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What is motion?

Talking about motion presupposes a notion of position!
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What centres?

Maurice Henry Lecorney Pryce
(1913-2003)

�The mass-centre in the restricted theory of
relativity and its connexion with the quan-
tum theory of elementary particles� ,
Proc. Roy Soc. (London) 1948

I Motivated by Fokker (�Relativitätsthe-
orie�, 1929) and Born & Fuchs (�The
Mass Centre in Relativity�, Nature
1940), Pryce elaborates on the notion
of mass�centre and discusses 6 de�ni-
tions (a)�(f) for it.

I As Born & Fuchs point out, the �right�
weights for the spatial mass�centre de-
pend not only on the rest masses, but
on the dynamical masses and hence
on other momenta. This will gener-
ally mess up canonical commutation
relations.

I Newton & Wigner 1949, Wightman
1962, Mackey-Theory.

4/23



Energy-MomentumTensorsandMotion in SpecialRelativity
Domenico Giulini

The basic issue
Getting started
Conservedquantities
Momenta
Poincaré group
Supplementaryconditions
Possible worldlines
Møller radius
Positionobservables
Summary

General starting point

I Let there be given a spacetime (M, g) and a symmetric and conserved
energy-momentum tensor

T = Tab dxa ⊗ dxb , Tab = Tba , ∇aTab = 0 (1)

of �spatially compact support�

supp(T ) ∩ Σ = compact
Σ spacelike and ending at i0

(2)

I This may be weakened to allow for su�ciently rapid fall-o� in �spacelike di-
rections�. Note that this needs careful phrasing for matter models involving
radiating �elds.
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General question

I In this conference we are interested in the problem of how to associate a
piecewise C2 timelike line in the convex hull of supp(T ).

I A related problem is, as we will see, how to associate conserved quantities
like energy, momentum, and angular momentum.

I In a Special Relativistic setting these quantities are best de�ned as (Hamil-
tonian) generators of Poincaré transformations. In this case we have a
momentum map.

I This talk intends to raise awareness for the structures implicitly used in the
SR context. On the other hand, in GR, some of these structures will be
missing, most prominently, of course, a globally acting group of isometries
of (M, g)). All workarounds then have to face the questions of existence
and uniqueness.
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Global charges

I A related problem to that of motion is that of global charges (conserved
quantities). Often one encounters expressions like

pa =

Z
Σ
Tabnb dµ

Jab =

Z
Σ

`
xaTbc − xbTac

´
nc dµ

(3)

even though prima facie they make no sense.

I What is the habitat of �momenta�? What is the meaning of global �energy-
momentum� transforms as a four vector? In what vector space and under
what group/action?

I Let's see in the most trivial example ...
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Spacetime symmetries 1

I Let (M, g) spacetime and H a �nite dimensional Lie group acting as isome-
tries

Φ : H ×M → M , Φ∗hg = g

I We assume a left action

Φ(h1h2,m) = Φ
`
(h1, Φ(h2,m)

´
, ⇒ Φ(h,m) =: h ·m

I This induces vector �elds V on M, one for each X ∈ h

VX (m) =
d
ds

˛̨̨
s=0 exp(sX ) ·m
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Spacetime symmetries 2

I Hence there is a map

V : h → Vec(M) , X 7→ VX

which is not only linear, but also satis�es other structurally important
properties:

(Φh)∗
`
VX (m)

´
= XAdh(X )(h ·m) Ad equivariance (4)ˆ

VX ,VY
˜

= −V[X ,Y ] anti-homomorphism (5)

I Indeed

(Φh)∗
`
VX (m)

´
=

d
ds

˛̨̨
s=0

`
h exp(sX ) h−1 h·m

´
=

d
ds

˛̨̨
s=0

`
exp(s Adh(X ))h·m

´
and the �anti� is due to the �left�-action.
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Conserved currents

I Since H acts by isometries, all VX are Killing �elds

LVX g = 0

I Hence have linear map J from the Lie-algebra h to the linear space of
conserved currents (co-closed one forms)

JX = V aXTab dxb , δJX = −∇aJaX = 0

I Alternatively, to the closed 3-forms

?iVXT = V aXTab ηbc εcdef 1
3!dx

d ∧ dxe ∧ dx f

where
d ? iVXT = 0 .
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Global �momenta�

I Given the quadruple of input data d :=
`
(M, g); (H, Φ);Σ;T

´
, get element

in h∗ by
M d : X 7→ M [T , Σ](X ) :=

Z
Σ

?JX [T ] (6)

I For given (M, g) and (H, Φ), and su�ciently restricted family of space-
like hypersurfaces (ending at i0) together with su�ciently well behaved T
(spatially compact support) this is independent of Σ.

I Considering T as function of �elds F , have

M : F → M (F ) ∈ h∗ (�momentum map�) (7)

I The image of the momentum map lies in the dual of the symmetry Lie-
algebra. This is the habitat of global charges = �momenta�.

I How does G act on these momenta?
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Momenta and co-adjoint G-action

I For each �eld con�guration F and each X ∈ h have momentum

M [F , Σ](X ) =

Z
Σ

? ◦ iVX ◦ T [F ]

I The �elds F carry a representation D of H. The momentum of Dh(F ) is

M [Dh(F ), Σ](X )
1
=

Z
Σ

? ◦ iVX ◦ T ◦ Dh [F ]

2
=

Z
Σ

? ◦ iVX ◦ Φh∗ ◦ T [F ]

3
=

Z
Σ

? ◦ Φh∗ ◦ iΦ−1
h∗ VX

◦ T [F ]

4
=

Z
Σ

Φ∗h−1
“
? ◦ i

Φ−1
h∗ VX

◦ T [F ]
”

5
=

Z
Φh−1 (Σ)

“
? ◦ iVAdh−1 (X )

◦ T [F ]
”

6
= M [F , Φh−1 (Σ)](Ad−1

h (X ))

7
= M [F , Σ](Ad−1

h (X )) ≡ Ad∗h(M )[F , Σ](X )

(8)

I Space of momenta carries co-adjoint representation.
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H = Poincaré group (Poin)

I Let M 4-dim. be real a�ne space and V corresponding vector space
Lorentz inner product η. Have

Lor := {h ∈ GL(V ) | η(hv , hw) = η(v ,w) , v ,w ∈ V }
lor := {X ∈ End(V ) | η(Xv ,w) = −η(v ,Xw) , v ,w ∈ V }

I We consider the case

H = V o Lor =: Poin⇒ h = V o lor =: poin

I We may identify as vector spaces

poin ≡ V ⊕
2̂
V ≡ poin∗

with Lie-product on poin given by

[ta, tb] = 0 , [ta,Mbc ] = −ηabtc + ηac tb

[Mab,Mcd ] = ηacMbd + ηbdMac − ηadMbc − ηbcMad
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Adjoint and co-adjoint representation of Poin

I With foregoing identi�cation, the pairing poin∗ × poin → R is given as
η�inner product

(p, J)× (t,M) → patbηab + 1
2J

abMcdηacηbd

I The adjoint and co-adjoint representation of Poin on poin and poin∗ are
then given, respectively, by

Ad(a,L)(t,M) =
`
Lt − (L⊗ LM)a , L⊗ LM

´
Ad∗(a,L)(p, J) =

`
Lp , L⊗ LJ − a ∧ Lp

´ (9)

I In particular, for pure translations

Ad(a,1)(t,M) =
`
t −Ma , M

´
Ad∗(a,1)(p, J) =

`
p , J − a ∧ p

´ (10)
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Connection with standard way of writing

I To implement an action of V o Lor on M (a�ne space!) one needs to
specify an origin z ∈ M. The Killing vector-�elds VX for X = (t,M) are
then given in terms of the privileged a�ne coordinates by

V zX = ta ∂/∂xa + 1
2M

abˆ
(x − z)a ∂/∂xb − [(x − z)b ∂/∂xa

˜
I Only the M-dependent part of momentum depends on z: Have

M
`
X = (t,M)

´
= ηabtapb + 1

2ηacηbdMabJcd (z)

where
pa =

Z
Σ
T abnb dµ

and
Jab(z) =

Z
Σ

ˆ
(x − z)aTbc − (x − z)bT ac˜

nc dµ

I Note

J(z + a) = J(z)− a ∧ p (co-adjoint representation)
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Supplementary conditions

I A supplementary condition puts a restriction on J(z), the solution of which
is a timelike line of possible z.

I If u ∈ V is a unit timelike vector characterising an inertial frame of refer-
ence, we consider the supplementary condition

J(z + a) · u = 0⇔ J(z) · u − a(p · u) + p(a · u) = 0

I This is equivalent to linear inhomogeneous equation for a»
Id− p ⊗ u

p · u

–
| {z }

π

·a =
J(z) · u
p · u

where π is the projector onto u⊥ := {v ∈ V | v · u = 0} parallel to p.
I Hence solution space is one-dimensional (timelike worldline)

a(λ) =
J(z) · u
p · u

+ λp , λ ∈ R (11)

I Dependence of a(λ) on z is clear. Replacing z by z ′ = z + b results in
translated worldline a′(λ) = a(λ) + b.

I But how does a(λ) depend on u for �xed z?
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Worldline dependence on u

I For any u ∈ V1 = {v ∈ V | v · v = 1} equation (11) yields a line a(λ)
parallel to p. As u varies over the 3-dimensional hyperbola V1 (�mass
shell�) we obtain a sheaf of geodesics in M.

I In that sheaf one line a = a∗ is distinguished: that for u = p. We call it
the centre of inertia and the corresponding angular momentum

J(z + a∗) = S

the Spin

I It can be shown by elementary geometric means that the spatial diameter
of this sheaf is isotropic with respect to the centre of inertia and has a
radius of

RM =
‖S‖
‖p‖

=
‖S‖
M0c

, Møller 1949 (12)
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Examples for Møller radii: Spin 1/2

I Spin 1/2 particle has ‖S‖ = ~/2 and thus

RM =
~

2M0c
=

1
4π

h
M0c

=
1
4π

λC

I An electrically charged spin 1/2 particle has a classical charge-radius Rclassical
determined by

e2
8πε0Rclassical

= Moc2

This gives
RM = Rclassical/α ≈ 137Rclassical
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Examples for Møller radii: Proton

I Experimentally determined �charge radius� of Proton is (2010 CODATA)

R (Proton)
charge = 0.87 · 10−15m

I It Compton wavelength is

λProton = 1.32 · 10−15

I The Møller radius is

R(Proton)

M =
λProton
4π

= 1.05 · 10−15m ≈
1
8
· R (Proton)

charge
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Examples for Møller radii: Classical bodies

I A homogeneous rigid body of mass M and Radius R, spinning at angular
frequency ω, has spin angular-momentum equal to

S =
2
5
MR2 ω

I Hence the ratio of its Møller radius to its geometric radius is

RM
R

=
S

McR
=

2
5

„Rω

c

«

I This gives
R(Earth)

M = 4m , R(Moon)

M = 1.1 cm ,

and for the 716Hz Pulsar PSR J1748-2446ad, for which Rω/c ≈ 0.24,„RM
R

«
Pulsar

≈ 0.1
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Localisation and position observables

I Foliate spacetime by spacelike hyperplanes Σs , s ∈ R, orthogonal to n ∈ V1

Σs = {x ∈ M | (x − z) · n = s}

De�ne centre-of-mass by on Σs by z + q, where

qa[Σs ] =
1

p · n

Z
Σs

(x − z)a Tbcnbnc dµ

=
1

p · n

Z
Σs

`
2(x − z)[aTb]c + (x − z)bT ac´

nbnc dµ

=
1

p · n
`
spa + Mabnb

´
De�ne spin angular-momentum w.r.t. q as

S = M − q ∧ p = M −
p ∧ inM
p · n

so that (suppl. condition)
inS = 0
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Poisson structure

I Assume Poisson structure

{xa, xb} = 0 , {xa, pb} = δab , {pa, pb} = 0

I Induces Poisson structure for q and p (Born & Infeld 1935)

{qa, qb} = −
Sab

(p · n)2
, {qa, pb} = πab , {pa, pb} = 0 (13)

where πab = ηab − panb/(p · n)

I In order to arrive at (13) one assumes {xa, nb} = 0 = {pa, nb}, i.e.
independence of n on x and p. This changes for, e.g., n ∝ p

I Newton-Wigner localisation is such that {qa, qb} = 0.
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Summary

I Talking about motion presupposes a notion of position.

I Position becomes ambiguous in the transition from Galilean to Poincaré
relativity.

I There are obvious reasons for this in case of extended objects, but ambi-
guities continue to exist for point particles. This transcends the realm of
classical physics and relates to the infamous localisation problem in RQFT.

I It has been the idea behind this talk to make explicit those structures that
give meaning to notions of localisation in the context of SR and which will
either not exist or fail uniqueness in the context of GR.

I This (hopefully) helps to distinguish the generic di�culties of the gravita-
tional case from those merely inherited by SR.

THE END
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