac{\|S\|}{\|p\|}=\frac{\|S\|}{M_{0} c}, \quad \text { Møller } 1949 \tag{12}
\end{equation*}
$$

Domenico Giulini

Examples for Møller radii: Spin $1 / 2$

Examples for Møller radii: Proton

Examples for Møller radii: Classical bodies

- A homogeneous rigid body of mass M and Radius R, spinning at angular frequency ω, has spin angular-momentum equal to

$$
S=\frac{2}{5} M R^{2} \omega
$$

- Hence the ratio of its Møller radius to its geometric radius is

$$
\frac{R_{M}}{R}=\frac{S}{M c R}=\frac{2}{5}\left(\frac{R \omega}{c}\right)
$$

- This gives

$$
R_{M}^{(\text {Earth })}=4 \mathrm{~m}, \quad R_{M}^{(\text {Moon })}=1.1 \mathrm{~cm},
$$

and for the 716 Hz Pulsar PSR J1748-2446ad, for which $R \omega / c \approx 0.24$,

$$
\left(\frac{R_{M}}{R}\right)_{\mathrm{Pulsar}} \approx 0.1
$$

Localisation and position observables

- Foliate spacetime by spacelike hyperplanes $\Sigma_{s}, s \in \mathbb{R}$, orthogonal to $n \in V_{1}$

$$
\Sigma_{s}=\{x \in M \mid(x-z) \cdot n=s\}
$$

Define centre-of-mass by on Σ_{s} by $z+q$, where

$$
\begin{aligned}
q^{a}\left[\Sigma_{s}\right] & =\frac{1}{p \cdot n} \int_{\Sigma_{s}}(x-z)^{a} T^{b c} n_{b} n_{c} d \mu \\
& =\frac{1}{p \cdot n} \int_{\Sigma_{s}}\left(2(x-z)^{[a} T^{b] c}+(x-z)^{b} T^{a c}\right) n_{b} n_{c} d \mu \\
& =\frac{1}{p \cdot n}\left(s p^{a}+M^{a b} n_{b}\right)
\end{aligned}
$$

Define spin angular-momentum w.r.t. q as

$$
S=M-q \wedge p=M-\frac{p \wedge i_{n} M}{p \cdot n}
$$

so that (suppl. condition)

$$
i_{n} S=0
$$

Poisson structure

- Assume Poisson structure

$$
\left\{x^{a}, x^{b}\right\}=0, \quad\left\{x^{a}, p^{b}\right\}=\delta^{a b}, \quad\left\{p^{a}, p^{b}\right\}=0
$$

- Induces Poisson structure for q and p (Born \& Infeld 1935)

$$
\begin{equation*}
\left\{q^{a}, q^{b}\right\}=-\frac{S^{a b}}{(p \cdot n)^{2}}, \quad\left\{q^{a}, p^{b}\right\}=\pi^{a b}, \quad\left\{p^{a}, p^{b}\right\}=0 \tag{13}
\end{equation*}
$$

where $\pi^{a b}=\eta^{a b}-p^{a} n^{b} /(p \cdot n)$

- In order to arrive at (13) one assumes $\left\{x^{a}, n^{b}\right\}=0=\left\{p^{a}, n^{b}\right\}$, i.e. independence of n on x and p. This changes for, e.g., $n \propto p$

Domenico Giulini

The basic issue
Gettins started
Conserved
quantities
Momenta
Poincaré group
Supplementary conditions

Possible worldlines
Mofler radius
Position
observables
Summary

- Newton-Wigner localisation is such that $\left\{q^{a}, q^{b}\right\}=0$.

Summary

- Talking about motion presupposes a notion of position.
- Position becomes ambiguous in the transition from Galilean to Poincaré relativity.
- There are obvious reasons for this in case of extended objects, but ambiguities continue to exist for point particles. This transcends the realm of classical physics and relates to the infamous localisation problem in RQFT.
- It has been the idea behind this talk to make explicit those structures that give meaning to notions of localisation in the context of SR and which will either not exist or fail uniqueness in the context of GR.
- This (hopefully) helps to distinguish the generic difficulties of the gravitational case from those merely inherited by SR.

Summary

- Talking about motion presupposes a notion of position.
- Position becomes ambiguous in the transition from Galilean to Poincaré relativity.
- There are obvious reasons for this in case of extended objects, but ambiguities continue to exist for point particles. This transcends the realm of classical physics and relates to the infamous localisation problem in RQFT.
- It has been the idea behind this talk to make explicit those structures that give meaning to notions of localisation in the context of SR and which will either not exist or fail uniqueness in the context of GR.
- This (hopefully) helps to distinguish the generic difficulties of the gravitational case from those merely inherited by SR.

THE END

