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Schrödinger 1927

· · · · · ·

· · · · · ·

· · · · · ·

I Schrödinger “closes” the set of
Schrödinger-Maxwell equations by
letting ψ source the electromag-
netic potentials to which ψ couples,
thereby introducing non-linearities,
similar to radiation-reaction in the
classical theory.

I He asserts that “computations” for
the H-atom lead to discrepancies
which refute such a self-coupling.

I He wonders why in Quantum Me-
chanics the closedness of the sys-
tem of field equations is violated in
such a peculiar fashion (“in eige-
nartiger Weise durchbrochen”) and
comments of possible impact of
probability interpretation on classi-
cal concepts of local exchange of en-
ergy and momentum.
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R. Penrose (Found. Phys. Jan. 2014)

“So why give quantum theory pride of place
in this proposed union?”
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QM & Gravity: Tested so far

Colella Overhauser Werner, PRL 1975 Nesvizhevsky et al., Nature 2002

i~Ψ̇ = −
~2

2mi
∆Ψ+VgravΨ

Vgrav = mggz

How do you derive this from first principles?
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Einstein’s Equivalence Principle (EEP)

I Universality of Free Fall (UFF): “Test bodies” determine path structure
on spacetime (not necessarily of Riemannian type). UFF-violations are
parametrised by the Eötvös factor

η(A,B) := 2
|a(A)− a(B)|
|a(A) + a(B)|

(1)

I Local Lorentz Invariance (LLI): Local non-gravitational experiments ex-
hibit no preferred directions in spacetime, neither timelike nor spacelike.
Possible violations of LLI concern, e.g., variations in ∆c/c.

I Universality of Gravitational Redshift (UGR): “Standard clocks” are uni-
versally affected by the gravitational field. UGR-violations are parametrised
by the α-factor

∆ν

ν
= (1 + α)

∆U

c2
(2)
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Consequences and difficulties of the equivalence principle

I Gravity can be geometrised and hence ceases to be a force (in the New-
tonian sense). This only works if all dynamical aspects of gravity can be
encoded in space-time geometry and if all matter components see the same
geometry to which they universally couple.

I This universal coupling scheme translates to special-relativistic (Poincaré
invariant) field theories, but not in an obvious fashion to “non-relativistic”
(Galilei invariant) Quantum Mechanics.

I Three approaches are followed in the literature:

1. Redo “Schrödinger Quantisation” for relativistic particles in curved spacetime
in a post-newtonian expansion (thus also taking account of vector- and tensor
parts of Einsteinian g-field).

2. Derive post-newtonian expansions of relativistic field equations (Klein-Gordan,
Dirac, etc.).

3. Start from QFT in curved spacetime.

I Unless all this is understood much better, there is no obvious meaning
to “Quantum tests of the equivalence principle. The many confusions in
recent years on various claims concerning such “quantum-tests” reflect the
variation of such meanings and the absence of hard criteria to compare
them.
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Homogeneous static gravitational field: Bound states

I Time independent Schrödinger equation in linear potential V (z) = mggz
is equivalent to: „

d2

dζ2
− ζ

«
ψ = 0 , ζ := κz − ε (3)

where

κ :=

»
2mi mg g

~2

– 1
3
, ε := E ·

"
2mi

m2
g g

2 ~2

# 1
3

(4)

ζ

Ai(ζ)

I Complement by hard (horizontal) wall V (z) = ∞ for z ≤ 0 get energy
eigenstates from boundary condition ψ(z = 0) = 0, hence ε = −zn:

E(n) = −zn

"
m2

g

mi
·
g2~2

2

# 1
3

(5)
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UFF in QM

The following proposition states precisely the extent to which UFF is valid
within QM.

I We consider a particle of mass m in spatially homogeneous force field ~F (t).
The classical trajectories solve

~̈ξ(t) = ~F (t)/m . (6)

Let ξ(t) denote a solution with ~ξ(0) = ~0 and some initial velocity.
Its flow-map Φ : R4 → R4 defines a freely-falling frame:

Φ(t, ~x) =
`
t, ~x+ ξ(t)

´
. (7)

I Proposition: ψ solves the forced Schrödinger equation

i~∂tψ =

„
−

~2

2mi
∆− ~F (t) · ~x

«
ψ (8)

iff
ψ =

`
exp(iα)ψ′

´
◦ Φ−1 , (9)

where ψ′ solves the free Schrödinger equation and

α(t, ~x) =
mi

~


~̇ξ(t) ·

`
~x+ ~ξ(t)

´
−

1

2

Z t

dt′‖~̇ξ(t′)‖2
ff
. (10)
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Schrödinger-Newton equation

I Consider, e.g., Einstein – Klein-Gordon system

Rab − 1
2
gabR = 8πG

c4
TKG

ab (φ) ,
`
2g +m2

´
φ = 0 . (11)

I Make WKB-like ansatz

φ(~x, t) = exp

„
ic2

~
S(~x, t)

« ∞X
n=0

 √
~
c

!n

an(~x, t), (12)

and perform 1/c expansion (D.G. & A.Großardt 2012).

I Obtain

i~∂tψ =

„
−

~2

2m
∆ +mV

«
ψ (13)

where
∆V = 4πG

`
ρ+m|ψ|2

´
. (14)

I Ignoring self-coupling, this just generalises previous results and conforms
with expectations.
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Schrödinger-Newton equation

I Without external sources get “Schrödinger-Newton equation”
(Diósi 1984, Penrose 1998):

i~ ∂tψ(t, ~x) =

„
−

~2

2m
∆−Gm2

Z |ψ(t, ~y)|2

‖~x− ~y‖
d3y

«
ψ(t, ~x) (15)

I It can be derived from the action

S[ψ,ψ∗] =

Z
dt


i~
2

Z
d3x
“
ψ∗(t, ~x)ψ̇(t, ~x)− ψ(t, ~x)ψ̇∗(t, ~x)

”
−

~2

2m

Z
d3x
`
~∇ψ(t, ~x)

´
·
`
~∇ψ∗(t, ~x)

´
+
Gm2

2

x
d3x d3y

|ψ(t, ~x)|2 |ψ(t, ~y)|2

‖~x− ~y‖

ff
. (16)

I Alternative local form through introduction of gravitational potential Φ(t, ~x).

11 / 29



SNE

D. Giulini

Motivation

- Carlip 2006

- Schrödinger

- Penrose

What’s known

- COW & Co.

- EEP

- uff a theorem

SNE

- as non-rel. limit

- dimensionless

- symmetries

- collapse

- stationary states

- generalisation

- multi particle

- separation

- approximation

- consequences

Summary

Supplementary

- UFF and UGR

- KG inertial

- KG accelerating

- collapses

SNE: Dimensionless form

I Introducing a length-scale ` we can use dimensionless coordinates

~x′ := ~x/` , t′ := t ·
~

2m`
, ψ′ = `3/2ψ (17)

and rewrite the SNE as

i ∂t′ψ
′(t′, ~x′) =

„
−∆′ −K

Z |ψ′(t′, ~y′)|2

‖~x′ − ~y′‖
d3y′

«
ψ′(t′, ~x′) , (18)

with dimensionless coupling constant

K := 2 ·
Gm3`

~2
= 2 ·

„
`

`P

«„
m

mP

«3

≈ 6 ·
„

`

100 nm

«“ m

1010 u

”3
(19)

I Here we used Planck-length and Planck-mass

`P :=

r
~G
c3

= 1.6× 10−26 nm , mP :=

r
~c
G

= 1.3× 1019 u . (20)
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Symmetries and scaling properties of SNE

The SNE has all the symmetries as ordinary Schrödinger equation:

I Proper orthochronous Galilei transformations

(t, ~x) → τg(t, ~x) := (t+ b , R · ~x+ ~vt+ ~a) , (21)

acting via proper ray-representations

Ψ → TgΨ := exp(iβg)
`
Ψ ◦ τg−1

´
(22)

with multiplier-phases

βg(t, ~x) =
m

~

h
~v · (~x− ~a)− 1

2
~v2(t− b)

i
, (23)

extended by parity and anti-linear time-reversal transformations.

I Global U(1) phase transformations.

I Scaling covariance: Let

Sλ[ψ](t, ~x) := λ9/2ψ(λ5t , λ3~x) , (24)

then Sλ[ψ] satisfies the SNE for mass parameter λm iff ψ satisfies SNE
for mass parameter m.
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Collapse: Naive estimate

I Free Gaussian

Ψfree(r, t) =
`
πa2

´−3/4
„

1 +
i ~ t
ma2

«−3/2

exp

0@− r2

2a2
“
1 + i ~ t

m a2

”
1A .

(25)

I Radial probability density, ρ(r, t) = 4π r2 |Ψfree(r, t)|2, has a global maxi-
mum at

rp = a

s
1 +

~2t2

m2a4
⇒ r̈p =

~2

m2 r3p
. (26)

I At time t = 0 (say) this outward acceleration due to dispersion, r̈p =
~2

m2 r3
p
, equals gravitational inward acceleration G m

r2
p

at time t = 0 if (com-

pare (19))
m3a = m3

P `p. (27)

I For a = 500 nm this yields a naive estimate for the threshold mass for
collapse of about 4× 109u.
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Stationary states: Analytical existence and numerical values

I Note that outward acceleration due to dispersion is ∝ r−3 and inward
acceleration due to gravity ∝ r−2. Hence there will be no collapse to a
δ-singularity.

I An analytic proof for the existence of a stable ground state has been
given by E. Lieb in 1977 in the context of the Choquard equation for one-
component plasmas, which is, however, formally identical.

I Tod et al. investigated bound states numerically and found the (unique)
stable ground state at Energy E0 and width a0, given by

E0 = −0.163
G2m5

~2
= −0.163 ·mc2 ·

„
m

mP

«4

≈ −mc2 · 10−36m4[1010 u] , (28a)

a0 =
2~2

Gm3
= 6 · 106 ly ·m−3[u]

≈ 10−6 cm ·m−3[1010 u] . (28b)
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Stationary states: Rough estimates

I A rough energy-estimate for the ground state is obtained, as usual, by
setting

E ≈
~2

2ma2
−
Gm2

2a
. (29)

I Minimising in a then gives rough estimates for ground state

a0 =
2~2

Gm3
= 2`P ·

“mp

m

”3
, E0 = −

1

8

G2m5

~2
. (30)

I Sanity check for applicability of Newtonian gravity (weak field approx-
imation) is that diameter of mass distribution is much larger than its
Schwarzschild radius

a0 =
2~2

Gm3
�

2Gm

c2
⇔

„
m

mp

«4

� 1 (31)
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General SNE

I SNE is of form

i~∂tψ =

„
−

~2

2m
∆ +

`
φ ? |ψ|2(t, ~x)

´«
ψ(t, ~x) (32)

where

φ ? |ψ|2(t, ~x) = −Gm2

Z |ψ(t, ~x)|2

‖~x− ~y‖
d3y (33)

i.e.

φ(~x) = −
Gm2

r
. (34)

I Equation (32) is still valid with modified φ for separated centre-of-mass
wave-function. For example, for homogeneous spherically-symmetric mat-
ter distribution get

φ(r) =

8<:−Gm2

R

“
3
2
− r2

2R2

”
for r < R

−Gm2

r
for r ≥ R

(35)

I This equation can be derived for the centre-of-mass wavefunction of an
N-particle system obeying the original n-particle SNE of Diósi (1984).
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The N -particle SNE

Principle: Each particle is under the influence of the Newtonian gravitational
potential that is sourced by an active gravitational mass-density to which each
particle contributes proportional to its probability density in position space as
given by the marginal distribution of the total wave function.

I Hence

ρ(t; ~x) =
NX

j=0

mjPj(t; ~x) =
NX

j=0

mj

Z
|ΨN (t; ~y1, · · · , ~yN )|2 δ(3)(~yj−~x) d3Ny

(36)
giving rise to the gravitational potential

UG(t; ~y1, · · · , ~yN ) = −G
NX

i=0

Z
miρ(t; ~x)

‖~yi − ~x‖
d3x

= −G
NX

i=0

NX
j=0

Z
mimjPj(t; ~x)

‖~yi − ~x‖
d3x

(37)

I Note that the mutual gravitational interaction is not local and includes self
interaction, in contrast to what we usually assume in electrodynamics. It
is this difference that implies modifications of the dynamics for the centre-
of-mass wavefunction. These modifiations are like for the 1-particle SNE
if the width of the wave function is large compared to the support of the
matter distribution (D.G. & A. Großardt 2014).
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Separation
I Using instead of {~xi | i = 0, 1, · · ·N} centre-of-mass ~c and relative co-

ordinates {~rα | α = 1, · · ·N} (thereby distinguishing the 0-th particle),

~c :=
1

M

NX
a=0

ma ~xa =
m0

M
~x0 +

NX
β=1

mβ

M
~xβ , (38a)

~rα := ~xα − ~c = −
m0

M
~x0 +

NX
β=1

“
δαβ −

mβ

M

”
~xβ (38b)

I Get in large N limit with Ψ(~x0, · · · ~xN ) = ψ(~c)χ(~r1, · · ·~rN )

UG(t;~c, ~r1, · · · , ~rN ) = −G
NX

α=1

mα

Z
d3~c′

Z
d3~r′

|ψ(t;~c′)|2ρc(~r′)

‖~c− ~c′ + ~rα − ~r′‖
,

(39)

where

ρc(t;~r) :=

NX
β=1

mβ

8><>:
Z NY

γ=1
γ 6=β

d3~rγ

9>=>; |χ(t;~r1, · · · , ~rβ−1, ~r, ~rβ+1, · · · , ~rN )|2 .

(40)
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Approximation

I For a separation into centre-of-mass and relative motion we wish to get rid
of ~rα-dependence in (39).

I This can, e.g., be achieved by assuming the width of the c.o.m wave
function to be much larger than diameter of mass distribution. Then,

UG =−G
NX

α=1

mα

Z
d3~c′

Z
d3~r′

|ψ(t;~c′)|2ρc(~r′)

‖~c− ~c′ + ~rα − ~r′‖

≈ −GM
Z
d3~c′

Z
d3~r′

|ψ(t;~c′)|2ρc(~r′)

‖~c− ~c′ − ~r′‖
= UG(t;~c)

(41)

I Alternatively one may apply a Born-Oppenheimer approximation that con-
sists of replacing UG with its expectation-value in the state χ for the
relative motion:

UG =−G
NX

α=1

mα

Z
d3~c′

Z
d3~r′

|ψ(t;~c′)|2ρc(~r′)

‖~c− ~c′ + ~rα − ~r′‖

≈ −G

Z
d3~c′

Z
d3~r′

Z
d3~r′′

|ψ(t;~c′)|2ρc(~r′)ρc(~r′′)

‖~c− ~c′ − ~r′ + ~r′′‖
=UG(t;~c)

(42)

⇒ Both cases result in SNE for c.o.m in the form (32) with φ = UG(t;~c).
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Consequences

I For wide c.o.m - wave functions SNE leads to inhibitions of qm-dispersion,
as discussed before. Typical collapse times for widths of 500 nm and masses
about 1010 amu are of the order of hours. However, by scaling law (24),
this reduces by factor 105 for tenfold mass and 10−3 fold width.

I For narrow c.o.m. - wave functions in Born-Oppenheimer scheme one
obtains an effective self-interaction in c.o.m. SNE of

UG(t;~c) ≈ Iρc (~0) + 1
2
I′′ρc

(~0) ·
“
~c⊗ ~c− 2~c⊗ 〈~c〉+ 〈~c⊗ ~c〉

”
. (43)

where Iρc (~b) is the gravitational interaction energy between ρc and T~d
ρc.

I In one dimension and with external harmonic potential this gives rise to
modified Schrödinger evolution:

i~∂tψ(t; c) =

„
−

~2

2M

∂2

∂c2
+ 1

2
Mω2

cc
2 + 1

2
Mω2

SN

`
c− 〈c〉

´2«
ψ(t; c) ,

(44)
As a consequence covariance ellipse of the Gaussian state rotates at fre-
quency ωq := (ω2

c + ω2
SN)(1/2) whereas the centre of the ellipse orbits

the origin in phase with frequency ωc. This asynchrony is a genuine ef-
fect of self-gravity. It has been suggested that it may be observable on
optomechanical systems (Yang.et al. 2013).
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Yang-Miao-Lee-Helou-Chen, PRL 110 (2013)
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The time-dependent SNE

0.5 1.0 1.5
r � Μm

50

100

150

Ρ � mm - 1

t = 40000 s

t = 20000 s

t = 0 s

D.G. & A.Großardt 2011

I Time evolution of rotationally symmetric Gauß packet of initial width
500 nm. Collapse sets in for masses m > 4× 109 u, but collapse times are
of many hours (recall scaling laws, though).

I This is a 106 correction to earlier simulations by Carlip and Salzman (2006).
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Summary

I There is no obvious way to translate EP = UFF + LLI + UGR to non-
classical systems.

I Statements concerning Quantum Tests of the Equivalence Principle need
qualification.

I How does the Schrödinger function couple to all components of the gravi-
tational field; e.g., a gravitational wave? Give first-principles derivation!

I What if gravity stays classical?

I How, then, do systems in non-classical states source gravity?

I Schrödinger-Newton equation as limit of semi-classical Einstein equation.

I Inhibitions of dispersion at, e.g., 500 nm scale for masses above 1010 u.

I Potentially interesting consequences from gravity-induced non-linearities
in the Schrödinger equation of many particle systems can be derived, e.g.,
concerning the centre-of-mass motion.

I There is an army of arguments against fundamental semi-classical gravity;
but how conclusive are they really?

THANKS!
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UFF – UGR dependence: Energy conservation

T1 T2 T3 T4

hν gA gB

height

A

B

B′

Figure: Gedankenexperiment by Nordtvedt to show that energy conservation connects violations of
UFF and UGR. Considered are two copies of a system that is capable of 3 energy states A, B, and
B′ (blue, pink, and red), with EA < EB < EB′ . Initially system 2 is in state B and placed a
height h above system 1 which is in state A. At time T1 system 2 makes a transition B → A and
sends out a photon of energy hν = EB − EA. At time T2 system 1 absorbs this photon, which is
now blue-shifted, and makes a transition A → B′. At T3 system 2 has been dropped from height h
with acceleration gA, has hit system 1 inelastically, leaving one system in state A and at rest, and the
other system in state B with an upward motion with kinetic energy Ekin = MAgAh + (EB′ − EB).
The latter motion is decelerated by gB , which may differ from gA. At T4 the system in state B has
climbed to the same height h by energy conservation. Hence have Ekin = MBgBh and therefore

MAgAh + MB′c2 = MBc2 + MBgBh, from which we get

δν

ν
=

(MB′ −MA)− (MB −MA)

MB −MA

=
gBh

c2

"
1 +

MA

MB −MA

gB − gA

gB

#
(45a)

⇒ α =
MA

MB −MA

gB − gA

gB

=:
δg/g

δM/M
(45b)
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S & KG: Inertial motion

I Galilei symmetry is a suitable 1/c → 0 limit (contraction) of Poincaré
symmetry. Likewise, the Schrödinger equation for ψ is a suitable 1/c→ 0
limit of the Klein-Gordon equation for φ if we set

φ(t, ~x) = exp
˘
−imc2 t/~

¯
ψ(t, ~x) . (46)

I The Klein-Gordon field transforms as scalar

φ′(t′, ~x′) = φ(t, ~x) . (47)

Hence (46) implies

ψ′(t′, ~x′) = exp
˘
−imc2 (t− t′)/~

¯
ψ(t, ~x) . (48)

I Using

t =
t′ + ~x′ · ~v/c2p

1− v2/c2
= t′ + c−2

`
~x′ · ~v + t′v2/2

´
+O(1/c4) , (49)

The 1/c → 0 limit of Poincaré symmetry by proper representations turns
into Galilei symmetry by non-trivial ray representations

ψ′(t′, ~x′) = exp
˘
−im(~x′ · ~v + t′v2/2)/~

¯
ψ(t, ~x) . (50)
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S & KG: Rigid accelerations

I In Minkowski space, rigid motions in x-direction and of arbitrary accel-
eration of a body parametrised by ξ are given by family of timelike lines
τ 7→

`
ct(τ, ξ) , x(τ, ξ)

´
, where

ct(τ, ξ) = c

Z τ

dτ ′ coshχ(τ ′) + ξ sinhχ(τ) (51a)

x(τ, ξ) = c

Z τ

dτ ′ sinhχ(τ ′) + ξ coshχ(τ) (51b)

Here τ is eigentime of body element ξ = 0 and χ(τ) = tanh−1(v/c) is
rapidity of all body elements at τ .

I The Minkowski metric in co-moving coordinates (τ, ξ) reads (g := cχ̇)

ds2 = c2 dt2 − d~x2 =

„
1 +

g(τ) ξ

c2

«
c2 dτ2 − d~ξ2 . (52)

I Write down Klein-Gordon equation in co-moving coordinatesn
2g +m2

o
φ =

n
(− det g)−1/2 ∂a

ˆ
(− det g)1/2 gab∂b

˜
+m2

o
φ = 0 .

(53)
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S & KG: Rigid accelerations

I In analogy to (46) write

φ(t, ~x) = exp
˘
−imc2 τ/~

¯
ψ(t, ~x) (54)

and take 1/c2 → 0 limit; get

i~∂τψ =

 
−

~2

2m

∂2

∂~ξ2
+mg(τ)ξ

!
ψ . (55)

This corresponds to particle in homogeneous but time-dependent gravita-
tional field pointing in negative ξ-direction.

I Note that again φ transformed as scalar (compare (47))

φinert(t, ~x) = φacc(τ, ~ξ) (56)

but that again this is not true for ψ, where (compare (46))

φinert(t, ~x) = exp
˘
−imc2 t/~

¯
ψinert(t, ~x)

φacc(τ, ~ξ) = exp
˘
−imc2 τ/~

¯
ψacc(τ, ~ξ) ,

(57)

I Hence (compare (48))

ψacc(τ, ~ξ) = exp
˘
−imc2 (t− τ)/~

¯
ψinert(t, ~x) . (58)
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Bound states and collapse: Naive estimates
I Using the total energy E = T + V , with

E =
~2

2m

Z
d3x ‖∇Ψ(~x)‖2−

Gm2

2

Z
d3x

Z
d3y

|Ψ(~x)|2 |Ψ(~y)|2

‖~x− ~y‖
. (59)

we can express to second time-derivative of the second moment of |Ψ|:

Q̈ =
d2

dt2

Z
‖~x‖2 |Ψ(t, ~x)|2 d3x =

1

m
2(2E − V ) . (60)

showing that Q̈ < 0 implies E < 0 (note V < 0).

I A spherically symmetric Gaussian of width a:

Ψ(r, t = 0) = (πa2)−3/4 exp

„
−
r2

2a2

«
(61)

has

E =
~2

2ma4
−

2Gm2

√
π a3

sinh−1(1) ≈
~2

2ma4
−
Gm2

a3
, (62)

so that E < 0 is equivalent to

m3a >
~2

2G
=

1

2

„
~c
G

«3/2 „~G
c3

«1/2

= 1
2
m3

P `P . (63)

For a = 500 nm this gives m > 3.3× 109 u
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