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History: From Galilei's Discorsi (1638), first day - 1

Salviati:

“Finally | took two balls, one made from lead one from cork, that one a 100
times heavier than this one, and suspended them on two equal and fine
threads of about 2-3 yards length; if | elongated them from the vertical
position and released them simultaneously ... it became clearly apparent
that the heavier body coincided so much with the lighter one that neither
in a 100 nor in a 1000 periods the smallest discrepancy could be noted;
they moved in perfect step. To be sure, there was an effect of the medium
that presents a resistance to the motion, diminishing the oscillations of the
cork much more than that of the lead, but that does not make them more
or less frequent, even if the arcs covered by the cork are just 5-6 degrees
and that of the lead cover 50-60 degrees; the arcs will be covered in one
and the same time span.”
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Salviati: Domenico Giulini
“Finally | took two balls, one made from lead one from cork, that one a 100
times heavier than this one, and suspended them on two equal and fine
threads of about 2-3 yards length; if | elongated them from the vertical
position and released them simultaneously ... it became clearly apparent _Galilei
that the heavier body coincided so much with the lighter one that neither
in a 100 nor in a 1000 periods the smallest discrepancy could be noted;
they moved in perfect step. To be sure, there was an effect of the medium
that presents a resistance to the motion, diminishing the oscillations of the
cork much more than that of the lead, but that does not make them more
or less frequent, even if the arcs covered by the cork are just 5-6 degrees
and that of the lead cover 50-60 degrees; the arcs will be covered in one
and the same time span.”

» However: The period T of mathematical pendulum with maximal amplitude « is
given by an elliptic integral, whose expansion is

B [ 1., 9 ..
T((y)727r\/;{1+zsm ((x/2)+6—45|n ((x/2)+~~~} (1)

M ~ ﬂ sin2(12,5°) = ﬂ (2)

== N
T 4 85
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History: From Galilei's Discorsi (1638), first day - 2 Equivalence
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Salviati:

“In fact, without much experiments, we can prove convincingly how
impossible it it that a heavier mass would move swifter than a
smaller one...

If we have two bodies whose natural speeds [accelerations] were
different, than it is clear that if we combine the slower and the
swifter one, the latter would be decelerated by the former, and the
former, the swifter one, would be accelerated by the latter.

Hence you see: from the assumption that a heavier body would have
a greater speed [acceleration] than a smaller one, | could urge you to
conclude further that a greater body moves slower than a smaller

”

one.

-Galilei
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Salviati:

“In fact, without much experiments, we can prove convincingly how
impossible it it that a heavier mass would move swifter than a
smaller one...

If we have two bodies whose natural speeds [accelerations] were
different, than it is clear that if we combine the slower and the
swifter one, the latter would be decelerated by the former, and the
former, the swifter one, would be accelerated by the latter.

Hence you see: from the assumption that a heavier body would have
a greater speed [acceleration] than a smaller one, | could urge you to
conclude further that a greater body moves slower than a smaller

”

one.

-Galilei

> Never trust an experiment unless it has been verified by theory!

6/41



Three types of masses

In Newtonian physics we have to distinguish between three types of masses:

1. The inertial mass determines the force, that acts against an imposed ac-
celeration:

Finertial = —m;3. (3)

2. The passive gravitational mass determines the force, by which a body is
acted upon in an external gravitational field g:

Feravitational = Mpg§ - (4)

3. The active gravitational mass determines the gravitational field produced
by a body; e.g. outside a spherical mass distribution centred at X’

vl

X —X
_ 5
% — % )

E(X) = — G mag
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The impact of actio = reactio

Body1 at ¥ Body 2 at X

F12 F21

2 M) = oy _ (1) () Xp — %1
Fio = - @y g 27 6
12 Mpg §2(X1) (Mpg mag) % — =3 (6)
2 @) 2 (2 ), (1) X =%
By — - Wy g -2 7
21 mpg 81(X2) (Mpg mag) %1 — % (7)
- - ml)  m@
Fio=—Fy & ng = ng) = universal constant = 1 (8)
m(ag) m-(ag

» What remains unexplained is the equality of inertial and gravitational mass;
that is, why should

m; .
— = universal constant? (9)
mg

The first person to clearly state that this presented a big challenge to
fundamental physics was Heinrich Hertz in 1884.
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Weak equivalence principle for pointlike test masses

» The motion of a pointlike test masses is determined through

Fit Fg=0 < —m;X(t) + mg g(X(t)) =0 (10)

> If mj = mg this is equivalent to

X(t) = §(X(t)) = —Vo(X(t)) (11)

» Weak equivalence principle: The motion of a pointlike test mass in an
external gravitational field depends only on the initial position and velocity.

Q1 How small is “pointlike’?

Al Much smaller than typical length over which g varies appreciably.

Q2 What is a test mass?

A2 No higher multipoles in mass distribution (has nothing to do with size), no
charge, no spin, no significant gravitational self-energy (not too small).

> Being a “test mass” is a contextual property.
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Einstein’s Equivalence Principle (EEP)

» Universality of Free Fall (UFF) Requires existence of sufficiently general
“test bodies” to determine a path structure on spacetime (not necessarily
of pseudo Riemannian type). Possible violations of UFF are parametrised
by the EStvos factor

n(A, B) =2 1A —2B) Zm( (A _ E“(B)> (12)

|a(A) + a(B)| (A2 m;(B)c?

> Local Lorentz Invariance (LLI) Local non-gravitational experiments ex-
hibit no preferred directions in spacetime, neither timelike nor spacelike.
Possible violations of LLI concern, e.g., variations in Ac/c.

» Universality of Gravitational Redshift (UGR) Requires existence of suf-
ficiently general “standard clocks” whose rates are universally affected by
the gravitational field. Possible violations of UFF are parametrised by the

a-factor A AU
12
— =1+ oz)—2 (13)
v c

= Geometrisation of gravity and unification with inertial structure.
Far reaching consequences. One of them is: Gravity is not a force!
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Levels of verification of EEP Equivalence
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» UFF: Typical results from torsion-balance experiments by the “E6t-Wash”
group between 1994-2008 are

Domenico Giulini

n(Al, Pt) = (—0.340.9)x 10712 n(Be, Ti) = (0.3+1.8)x10~ '3 (14)

Planned improved levels are 5-:10~16 (MICROSCOPE) and 1018 (STEP).

> LLI: Currently best Michelson-Morley type experiments give (Herrmann
etal. 2005)

-Modern

A
2€ ~3.10716 (15)
C

» UGR: Absolute redshift with H-maser clocks in space (1976, h = 10 000 Km)
and relative redshifts using precision atomic spectroscopy (2007) give

Qabs <2x 107" e <4x107° (16)

> In Feb.2010 Miieller et.al. claimed improvements by 10*. This is not
widely accepted (see below). Long-term expectation in future space mis-
sions is to get to 10710 level.

> In Sept. 2010 Chou et al. report measurability of gravitational redshift on
Earth for h = 33 cm using AlT-based optical clocks (At/t < 10717).
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UFF, UGR, and energy conservation

Q— O

. hv 8a &8

o -9 o—0
T1 T2

T3 Ty

height |

Figure: Gedankenexperiment by Nordtvedt to show that energy conservation connects violations
of UFF and UGR. Considered are two copies of a system that is capable of 3 energy states A, B,
and B’ (blue, pink, and red), with E5 < Eg < Eg,. Initially system 2 is in state B and placed
a height h above system 1 which is in state A. At time T3 system 2 makes a transition B — A
and sends out a photon of energy hv = Eg — Ep. At time T system 1 absorbs this photon,
which is now blue-shifted, and makes a transition A — B’. At T3 system2 has been dropped
from height h with acceleration g4, has hit system 1 inelastically, leaving one system in state
A and at rest, and the other system in state B with an upward motion with kinetic energy
Exin = Magah + (Eg/ — Eg). The latter motion is decelerated by gg, which may differ from
gA- At T4 the system in state B has climbed to the same height h by energy conservation.
Hence have Ey;, = Mgggh and therefore Magah + MB/C2 = Mgc? + Mgggh, from which
we get

é Mg) — Mp) — (Mg — M h M, —
v _ (Mg a) — (Mg a) _ gBh |, N A &8 —8a (17a)
v Mg — Mg c2 Mg — Mg gB
M, — é,
0o A 88 —8a _ g/g (17b)
Mg — Ma  gg SM/M
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A brief comment on Miiller etal. (Nature 2010)

a lLaser pulse l ‘ b \e_. P+ zkl)

2 Height

hik, hk,
[ t+T t,+2T B 2. P + hlky + ko))
Time 19+ P>
Have
(Cs) (Cs) . (Ref)
m, m m:
Agp = mng(C') — kT2 8 g(Earfh) — kT2 8 i g(Ref)
mf.Ct) mf.c‘) m(gRef) (18)

= 1n(Cs, Ref) k T2 g(Rtet)

> Proportional to (1+E&tvds-factor) in UFF-violating theories.

@Q How does it depend on « in UGR-violating theories? Miiller etal. argue
for o< (1 + «) by representation dependent interpretation of A¢ as a mere
redshift.

» Refutation of this interpretation does not answer Q.
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Bohr & Einstein

/S
PSRN
N

N
N

N
N
N

Bild 8

» Einstein argues to be able to vio-
late AEAT > h.

» Bohr argues that inequality holds
due to UGR:

h h
M:  Ag>-——>—
Q q Ap TgAm
T
ART: AT =% Agq
C2
h h
= AT>-——— ="
Amc? AE

> Bohr's argument can be (and has
been) criticised on various ac-
counts, but its underlying logic
(QT needs GR for consistency)
seems truly remarkable.
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QFT needs GR: Gravity as regulator?

> Consider thin mass shell of Radius R, inertial rest-mass My, gravitational
mass Mg, and electric charge Q. Its total energy is

2 M2
E:Mocuf?-%—; (19)

> Now use the following two principles:

E = M;c?
' (20)
Mg = M;
> Get quadratic equation for mass M := M; = Mjg:
E Q> M?
= M = — = M, _ 21
2~ Mt oar T Y2ar (21)
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Gravity as regulator (contd.)

> The solution is

> Its R — 0 limit exits

2
lim M(R) = 2Q =V2a+ = Mplanck

R—O

but its small-G approximation is not uniform in R at R = 0:

QZ
M =
(mo + 2¢2R

n=1

oo 2n_1)” G n Q2 n+1
+ D (nt 1) <_RT2> '(m°+2c2R>
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-G. as regulator

(24)
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The gravitational “H-atom”

» Centrifugal force equals gravitational attraction

2

mwr =

> Angular momentum (o< m;) is quantised

mjwr® =n

» Bobhr radii and frequencies

0 (i)

and energies

n?h?
GMg '’

E(n) = %m;wz(n)rz(n)

(n)

G mg Mg

h

mg Mg
2

(mjm

2
g

=—(mim

) .

2
g

2mR2
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(25)
(26)
-G. and EP
G2 M?
e @
G2M?
5 (28)
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Homogeneous static gravitational field

> Time independent Schrédinger equation in linear potential V(z) = mggz
is equivalent to:

d2
(d—gz—g)@/;:o, (:=Kkz—c¢ (29)
where
2 H 2 e
L {w] 7 E;ZE[’”'} , (30)
hz mé g2 h2

» Complement by hard (horizontal) wall V(z) = oo for z < 0 get energy
eigenstates from boundary condition ¢(z = 0) =0, hence ¢ = —z,
(Abele etal. 2002 — today's 11 o'clock lecture, Kajari etal. 2010, ...):

2 272 %

m I

_&. g} . (31)

m; 2

E(n) = —2z, {
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Equivalence

Homogeneous static gravitational field Equivalence,

. . . self-gravitating
» Classical turning point zyurm (D e

E 15 Domenico Giulini
Mgg Zyurn = E & Zyurn = =—-& (=0. (32)
m

-G. and EP
> Large (—() - expansion of Airy function gives decomposition of ingoing

and outgoing waves with phase delay of
4 3/2
26(z) = 3 [K(E/mgg - z)] — /2 (33)

corresponding to a “Peres time of flight” (Davies 2004)

oAb / 5. Zrurm
T(z):= FL— x/zmm z=2 (B T 2 (34)

> For other than linear potential we will not get classical return time.
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S & KG: Inertial motion

> Galilei symmetry is a suitable 1/c — 0 limit (contraction) of Poincaré
symmetry. Likewise, the Schrédinger equation for v is a suitable 1/c — 0
limit of the Klein-Gordon equation for ¢ if we set

B(t,%) = exp{—imc® t/hi} ¥(t, X). (35)

» The Klein-Gordon field transforms as scalar

o't %) = ¢(t,%). (36)
Hence (35) implies
Y, %) = exp{—imc® (t — t')/R} ¥(t, %) . (37)
> Using
t= YHx /e =t +c 2% v+ tv?/2) +0(1/ch), (38)

V1—v2/c?
The 1/c — 0 limit of Poincare symmetry by proper representations turns
into Galilei symmetry by non-trivial ray representations

W', %) = exp{—im(%' - V + t'v?/2)/R} (t,X). (39)
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S & KG: Rigid accelerations Equivalence
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> In Minkowski space, rigid motions in x-direction and of arbitrary accel-
eration of a body parametrised by £ are given by family of timelike lines
7 (ct(7,€), x(7,€)), where

Domenico Giulini

ct(r,&) =c¢ /T d7’ cosh x (') + & sinh x(7)
x(1,8) = r:/T d7’sinh x(7') + €& cosh x(7),

Here 7 is eigentime of body element ¢ = 0 and x(7) = tanh~!(v/c) is
rapidity of all body elements at 7.

> The Minkowski metric in co-moving coordinates (7, §) reads (g := cx)

-Accelerating

ds? = c?dt? — dx? = <1 + %) c2dr? —dé?. (40)
c
> Write down Klein-Gordon equation in co-moving coordinates
{I:lg + m2}¢ = {(fdetg)*l/2 9a[(—det g)1/2 g2Pay] + m2} $=0.

(41)
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S & KG: Rigid accelerations

> In analogy to (35) write
o(t, %) = exp{—imc2 T/R} (¢, %) (42)
and take 1/c? — 0 limit
o R
ihdr 1 = <2m s + mg(r)&) . (43)

This corresponds to particle in homogeneous but time-dependent gravita-
tional field pointing in negative ¢-direction.
> Note that again ¢ transformed as scalar (compare (36))

(2, %) = 67 €) (44)
but that again this is not true for v, where (compare (35))

¢inert(t’ %) = exp{*l’mcz t/h} winert(t’ %)

- R (45)
¢*°(,€) = exp{—imc? 7/h} (7, €),
» Hence (compare (37))
$2eC(r, €) = exp{—imc? (t — 7)/h} Y7 (t, %) (46)
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Schrédinger-Newton equation Equivalence
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» Consider Einstein — Klein-Gordon system Domenico Giulini

Rab — 38a6R = 828 TKC(¢), (Og+m?)p =0 (47)

» Make WKB-like ansatz
.2 oo n
#(%, £) = exp (%5(27 t)> 2::0 (f) an(%, 1), (48)

and perform 1/c expansion (D.G. & A.GroBardt 2012).
» Obtain

h2
ihog) = (——A + mV) P (49)
2m
where -As NR limit

AV = 476G (p+ mly|?). (50)

> Ignoring self-coupling, this just generalises previous results and conforms
with expectations.
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Schrédinger-Newton equation Equivalence
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> Without external sources get “Schrédinger-Newton equation”
(Diosi 1984, Penrose 1998):

ihﬁtw(t,i’):< A Gm /‘ﬁf q‘z )w(t 2| 1)

> It can be derived from the action
sl = [al 3 / (0 (6,2 (2. %) — (e, 20" (£.9))
L /d3x(ﬁw(t,>?)) - (W*(t,i))

||*—)/||

-As NR limit
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SNE: Dimensionless form Equivalence
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> Introducing a length-scale ¢ we can use dimensionless coordinates

h
% =%/, ¢ :t'mv w/:g3/2,¢] (53)
and rewrite the SNE as
[/ (¢, 7)1

1% =¥l

i0py' (t',X) = (-A/ - K d3y/> (XY, (54)

with dimensionless coupling constant

Gm3Y ’ 3 ¢ 3
K=2-2"C o (2 (™) ~6-(—— (L) (55)
h? lp mp 100 nm 1010 4

> Here we used Planck-length and Planck-mass

-Dimensionless

"G 3
tpi= /5 =1.6x10°nm, mp::\/Eczl.finOlgu‘ (56)
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Symmetries and scaling properties of SNE Equivalence,
self-gravitating
quantum systems
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> The SNE has the same symmetries as ordinary Schrodinger equation: Full
inhomogeneous Galilei group, including parity and time reversal, and global
U(1) phase transformations.

> Also it has the following scaling covariance: Let

Sa[](8, %) == A2/2p(X5¢, A3R), (57)

then Sy[¢] satisfies the SNE for mass parameter Am iff v satisfies SNE for
mass parameter m

-Symmetries
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Collapse: Naive estimate

> Free Gaussian

im>—3/2 r?
exp | —

‘ma2

ma

(58)

> Radial probability density, p(r,t) = 47 r? [Wgee(r, t)|?, has a global maxi-

mum at
h2¢2 N R?
e i -3 (=)
. - . . . . 2
> At time t = 0 (say) this outward acceleration due to dispersion, ¥, = #

equals gravitational inward acceleration Grz’" at time t = 0 if (compare

(55)) -

m3a = miep. (60)

» For a = 500nm this yields a naive estimate for the threshold mass for
collapse of about 4 x 10%u.

Equivalence
Principle and
self-gravitating
quantum systems

Domenico Giulini

-Stationary states
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Stationary states: Analytical existence and numerical values

> Note that outward acceleration due to dispersion is o< r—3 and inward
acceleration due to gravity oc r—2. Hence there will be no collapse to a
d-singularity.

> An analytic proof for the existence of a stable ground state has been
given by E. Lieb in 1977 in the context of the Choquard equation for one-
component plasmas, which is, however, formally identical.

> Tod et al. investigated bound states numerically and found the (unique)
stable ground state at

G2 5
Ey = —0.163

= —0.163 - mc® - (£>4 (61)

(5 mp

Equivalence
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-Stationary states
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Stationary states: Rough estimates

> A rough energy-estimate for the ground state is obtained, as usual, by

setting

f2 G 2

. Gm (62)
2ma? 2a

» Minimising in a then gives rough estimates for ground state
2R2 mp\3 1G6G2m°
20 — =20p-(—2)", Eg = —= 63
° " Gm3 P ( m ) 0 8 (63)

> Sanity check for applicability of Newtonian gravity (weak field approx-
imation) is that diameter of mass distribution is much larger than its
Schwarzschild radius

2h2 2Gm ( m
ap = =4

4
— 1 64
Gm3 mp > < (64)

Equivalence
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-Stationary states
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The time-dependent SN-Equation-1 Equivalence

Principle and
self-gravitating
quantum systems

Domenico Giulini

t=0s
- t=20000s

— t =40000s

D.G. & A.GroBardt 2011

r/ um

» Time evolution of rotationally symmetric GauB packet of initial width
500nm. Collapse sets in for masses m > 4 x 10%u, but collapse times
are of many hours (recall scaling laws, though).

-Time dependence

» This is a 10® correction to earlier simulations by Carlip and Salzman (2006).
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The time-dependent SN-Equation-2

rp / pm

— Time/ s
10000 20000 30000 40000 50000

Figure: Time evolution of peak of radial probability density for increasing masses. First
bounces back from minimal contraction are seen within shown interval of time above
masses of 9 x 10% u. (D.G. and A. GroRardt 2011)
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The time-dependent SN-Equation-3 Equivalence

Principle and
self-gravitating
quantum systems

Domenico Giulini

foo / pm

I I I
10000 20000 30000 40000 50000

Time / s

Figure: Radius rgo within which 90% of the probability is located as function of time
for m = 10'® u. Note that the minimum is not zero but around rgo = 0.4um.(D.G.
and A. GroBardt 2011) Tie Aot
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The time-dependent SN-Equation-4 PT;;':C‘;;'_:':;
self-gravitating
quantum systems

Domenico Giulini

Time/ s Time / s
15000 Delta 50% Delta 50
o Dela10% 2500 o Delta10%
o * Delta 15 Delta 15
2000 x
10000
. x 1500 .
000 . x 1000 .
ey < 500
A R - .
—t fta o m/10%u f m/ 0%y
12 5 10 20 5 10 20 15 20 30
Full mass range Largest masses

Figure: Time it takes until the gravitationally interacting solution differs from the
solution of the free Schrédinger equation in its full width at half maximum (FWHM)
by a percentage of 1%, 10 %, and 50 % respectively.

-Time dependence
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Modifications of SNE Equivalence

Principle and
self-gravitating
quantum systems

» SNE is of form

Domenico Giulini

o = (~oo B+ o+ WRER) ) e R (69)
where
ox [02(6,%) = —Gm? [ LI g3 (66)
X~ 7
ie. >
o(x) = - (67)

» Modifications of SNE have been suggested where ¢ is the potential of ex-
tended charge, like for homogeneous solid sphere of radius R (Jddskeldinen
2012)

2 2R2

2 2

—Gg (3—’ ) forr <R
2

fc% forr >R

o(r) = (68)
-Modifications
» This equation can be derived for the centre-of-mass wavefunction of an
N-particle system obeying the original n-particle SNE of Diosi (1984).
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The N-particle SNE

> Principle: Each particle is under the influence of the Newtonian gravi-
tational potential that is sourced by an active gravitational mass-density
to which each particle contributes proportional to its probability density
in position space as given by the marginal distribution of the total wave

function.
> Hence
N N
%)= miP;(x) Z /\‘UN(YL SR8 — %) d®Ny
j=1 j=1
(69)
giving rise to the gravitational potential
- . m;p(X)
UV, -, ¥n)] = ||Y’*X||
1
(70)
mjm; P;(X) i(X) 3
=-G d”x
ZZ 7 50

> Note that the mutual gravitational self interaction includes self interaction.
Also, the interaction is not local. This differs from what we are used to
in electrodynamics and gives rise to contribution to centre-of-mass motion
(D.G. & A.GroBardt 2013).

Equivalence
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Collapse for modified SNE Equivalence

Principle and
self-gravitating
quantum systems

Domenico Giulini

» Modifications of collapse behaviour as compared to ordinary SNE occur
once the width of the wave packet exceeds the size of the matter distribu-
tion.

» Even for lithium (p = 534 kg - m~3) the radius of a spherical homogeneous
mass of 101% u is of about 200 nm. Hence no significant changes occur for
the alterations of the SNE suggested by Jdaskeldinen (2012).

> The same holds for hollow spheres. In fact, somewhat unexpectedly, the
modified SNE can lead to faster collapse (smaller collapse masses for given
width).

> This can be understood in terms of the energy functional

R - _ 1 . .
E= o [ PxIF0e )P + 5 [ xR (@ [oR) ) (1)
Collapse occurs if negative potential energy exceeds positive kinetic energy.
This can be related to sign of second time-derivative of second momentum
of distribution |4 (t, X)|?.

-Modifications
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Collapse in ball- and sphere-potential
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solid sphere

m. / 10%u

20 -

15 [ wave packet | |
[ radius
L [ ]

10 + L4
[ ° u hollow sphere
i o o

e0®00®
-

5 E TLLLE "

0 L L L L L L L L
0 500 1000 1500

—L——————— Radius/ nm
2000

Figure: The critical mass beyond which the wave packet collapses is plotted against the
radius of the hollow (red dots) and solid (blue squares) sphere in the potential term.
(D.G. and A. GroBardt 2013)

-Modifications
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Schrodinger 1927

Der Energieimpulssatz der Materiewellen;

von E. Schrédinger

Fragt man sich nun, ob diese in sich geschlossene Feld-
theorie — von der vorliufigen Nichtberiicksichtigung des Elek-
tronendralles abgesehen — der Wirklichkeit entspricht in der
Art, wie man das frither von dergleichen Theorien erhofft hatte,
so ist die Frage zu verneinen. Die durchgerechneten Beispiele,
vor allem das H-Atom, zeigen nimlich, daB man in die Wellen-
gleichung (1) nicht diejenigen Potentiale einzusetzen hat, welche
sich aus den P (15) mit dem Vi ©)
ergeben. Vielmehr hat man bekanntlich beim H-Atom in (1)
fir dio g, die vorgegebenen Potentiale des Korns und even-
tueller , iuBerer* Felder und
die Gleichung nach v aufzulésen. Aus (9) berechnet sich dann
die von diesem  ,erzeugte“ Stromverteilung, aus ihr nach
(1) die von ihr erzeugten Potentiale. Diese ergeben dan,
zu den tentiale igen Poten-
tiale, mit denen das Atom als gmes nach auBen wirkt, Man

Gerade die Geschlossenheit der Feldgleichungen erscheint
somit in eigenartiger Weise durchbrochen. Man kann das
houte wohl noch nicht ganz verstehen, hat es aber mit folgenden
zwei Dingen in Zusammenhang zu bringen.

Ob die Losung der Schwierigkeit wirklich nur in der von
cinigen Seiten?) bloB  statisti
der Feldtheorie zu suchen ist, miissen wir wohl vorlaufig dahin-
gostellt sein lassen. Mir personlich erscheint diese Auffassung
heute nicht mehr) endgtltig befriedigend, selbst wenn sie sich
praktisch brauchbar erweist. Sie scheint mir einen allzu
prinzipiellen Verzicht auf das Verstindnis des Einzelvorgangs
2 bedeuten.

> Schrédinger “closes” the set of
Schrédinger-Maxwell equations by
letting ¢ source the electromag-
netic potentials to which ¢ cou-
ples, thereby introducing non-
linearities, similar to radiation-
reaction in the classical theory.

> He asserts that “computations” for
the H-atom lead to discrepancies
which refute such a self-coupling.

» He wonders why in Quantum Me-
chanics the closedness of the sys-
tem of field equations is violated
in such a peculiar fashion (“in eige-
nartiger Weise durchbrochen”) and
comments of possible impact of
probability interpretation on clas-
sical concepts of local exchange of
energy and momentum.
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S umma ry Equivalence

Principle and
self-gravitating
quantum systems
Domenico Giulini
> On the level of differential equations, SNE can be derived from Einstein-
Klein-Gordon or Einstein-Dirac system.

» Describes inhibitions of dispersion for certain mass ranges and widths, like
above 6.5 x 102 u and 500 nm, followed by oscillatory behaviour with ra-
diation and settlement to ground state.

> Scaling law
Sa[¥](t, %) == 222 (M5t A3R), (72)
shows: Tenfold mass and 103 width results in 105 collapse time.

> Centre-of-mass SNE with modified kernel can be obtained from Diosi's
many-particle SNE. Modified kernel leads to same or even more favourable
results as long as support diameter of mass distribution does not exceed
the width of the centre-of-mass wave function.

> All this ignores the possible quantum nature of the gravitational field.

Summary
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> On the level of differential equations, SNE can be derived from Einstein-
Klein-Gordon or Einstein-Dirac system.

> Describes inhibitions of dispersion for certain mass ranges and widths, like
above 6.5 x 102 u and 500 nm, followed by oscillatory behaviour with ra-
diation and settlement to ground state.

> Scaling law
SA[](t, %) == X 2p(Wt, A3%), (72)
shows: Tenfold mass and 103 width results in 105 collapse time.

» Centre-of-mass SNE with modified kernel can be obtained from Diosi’s
many-particle SNE. Modified kernel leads to same or even more favourable
results as long as support diameter of mass distribution does not exceed
the width of the centre-of-mass wave function.

> All this ignores the possible quantum nature of the gravitational field.

THANK YOU!

Summary
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