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Abstract

These notes present various concepts in differential geometry from the el-
egant and unifying point of view of principal bundles and their associated
vector bundles.
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written as ���%� � � � .
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1 The principal bundle

Let & be an ' -dimensional manifold which we think of as representing space-
time. Most of the differential geometric structures on & can be understood as
originating from the structures encoded in the various principal fiber bundles over& . On of the most important examples of a principal bundle over & is the bundle
of linear frames, denoted by (�)�&+* , where we associate to each point ,	-.& the
set of all bases (here called ‘frames’) of the tangent space /102)�&3* . This set is in
bijective correspondence to the group 45(6)7'98%:;* which acts simply transitively on
the set of bases of any ' -dimensional real vector space.

The explicit construction of a principal fiber bundle in terms of an open cov-
ering of & and transition functions on overlaps (which we call the coordinate
construction) is e.g. described in chapter I, section 5 of the book by Kobayashi and
Nomizu [5]. It should be familiar. For the convenience of the reader we present
in a self contained fashion the details of this construction in the Appendix to these
notes. Those not familiar with the notion of principal bundles should definitely
read the Appendix first.

Here we only remind that the fiber bundle consists of the total space < , with
a free action of a Lie group 4 , such that the quotient with respect to this group
action is given by the base manifold & ; the projection map is denoted by = . This
structure is pictorially represented by the following arrangements of spaces and
maps:

&&

<

&
>

����

< 4oo ? ?
_ 44

(1)

We write 4 ’s action on < on the right (which means that in the coordinate con-
struction of < the transition functions act from the left):

43@A<CBD<	8 )�EF8HGI*;JBKGML$EON P�Q�R!)�GI* (2)

where =TSUQ5R�NV= WXET-Y4 (3)

The set GZL[4\P�N^]%G_L`EbacEd-	4fe is called the fiber through G , and the projection
map =gP�<CBh& collapses each 4 -orbit to a point in & .

1.1 Sections in P

A map ijPk& lVmnBh< obeying =OSUioNqpsrtavu is called a local section of < (overm ) if m is a proper subset. It is called a global section iff mKN\& . If a section
over mxw^& exists the set =9y{z|)}m~* is diffeomorphic to the product m�@�4 ; the
diffeomorphism is given by

/I�MPcm3@o4CB�= y{z )}m~*�8 )7,#8�Ec*;JB�i�)7,I*�L$E (4)
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This map is said to locally trivialize (in the sense of making it a product) � over � .
By definition of a bundle, any �Y�o� lies in an open � over which a local sections
exist. In contrast, global sections exist iff � is diffeomorphic to � �g� , which is
usually a very strong restriction.

Given two sections � and ��� over � , they are necessarily related by

� �H� �{���V� � �{�1��� � �{�X� (5)

for some function �d�!���D� . The two local trivializations are then related by
���{�� � � ��  � � �#��¡c�;¢� � �#�%� � �{�s¡c�X£ (6)

1.2 Fundamental vector fields and vertical subspaces

The Lie algebra ¤ of � induces vector fields on � , the so-called fundamental vector
fields, as follows: Let ¥$¦k§ be the exponential map on � and ¨©�ª¤ ; then the
fundamental vector field, ¨!« , corresponding to ¨ , is defined through

¨ « ��¬ �;��� ¯®I°°° ±�²I³ ��¬ ��¥$¦k§ �
® ¨¯�%�5£ (7)

From (7) it follows that the fundamental vector fields are ´  -equivariant, with re-
spect to right multiplication, in the following sense:

µ�¶|· � ¨ « ��¬ �%���^¸s´  � ¡ �{� �}¨�¹ « ��¬ �º¡»�X£ (8)

Clearly, ¼ ·¾½ annihilates all ¨ « ��¬ � and by a simple counting argument they actually
span ¿[¥ºÀÂÁ»¥�Ã � ¼ ·¾Ä �UÅÇÆ Ä �HÈ � of ¼ ·¾½ at each point ¬ �A� . We call

É ½ ���ËÊ ¬ ´!Ì�Í�¨ «Î��¬ �ÏÅ � ½ � �f�oÐ1¨��_¤2Ñ��q¿[¥ºÀÂÁ2¥�Ã � ¼ ·¾Ä � (9)

the vertical subspace at ¬ .
Since, by definition, ÒÔÓÖÕ± � ¬ ¢� µ6×ÙØ ÄÛÚ ± ÓÖÜ ��¬ � is just the flow for the vector field¨ « , it is easy to calculate the commutator of two vertical vector fields by using (8):

Ý ¨ « ��Þ «�ß � �®I°°° ±�²I³ Ò Ó Õ±
· Þ « � �®I°°° ±�²I³

µ ×�Ø ÄÛÚ � ± ÓÖÜ
· Þ «

� �® °°° ±�²I³
Ý ´  � ¥$¦c§ ��à ® ¨¯�%� � ÞX� ß « � Ý ¨c��Þ ß�« � (10)

which means that the assignment ¨j¢� ¨k« is a Lie homomorphism from the Lie
algebra of � to the Lie algebra of vector fields on �
1.3 Bundle automorphisms and gauge transformations

A bundle automorphism of � is a diffeomorphism áY�¯�C��� such that á ��¬ �Ö¡c���á ��¬ �º��¡ . Such diffeomorphisms form a subgroup of â5ãåä � � � which we call æ�ç»è � �f� :
æ�ç»è � �f�Ï���CÍ�áj�Aâ5ãåä � �f��ÐÛá � µ ¶ � µ ¶ � át�{éF¡T�ê�fÑ�£ (11)
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Equation (7) and the defining equation in (11) immediately imply that each funda-
mental vector field is invariant under bundle automorphisms, i.e.

ë[ìHí»î7ï�ð6î�ñIò%ò;óôï�ð6î�ë9î�ñIò%ò
(12)

By definition, automorphisms map õ fiberwise, i.e., any two points in the fiberö1÷{ø î7ù{ò , ùYúoû , get mapped to another single fiber ö�÷{ø î7ùFü�ò , where
ùXüFóþýë�î7ùIò

and
the diffeomorphism

ýëjÿ»û � û
is implicitly determined through ö�� ëYó ýë ��ö .

This can be conveniently expressed by the commutativity of the following diagram:

û û�� //

õ
û� ��

õ õ�
// õ
û �

��

(13)

We say that
ë

covers
ýë
. Alternatively, given � ú��
	��6î�û+ò

, we say that
ë�

is a lift
of � in ����� î õ ò iff

ë�gú ����� î õ ò and
ýë�Yó � . Occasionally we also write �� forë�

. Clearly
ýë

is uniquely determined by
ë

. Moreover, given two automorphismsë ø�� ë��
, their composition clearly satisfies ö�� ë ø � ë�� ó ýë ø � ýë�� �Îö , which means

that we have a group homomorphism

� ÿ ����� î õ ò�����	 �6î�û+ò � ë�!� ýë#"
(14)

A gauge transformation is a bundle automorphism
ë

which covers the identity,
i.e., for which

ýëAó%$'&)(
. We define

*
+ � î õ òÏÿ�ó-,�ëjú ����� î õ ò/. ö0� ëAó ö21 � (15)

which is called the group of gauge transformations (not to be confused with the
gauge group 3 ). Being the kernel of

�
it is a normal subgroup of ����� î õ ò . Each

gauge transformation
ë

uniquely determines a function
ë54^ÿ õ � 3 throughë9î�ñ{ò�ó ÿ2ñ76¯ë84�î�ñIò

, satisfying
ë94 î�ñ76�:còfó;: ÷{ø ë84�î�ñIò': . Hence

*
+ � î õ ò is isomor-
phic to the group of mappings õ � 3 , which are < &

-equivariant in the following
sense: ë84 �>=�? ó < & ?A@)B � ë84 (16)

and whose group multiplication is just pointwise multiplication in 3 . We shall
address

ë84
as the 3 -form of

ëjúC*
+ � î õ ò .
1.4 Lifts from DFEHG
I8JLK to MONQP�I'R�K
Since

*
+ � î õ ò3ó S�T�UWV�TAX}î � ò
we have

	ZY[+�\�T¯î � ò^] �
	��6î`_jò
isomorphic to����� î õ òba�*c+ � î õ ò . A priori

�
need not be surjective, which means that there

possibly exist diffeomorphisms of
û

which do not lift to automorphisms of õ .
However, all elements in the identity component of

�
	��6î�û3ò
do have a lift, and are

therefore contained in
	dY[+�\�T¯î � ò

, as we will show below (c.f. 1.6). But note that
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even if each element of some subgroup egfihkj
l�m�n`oqp lifts to r�s�tunwvOp , the lifting
map e fyx r�s�tunwvOp need (and generally will) not be a group homomorphism.

There are two particular examples for lifting prescriptions j
l�m�n`oqp x r�s�tunwvOp
which frequently occur in practice and which we therefore wish to describe sepa-
rately and in more detail.

1.4.1 Push-forward lift to z�n`oqp
As first example consider the case v|{}z�n`oqp , where z�n`o~p denotes the bun-
dle of linear frames over o . Let �^��j
l�m�n`oqp , then a lift �)����r�s�tunwz�n`oqpbp
of � is given by ‘push-forward’: ����n����A����p���{����Q���A��� (cf. formula (70)). This
clearly satisfies �����{}� and ���F������{����
�O��� , where ��������� � ���x ���A�8� �� �
for ��{�nH� �� p0���cz�n �¢¡b£¤p . Moreover, the map j
l�m¥n`oqp x r�s�tunwz�n`oqpbp so de-
fined is in fact an injective group homomorphism. We may thus regard j
l�m¥n`o~p as
subgroup of r�s�tunwz�n`o~pbp which intersects ¦
§�s2nwz�n`oqpbp only in the group identity.
This implies that r�s�tunwz�n`o~pbp is a semi-direct product of the following form:

r�s�tunwz�n`oqpbp¨{©¦
§�sinwvOp>ª¨«cj�l m/n`oqp (17)¬ �j
l�m�n`o~p x r�s�tun®¦
§�s¯nwz�n`o~pbpbp5¡ ¬ n®�°p±n`�²p³��{©���¥�´�[�
n`���)pWµ·¶²¸ (18)

Note that if we consider a subbundle of z�n`o~p , like e.g. the bundle ¹0n`o©¡bº�p of
orthonormal frames with respect to some (pseudo-) Riemannian structure º on o ,
then �Q� no longer acts on ¹»n`o�¡bº�p unless � is an isometry of º . Hence only the
subgroup of isometries of º in j
l�m�n`oqp can now be (homomorphically) lifted by
the ‘push-forward’-prescription.

1.4.2 Lifts by global sections

As second example consider the class of cases where the bundle (1) is trivial. Then
a global section ¼©�½o x v exists giving rise to a global diffeomorphism ¾½¿��
o À�� x v , ¾·¿Án Â�¡9��p���{q¼�n ÂCp�ÃA� . Given ����j
l�m�n`oqp , a lift �½Ä ¿�Å� �Ær�s�tunwvOp
of � is defined by

¾ µ·¶¿ �´� Ä ¿�Å� �¤¾·¿Án Â�¡9��p>��{�n®�2n ÂCp5¡9�Çp (19)

or, equivalently,
� Ä ¿�Å� nw¼�n ÂCp2Ã���p³��{%¼�n®�2n ÂCpbp½Ã���¸ (20)

This construction clearly depends on ¼ . To see how, consider another section ¼¢f .
Clearly there is a unique function È���o x � such that ¼ f n ÂCp�{%¼�n ÂCpÃHÈ¤n ÂCp . An
easy computation shows that the maps � Ä ¿uÉ�Å� and � Ä ¿�Å� are then related by a gauge

transformation � through �½Ä ¿ É Å� {��[�>�¯Ä ¿�Å� , whose � -form is given by

��Êinw¼�n ÂCp2Ã��Çp³��{Ë��µ·¶ÌÈ¤n ÂCp±Í È¤n®�²µ·¶�n ÂCpbp'Î`µ·¶Ì��¡ (21)
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which indeed defines a gauge transformation since ÏWÐ satisfies (16). Hence global
sections define a map Ñ
Ò�Ó¥Ô`Õ~Ö#×ÙØ�Ú�ÛuÔwÜOÖ (not a group homomorphism in gen-
eral!) which is unique up to the obvious freedom of composing each lift with
elements in Ý
Þ�Ú2ÔwÜOÖ .
1.5 Connections

A connection on Ü is a smooth assignment of a so-called horizontal subspaceßáà
of â à ÔwÜ#Ö for each ã , which is complementary to ä à

, and right-invariant, i.e.
satisfying the two conditions

Ô å8Öçæ ß�à/è ä àáé â à ÔwÜ#Öëê�ãíì7Üïî (22)

Ô å®å8Öëæ;ð�ñ5ò ß à é%ß à�ó ñ½ô (23)

Smoothness means that locally the subspaces can always be spanned by õ smooth
vector fields. Such horizontal subspaces can be uniquely characterized as the anni-
hilation spaces of a ö -valued 1-form, ÷ , on Ü , satisfying

Ô å8Ö�æø÷¥Ô ùú>Ö é ù>î (24)

Ô å®å8Öûæüð òñ ÷ éþý ÿ Ô ����� Ö�÷gô (25)

Vertical and horizontal projectors into each ä à
and

ßáà
are then given by

Ü��/Ô�ã°ÖÆæ â à ÔwÜOÖ�× ä à î � à
	× Ô ÷¥Ô�� à ÖbÖ9ú�Ô�ã°ÖÁî (26)

Ü��OÔ�ã°ÖÆæ â à ÔwÜOÖ�× ßáà î� à
	×�� à�� Ô ÷¥Ô�� à ÖbÖ ú Ô�ã°ÖÁô (27)

Also, given ���-ìgâ��FÔ`Õ~Ö , there is a unique horizontal lift, � �à ì�â à ÔwÜOÖ , to eachã ì�� ��� Ô��CÖ , in the sense that

Ô å9ÖÆæ�� ò à Ô�� �à Ö é � � î (28)

Ô å®å9ÖÆæü÷¥Ô�� �à Ö é�� î (29)

Ô å®å®å8Öûæ�ð ñ ò Ô�� �à Ö é � �à�ó ñ î (30)

where the right invariance, Ô å®å®å9Ö , is a consequence of Ô å8Ö and Ô å®å8Ö .
1.6 Parallel transportation in P

Given a curve � æ�� � î�� �»× Õ with �½Ô � Ö é � , �¢Ô!�uÖ é �#" and a point ã ì
� ��� Ô��CÖ . There is a unique horizontal lift, � �à æ$� � î�� �¯× Ü , of � with � �à Ô � Ö é ã .
Horizontality means thatÿ

ÿ&% � �à Ô % Ö³ì ß('*)+-,/.10 îÙê % ì2� � î�� �ô (31)

The end point, � �à Ô!�uÖFì3� ��� Ô�� " Ö , is referred to as the result of parallelly trans-
porting ã along � . The horizontal lift starting from ã54 � is given by

� �à�ó ñ é ð�ñ767� �à î (32)
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which is horizontal due to (23). This shows that the parallel-transport map 8:9;<�=>@?!ACB from DFE�G ?�H@B to DFE�G ?�HJI1B is KML -equivariant.
A case of special interest is when < is closed (a loop), so that < => ?ONPB and < => ?!ACB

are both in D E�G ?�H@B . Then there exists a Q > ? < BSR2T such that < => ?!ACBVU 8XWPQ > ? < B .
The set Y >[Z U]\ Q > ? < B_^ < U loop at D ? 8 Ba` (33)

is a group, the holonomy group at 8 Rcb . From (32) we infer that the elements of
the holonomy group satisfy

Q >ed L ? < BfUhg E�G Q > ? < BigMj (34)

implying that the holonomy groups at different points in the same fiber are conju-
gate: Y >ed L Uhg E�G Y > gMj (35)

Finally we show how one can use parallel transport to construct a lift kl RmMnpo ?ObqB to any diffeomorphism
l

in the identity component of rSsut ?wvxB . By hy-
pothesis there exists a curve y Nzj�A {}|�~ 9; l$� R rSsut ?wvxB (a so-called isotopy) such
that

l�� U������ and
l
G U l

. Under this isotopy each point H�R2v traces a curve<�� ?�~�B Z U l�� ?�H@B from H to HJI�U l ?�H@B . Lift this curve to a horizontal curve< => ?�~�B , starting at 8 R D E�G ?�H@B . Do this for all 8 R D E�G ?�H@B and for all H�R�v .
Then define kl ? 8 B Z U <�=> ?!ACB . Clearly kl ? 8 B�R DFE�G ?�HJI�B and since <�=>ed L ?�~�B�U <$=> ?�~�B W g
we have kl ? 85W gzBfU kl ? 8 B W g . Hence kl is indeed a lift of

l
to

mMnpo ?ObqB .

2 Associated vector bundles

2.1 Definition

Given a vector space � and an action of T on � via some representation � :

T�� ��;�� j ?�g�j��pB 9;�� ?�gzB��S� (36)

there is a free right action of T on b�� � :

T��2?Ob�� � B ; b�� � j ?�g�jC? 8 j��zB�B 9; ? 85W g�j � ?�g E�G B��zB�� (37)

We can form the quotient

� ?Ob�j � j � B Z U�?Ob�� � B� ¡T¢j (38)

whose elements we denote by y 8 j��P{ ; clearly, y 8�W g�j��&{£U y 8 j � ?�gpB��&{ . We shall usually
omit to indicate the dependence of

�
on b�j � and � , and simply write

�
. The

projection map D of b onto v now induces a projection map:

D�¤ Z � ; v¥j y 8 j��&{ 9;¦D�¤ ? y 8 j��&{�B Z U D ? 8 B�� (39)

8



Each point §@¨#©�ª�«�¬�@® defines a map (also denoted by § ):

§#¯�°�±¦© ª�«² ¬�@®´³ µ�¶±¸· §¹³�µPº&³ (40)

which is a linear isomorphism between the vector spaces ° and the fiber © ª�«² ¬�@®
of » . In this sense the points §2¨¼© ª�« ¬w½x® of ¾ are ‘frames’ for the vector space
© ª�«² ¬�@® .
2.2 Densitized representations

Given a representations ¿ , its determinant, ÀpÁÃÂC¬�¿p® , features a one-dimensional rep-
resentation. Any other representation ¿pÄ on ° can then be modified by multiplying
it with a power of ÀpÁÃÂC¬�¿z® . Representations constructed in this way occur suffi-
ciently often to deserve a special name. We call ¿�Ä ÄÆÅ · À�ÁÃÂC¬�¿z®iº1ÇÈ¿PÄ the É -fold
¿ -densitized representation ¿ Ä . A case that frequently occurs in practice is when
¿�Ä is a tensor-representation of ¿ and its dual (=inverse adjoint). ¿�Ä Ä then describes
the representation of the É -fold densitized tensors. If À�Ê�ËJ¬Ì°�®�Å�Í , sections in the
associated vector bundle with representation · ÀpÁÃÂC¬�¿p®iº Ç are called scalar ¿ -densities
of weight É .

2.3 Gauge transformations

Any Î@¨#Ï-ÐpÂC¬O¾�® defines a map Î ² ¯&»�±¦» through

Î�Ñ¹¬�· §¹³�µ&º�®�¯ÒÅ�·ÓÎ}¬Ò§$®´³�µ&º&Ô (41)

One easily checks Î!Ñ¹¬�· §¹³�µPº�®�ÅÕÎÖÑ¹¬�· §�×�Ø�³�¿�¬�Ø�ª�«�®�µ&º�® , showing that this is indeed well
defined. The association Î�¶±ÙÎ Ñ defines an action of Ï-ÐpÂC¬O¾�® on » . If Î�Ú is theÛ

-form of Î@¨ÝÜSÞ¡Ð¹¬O¾q® , we have

ÎÖÑ£¬�· §¹³�µPº�®ß¯ÒÅà· §¹³�¿�¬wÎ Ú ¬Ò§$®�®�µPº&³ (42)

which defines an action of ÜSÞ¡Ð¹¬O¾q® , the group of gauge transformations, on » .

2.3.1 ‘Constant’ gauge transformations do not exist

On ¾ there is not only the action of the group of gauge transformations, Ü�Þ¡Ð¹¬O¾q® ,
but also the action of the gauge group

Û
, which we denoted by ¬Ò§¹³!Øp®_¶±�§á×*Ø . A

corresponding action of
Û

on » does not exist. The obvious definition ¬�Ø�³C· §¹³�µ&º�®�¶±
· §(×´Ø�³�µ&º would only be well defined if we could replace · §¹³�µ&º with · §(×Ãâ�³�¿$¬wâ ª�« ®�µ&º
for any âã¨ Û

. This leads to the condition · §¹³�¿�¬�Øp®�µ&º�Åä· §¹³�¿�¬wâpØ�â¹ª�«Ã®�µ&º�å$â¢¨ Û
,

which is satisfied iff Ø is an element of the normal subgroup æ_çP¬ Û ®S¯ÒÅéèÃØê¨ Ûìë
¿$¬wâzØ�â�ª�«í®#Å�¿�¬�Øp®&å$âî¨ Ûqï

, which we call the center of the representation ¿ .
Hence we have an action of æßçP¬ Û ® , but generally not of

Û
.

Under the name of “constant gauge transformations” it is sometimes suggested
that a well defined action of

Û
on » (as gauge transformations) exists, at least in
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the case where ð (and hence ñ ) is trivial. This may sound as if for trivial bundles
there exists a natural embedding ò¦ó ôSõ¡öø÷Oðqù , which is not correct. What is
true is that for each global section ú�û�ü ó ð there exists an injective homo-
morphism òýóÙôSõ¡öø÷Oð�ù defined through þ ÿó ���

,
��� ÷Oúf÷��@ù��
	zùqû��éúf÷��@ù�&þ�	 ,

or simply
� �� ÷Oúf÷��@ù���	zù���	����´þ�	 , which is clearly ��� -equivariant. It is also

immediate that the map þ ÿó � �
is an injective homomorphism. But for a dif-

ferent trivializing section ú�����ú���� , �äûSü ó ò , the embedding would be� �� � ÷Oúf÷��@ù���	zù �!	"���*÷��7÷��@ù�ù#��� þ���÷��@ù$	 , which equals the old
� �

followed by a
gauge transformation

�
whose ò -form is

� � ÷Oúf÷��@ù���	pù��%	 ���'& �7÷��@ù)(aþ�*+	 , where& �+(,� * denotes the group commutator & - (#.#*7û�� - . - ���)./��� . Hence there is no natural
(trivialization independent) way to embed ò into ôSõ¡öø÷Oðqù and hence no natural
way to speak of ‘constant’ gauge transformations, even if the bundle is trivial.

2.4 Parallel transportation in E

The parallel transportation law for ð induces one for ñ in the following way:
Given 0 and 0�12 as before. Let & 3 (546*87:9 ���; ÷��@ù ; then we call the curve

0 ;< 2�= >5? û & @ (BAC*�ó�ñD( 0 ;< 2�= >5? ÷�E�ù�û�� & 0 12 ÷�E�ù)(54F* (43)

the parallel transportation of & 3 (54F* along 0 . Its endpoint, 0 ;< 2�= >G? ÷HACùI� & 3 (H0�12 ÷HACù$* , is
called the result of parallelly transporting & 3 (54F* along 0 .

2.5 Sections in E

A map Jáû�üÙó¦ñ , such that 9 ;LK JM�ON$�QP ; is called a section in ñ . Since 9 ���; ÷��@ù
are vector spaces, such sections always exist, e.g. the “zero-section”, without ñ
being necessarily of the product form ü RTS . A map UJ�ûSð ó S is calledV -equivariant iff, W"	X7@ò ,

UJ KZY�[ � V ÷\	 ��� ù K UJ^] (44)

There is a bijective correspondence (compare (38)) between sections in ñ and V -
equivariant, S -valued functions on ð , given by

J£÷��@ùI� & 3 (_UJ£÷ 3 ù$* (45)

for any 3 7`9a���*÷��@ù and for all � .
Given a local section ú in ð , we can define a local representative bJ of J via

bJc�dUJ K ú ] (46)

For a different choice of local section úe� over the same subset f!gxü , as in (5),
we obtain the relation for each �h7if

bJ � ÷��@ù�dUJ£÷Oúf÷��@ùj�B�7÷��@ù�ù� V ÷�� ��� ÷��@ù�ù/bJø÷��@ùk] (47)

10



As with l , an action of m on sections in l generally does not exist. Clearly, any
action on l would define an action on sections in l just by composition.

A useful generalization of n -equivariant, o -valued functions on p is the notion
of n -equivariant, o -valued horizontal q -forms ( rtsuqvsuw�xzy`{}|�~ ), whose linear
space we denote by ����{�o��5n�~ . By definition, �:�`����{�o��5n�~ iff

{���~��h���G�a�O��rZ� (48)

{�����~�� ���� �O��nQ{\�����C~5��� (49)

Condition {��H~ accounts for horizontality, i.e. that these forms are annihilated by
vertical vectors, and {��$��~ is the condition of n -equivariance. For q���r we obtain
the space of functions considered above, which we henceforth denote by ���6{�oI�5n�~ .

One immediately obtains the useful formula for the vertical Lie derivative in���Q{�oI�5n�~ : �
�G�j�M� ��F�Q���  ¢¡ � � �£}¤C¥�¦   �G§ �X��¨�n�{�©F~5�^� ªk©«�¬®� (50)

2.6 Derivatives of sections in ¯
Consider a section ° in l and its associated function ±°�`� � {�o��5n�~ on p . Let there
also be given a vector field ² on | . We wish to define derivatives of sections
in l along ² . This is equivalent to defining derivatives along ² of functions in���³{�o��5n�~ . It is clear that in order to do this we need to lift ² to a vector field ±²
on p . Assume some lifting prescription; it must be such that ±²�{B±°k~ will again ben -equivariant. That is, we want

±²´{B±°"~µ{�¶¸·µ��~��OnQ{\�����C~ ±²´{B±°"~µ{�¶�~k� (51)

Rearranging the left hand side,

±²�{B±°Q~µ{�¶c·,��~I� � ±°�{ ±²�¹�º � ~I�»nQ{\� ��� ~µ{¼� ��,½¿¾ � ±°"~µ{ ±²�¹�º � ~�OnQ{\� ��� ~ � ±°e{¼� � ½¿¾ � ±²�¹�º � ~k�(52)
shows that this is true for all ° iff ±² is right invariant: ±²À�d� � � ±² . Hence any
right-invariant lifting prescription will give us a well defined derivative operation
on ���³{�o��5n�~ , and hence on sections in l , by defining

ÁÃÂ °�{�Ät~�����Å ¶8� ±²�{B±°k~µ{�¶�~$Æ for any ¶t�`Ç ��� {�Ät~k� (53)

Local representatives can be obtained in the obvious way:

Á ÂDÈ°`��� ±²�{B±°k~�É�Ê � (54)

It is instructive to be slightly more explicit at this point. Let Ë   be the flow of² and ±Ë   the flow of ±² (we only need existence for some
� � some finite interval

around zero.). It satisfies ÇcÉ ±Ë   �ÌË   É�ÇÃ� (55)

11



With respect to the local section Í we can uniquely decompose the lifted flow ÎÏ"Ð ,
ÎÏ Ð#Ñ Í Ñ�ÒtÓ5Ó�Ô Í Ñ Ï Ð#Ñ�ÒtÓ5ÓjÕBÖ�Ñ�×CØ5ÒtÓkØ (56)

with some function
Ö

, satisfying
Ö�Ñ�×�ÔuÙ�Ø,Õ�Ó�ÔuÚ$Û

(constant map onto group iden-
tity). Here we consider

ÒÝÜßÞ^à8áâÞ
and

×
small enough for

Ï Ð#Ñ�ÒtÓ
to stay insideÞ

. We now have

Îã�Ñ Í Ñ�ÒtÓ5ÓäÔ ÛÛ6×�ååå Ð¢æ�ç Î
Ï"Ð Ñ Í Ñ�ÒtÓ5ÓÔ ÛÛF×�ååå Ð¢æ�çIè Í

Ñ Ï"Ð Ñ�ÒtÓ5Ó�Õ,Ö�Ñ�×)Ø5ÒtÓ$é
Ô ê�ëFì çCí î�ïñð Í ð Ñ�ã�Ñ�ÒtÓ5Ó8ò ÛÛ6×�ååå Ð¢æ�çIè Í

Ñ�ÒtÓjÕBÖ�Ñ�×CØ5ÒtÓ$é
Ô Í ð Ñ�ã�Ñ�ÒtÓ5Óeò�ó6ôõ ì î�ï Ø (57)

where ó�Ñ�ÒtÓ�ö�Ô ÛÛ6× ååå Ð¢æ�ç
Ö�Ñ�×)Ø5ÒtÓ�ÜX÷®ø

(58)

Using (57) in (54) and (50) to express the vertical (i.e.
ó ô -) derivative yields

the following general master formula for local representatives of derivatives:

ù úDûü Ôvã�Ñ)ûü ÓaýÿþQÑ�óFÓ/ûü ø
(59)

The function
óOö Þ�à � ÷

implicitly depends on
ã

, on the prescription for the
lifting, and on the local section Í . It does not necessarily depend only pointwise
on
ã

but may involve its derivatives, as is does for example in the case of the Lie
derivative, where

ã
is explicitly used to construct the lift (see the section on Lie

derivative).

3 Derivatives

3.1 The covariant derivative

According to the foregoing section, the covariant derivative may be characterized
by putting Îã�ÔOã�� , i.e. by lifting horizontally. We call the corresponding deriva-
tive operator

�Dú
. In order to give an expression that is independent of the vector

field
ã

with respect to which we take the derivative, we introduce the exterior
covariant derivative, which is just the ordinary exterior derivative followed by pro-
jection into horizontal direction:

Û � Îü ö�Ô»Û Îü���� � Ô»Û Îü ò�þ�Ñ
	�Ó Îü (60)

where the last equality is most easily verified by applying both sides to a basis in�� Ñ � Ó . For horizontal vectors equality obviously holds. For a vertical vector of the
form

ó ô�
the left hand side is zero, whereas the first term on the right gives

ý�þQÑ�óFÓ Îü

12



(by (50)), which just cancels the second term on the right hand side. Since the
vectors ���� span � � , this proves (60). To obtain a local expression we set�������������� (61)

which is usually called the ‘gauge potential’. It is a local (on  ) representative of
the globally defined (on ! ) connection 1-form � . As local representatives we now
obtain " �# � $ �#�%'&)( ��+* �# � (62)

or
"-, �# � . ( �# * %'&/( �� ( .�*0* �#21 (63)

Formula (63) should be read as specialization of the ‘master formula’ (59) to the
case at hand, i.e. to 3.4�5.�6 . This implies � ( 3.7*8�:9 so that application of � to
(57) gives � �<; �� ( .7* 1 (64)

If we choose a different local section �>= , related to the old one as in (5), the
new gauge potential would be related to the old gauge potential by:� = ��?@$ (
ACBED * �� %'AFBED $ A � (65)

where we regarded G to be matrix valued in order simplify notation. A proof for
this formula appears at the end of this section

Finally, we remark that the concept of an exterior covariant derivative extends
to all H+I ( � � & * . It then defines a map$ 6 � H I ( �KJ & *CL H INM D ( � � & *O� $ 6QP ��$ P %R&)( �+*�S P � (66)

where the last equality is again most easily verified by applying both sides to T
vectors of which either none, one, or more than one is vertical. Clearly, all & -
equivariant � -valued T -forms (not necessarily horizontal) are mapped via $ 6 intoH IUM D ( � � & * . An important example is the curvature 2-form on ! which we discuss
below.

Let us now prove (65). Let .WVYX�Z (  * and [ �>\�L  a curve such that[ ( 9�*]�_^ and `[ ( 9�*+��. . Let further the two local sections � = and � be related as
in (5). Then:� = � ( .7*a� $$cb ddd egf/hji � = ( [ ( b0*0*lkm� $$cb ddd egf/hCn � ( [ ( bo*0*qp A+( [ ( b0*0*sr� tvuxw Z�y � � � ( .�* % $$�b ddd egf/hji � ( ^z*{p A8( ^z* A BED ( ^z* A+( [ ( bo*0*lk� tvuxw Z�y � � � ( .�* %}| $$cb ddd egf/h (
A BED ( ^z* A+( [ ( b0*0*s~ �� w Z�y�� � w Z8y� t uxw Z�y � � � ( .�* %��g� ���@� w Z8y � A � Z ( .7*s� �� w Z�y�� � w Z�y (67)
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Hence,���/�����+���
���+�������/� � �
���0�C�����@���
�C�E���
 z�0�¢¡�¤£Y¥C¦�§@¨ª©¬«8 � � � «v® �
�7��¯
(68)

which must be valid for all

�±°³² « �µ´<�
, so that we can write, omitting the base

point

 
,

�/�¶�·�R�_���)�
�F�E���¢¡�z£Y¥ ¦ §@¨ � � �{¸
(69)

Taking advantage that ¹ can be considered as map into a linear space (matrix alge-
bra), one may write

� ¹ for ¹ � and ¹ �E� for

¥]º §@¨
. This proves (65).

3.2 The Lie derivative

Let » be the bundle of linear frames,

¥m�µ´<�
, over

´
. A point ¼ °¾½ �E� �
¿/� consists

of À linear independent vectors Á�Â � �
¿E�O¯ ¸x¸x¸ ¯ ÂÄÃ �
¿E�·Å (= Á�Â�Æ �
¿E�·Å for abbreviation) in
²/ÇÈ�µ´É�

. As before, Ê�Ë denotes the flow of

�
. We define the lifted flow, ÌÊÍË , byÌÊÍË � Á�ÂÄÆ Å¢�8Î�� Á¢ÊÍË � ÂÄÆ ÅC¯ (70)

which clearly commutes with the right Ï � ÏjÐ � À ¯0Ñ+� action¹ÓÒ7Á�ÂÄÆ �
¿E�·ÅjÔÕ Á�Â�Ö �
¿/� ¹ ÖÆ Å ¸ (71)

A local section

�
assigns a basis Á�Â¢Æ �
¿/�·Å to each

¿7°Ø×
with respect to which we

can express the lift in the form (70):ÊÍË � ÂÄÆ � ÊÍË �
¿E�0�]� ÊÍË � ÇÈ� ÂÄÆ �
¿/�0�C� ÂÄÖ � ÊÍË �
¿/�0��� ÊÍË � Ç@� ÖÆ ¯ (72)

where

� Ê�Ë � Ç�� ÖÆ are the components of the Jacobi-matrix for ÊEË at

¿
with respect to

the chosen frames Á�Â Æ �
¿E�·Å , that is, with respect to

�
. Comparison of (72) with (56)

and (58) (in matrix notation) shows that� ÖÆ �
ÙO¯0¿E�C�Ú� ÊÍË � Ç�� ÖÆ and Û ÖÆ �
¿E�C�
��cÙEÜÜÜ ËgÝ/Þ

� ÊÍË � Ç�� ÖÆ (73)

respectively. The right hand side of the last equation can be explicitly calculated
using (72). For this we write ß � Ê)Ë �
¿E� and noteÊ � Ë �ªàâá ÊÍË � Çã�åäs� ÜÜÜçæ�è ©êéK ¯ so that Ê�Ë � Çã�Ú� Ê � Ë �ªà � �E� ¸ (74)

Inserting this into (72) yieldsÊÍË � ÂÄÆ � ß �]� ÂÄÖ � ß �që·� Ê � Ë �ªà � �E�oì ÖÆ ¸ (75)

This is just formula (72) but written such that all quantities are evaluated at the
same base point ß . We can now take the derivative with respect to

Ù
at

Ù��îí
,
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keeping ï fixed. Recalling that the commutator of two vector fields ð ñ]ò0ó¾ô is given
by ð ñ+ò0óõôEö±÷÷cø/ùùù úgû/ü

ý úsþ ñÿò (76)

where
ý ú denotes the flow of ó , we have from (75)ð�����ò0óõô � ï��]öÚð����cò0ó¾ô	� � ï
��� � � ï
�Cö�� � � ï�� ÷÷cø ùùùçúgû/ü

 � ý�� ú þ � �
����� �� ö�� � � ï
������ � ï
��ò (77)

where in the last step we used that for a matrix-valued curve � � ø � with � ��� �+ö�� ÷we have �� ú
� úgû/ü � � ��� ø � � ��� ö!�� ú

� úgû/ü � � ø � . Hence we have shown that

� �� öÚð����cò0ó¾ô �#" (78)

Given a coordinate system $�%�&(' on )+*-, with associated frame $/.#01.�%�&#'
and the decomposition ó ö�ó2&�.(01.3%4& , one has

�15& � %#�]ö�. & ó65 � %���ò (79)

which, when used in the ‘master formula’ (59), gives the well known expression
for the Lie derivative in a coordinate frame basis:798;:< öåó & . & :< �>=#� .Èó2� :< " (80)

We can also derive a useful expression for the Lie derivative of the connection
1-form. Note that for any right-invariant vector field ?ó we have

7A@8CBEDGF � �IH òKJ ÷ �
and B � ?óA� DGF ü �IH òKJ ÷ � . Then, for any right-invariant ?ó ,7A@8 B ö � � @8ML ÷ONY÷ L � @8 � B ö ÷ � B � ?óA� � N � @8 �QPR� B6STB �ö � @8 P NY÷ U � B � ?óA� � " (81)

The Lie derivative for the curvature then follows from (92):7A@8 P ö ÷ 7V@8CB N J ÷ � B � S 7W@8XB ö ÷ U � 7W@8YB � (82)

We now pull back (81) using Z , and obtain with (57):

Z þ � 7V@8 � B � �Cö[� 8 :P NR\ � :B � ó2� � N]\ ��ö 7^8T:B N]\ ��ò (83)

where
7 8

is just the ordinary Lie derivative for (vector-valued) forms on , and
where the term involving � has been written according to (62) in the last step. This
expression is valid for any right-invariant ?ó . Specialization to the case at hand is
now performed by using the Jacobi matrix for � , as in (73).

We find it instructive to give a second derivation. For this we again write down equation (56),
using the notation _4`badcQegf3hT_�ij`keOf�hml(n_�i�`poqij`keOfQf :ro iqs(t h>` tYu n_ i f s o i c (84)
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and where v�wbxzy�{}|p~ . Hence,

�
���p������#� { ~~�� ��� wkxqy ���� wq� � � � � { ~~�� ��� wkxqy � �w � �k�C�
�v w � � �g� (85)

From (65) we know that �k�X� �v w � � � {���~ � �v3���w ����O� �v4���w ~ �v w�� (86)

so that the right hand side of (85) is equal to (recall �v wq� � w {Tv w )
~~�� ��� wkxqy�� ��~ � v ���w � � � �w ��#��� v ���w ~�v1w �¡{ � � ��¢� ~�£ � ��~ � ��(� £ � (87)

where £G{¥¤v wkxqy is given by the expression (73). The terms involving £ can be written as ¦§£
according to (62).

What we have said so far is restricted to the case where ¨ is the frame bundle
of © . We made use of the fact that diffeomorphisms of © have a natural lift
to ªX«Q©-¬ by push-forward, as expressed in (70). This enabled us to define Lie
derivatives for sections in all vector bundles associated to ªX«Q©-¬ . But in the general
case no such natural lift exists. As an intermediate example, let © be given a
Riemannian metric, and take ¨®°¯±«Q©²¬ , where ¯³«Q©-¬ denotes the bundle of
orthonormal frames. Then the lifting prescription (70), applied to ¯±«Q©²¬ , only
makes sense for isometries, so that at this level Lie derivatives can only be taken
with respect to Killing vector fields. This is e.g. the case for spinors, which are
sections in a vector-bundle associated to a double cover of ¯³«Q©-¬ . Generally, you
simply cannot take Lie derivatives of spinors with respect to arbitrary vector fields.
Compare [3], where the Lie derivative of spinors with respect to conformal Killing
fields is explained.

If ¨ is trivial, we already discussed in section 1.4.2 how to lift a diffeomor-
phism in a trivialization dependent fashion. Differentiating (20) with respect to the
flow parameter ´ after replacing µ with µ�¶ , we obtain for the lifted vector field·¸ «�¹^« º6¬¼»¾½¿¬§ÀÁ�ÂXÃ�Ä�¹ Ä « ¸ « º6¬ ¬4Å (88)

which is clearly right invariant and tangential to the image of ¹ . When ¹ is at the
same time used to derive expressions on © , these become particularly simple due
to the fact that the Æ -term in (57) is now absent. Thus (we continue our notation·ÇÉÈ ¹ÊÌËÇ , ¹ Ä�Í ÎËÍ but keep in mind that ¹Ê�¹ , i.e. Ï��© )

¹ Ä «�ªVÐÑ ·Ç ¬Ò ª Ñ ËÇ  ¸ «�ËÇ ¬4Å (89)¹ Ä «�ªVÐÑ Í ¬Ò ª Ñ ËÍ�Ó
(90)

By construction, these expressions are Ô -, resp. Õ�Ö -equivariant, so that any other
local representative with respect to ¹�×9Î¹>»/½ is then given by applying Ô(«I½4Ø�Ù¾¬ ,
resp. Õ�Ö4«I½ Ø�Ù ¬ to these expressions.
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4 Curvature and torsion

4.1 Curvature

The notion of curvature exits for all principal bundles with connection and accord-
ingly also for bundles associated to them. Let Ú be a principal bundle and Û the
connection 1-form on Ú ; the curvature 2-form is defined as follows:Ü[ÝÁÞ[ß�à Û�á (91)

where Û is considered as a â ß -equivariant 1-form, and
Ü

as element in ãXäqåIæ3áKâ ß�ç .
In this case it is important to note that, since Û is not horizontal, (66) may not be
applied. Instead, one obtainsÜèÞ[ß à Û Þ[ß Û6éëêä â ß å Û ç�ì Û Þ[ß Û6éÌêä3í Ûîá Ûðïqá (92)

which differs by a factor of 1/2 from what a naive application of (66) would sug-
gest. The proof runs entirely analogous as for (66). Using a local section ñ and
writing êä�íQòÛîá òÛðï Þ òÛ ì òÛ we get Cartan’s second structure equation for òÜ[ÝÁÞ ñ�ó Ü :

òÜMÞ[ß òÛ>é òÛ ì òÛ (93)

òÜ å ôÊáKõ çgö æ acts via the representation ÷ on ø , where òù takes its values. To
save notation we momentarily write ú instead of ÷ , i.e. û}ú1ü instead of ÷(åýû ç ü forû ö æ and ü ö ø . With successive application of formula (63), e.g. þTÿ òù Þ
ô]å òù ç é òÛCå ô ç ú òù , we can write

òÜ å ô6áKõ ç ú òù Þ å ô å òÛYå�õ ç ç � õTå òÛCå ô ç ç � òÛCå í ô6áKõÉï ç é í�òÛCå ô ç á òÛXå�õ ç ï ç ú òùÞ ô å òÛYå�õ ç ú ù ç � õTå òÛXå ô ç ú ù ç � òÛCå í ô6áKõ�ï ç ú òùé òÛCå ô ç ú�õ}å òù ç � òÛCå�õ ç ú¾ô]å òù ç é í�òÛCå ô ç á òÛgå�õ ç ï4ú òùÞ ô å�þ � òù ç � õ}å�þ ÿ òù ç � þ�� ÿ�� ��� òùé òÛCå ô ç ú�þ � òù � òÛCå�õ ç ú�þ ÿ òùÞ þ ÿgþ � òù � þ � þ ÿ òù � þ � ÿ	� ��� òù á (94)

which is a useful equation in applications, in particular if ôÊáKõ refer to coordinate
vector fields 
��
���� , whose commutators vanish.

Applying the exterior covariant derivative twice to a û ö ã��(åýø^á ÷ ç , we can use
(66) and (92) to obtain ß à ß à û Þ ÷(å ÜCç�ì û�� (95)

On the other hand, since
Ü

vanishes on horizontal vectors, it is immediate from the
expression (92) that the

ß à
-derivative annihilates

Ü
. Hence one has the so-called

Bianchi-Identity: ß�àXÜMÞ[ß�Ü é â ß å Û ç�ì}ÜMÞ��
(96)
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4.2 Torsion

The notion of torsion only exists for principal bundle of linear frames, i.e., if �������� �
(or subbundles thereof). Recall that a linear frame !"�$#&%(' �*)+�-, at

)/.+�
is a linear map from 021 to 354 ���6� :

798;: 0 1=< 3 4 ��� �?> #A@ ' ,�B< @ ' %A' �*)+�C> (97)

where the map corresponding to the point ! is denoted by
7D8

. We can now define a
021 -valued 1-form on

�E���6�
, F , by

F 8;: � 798HG�IKJ	L�M 8ON (98)

The form obviously annihilates vertical vectors. It is also P -equivariant, where P
denotes the defining representation of Q ���*R2> 0 � in 0 1 ; hence F .TS I � 0 1 > P � .
This is easy too verify:

U MV F 8W V � 7XG�I8W V J	L M 8W V J U V M � 7XG�I8W V JOL M 8 �YP �[Z G�I � F 8 N (99)

The torsion, 3 .\SO]^� 0 1 > P � , is now defined as the exterior covariant derivative of
F :

3 : �`_ba�FY��_bFdceP �*f��hg F N (100)

For local expressions on ikj � consider l : i < � and set mFn�ol
M
F

and m3p�ql
M
3 . Note that with (98) we get mF �*r�� � 7XG�Is(tvuxw , which just means that

the components mF ' of mF form the dual basis to #&%D' , which defined y ; we have
mF ' � %Az � �pP 'z . The local expression of (100) is known as Cartan’s first structure
equation:

m3 ' ��{|mF ' : ��_	mF ' c mf 'z g mF z N (101)

Evaluating (101) on vectors } >�~ and using mF ' � } � � } ' , _ mF ' � } >�~�� �
} ��~ ' �2��~�� } ' ���|� } >�~�� ' , and } ��~ ' � c � mf�� } ��� 'z ~ z � � {;� ~;� ' we get (sup-
pressing the index � again):

m3 � } >�~�� �`{;� ~$� {��2} ��� } >�~�� N (102)

Finally we remark that F is invariant under the lifted flow (70); this is easy to
prove:

�H���� � M F���x� t 8 w � 7 G�I�� � t 8 w JOL�M ��&� t 8 w J ���� Mx8 (103)

� 7XG�I��&� t 8 w J ��� M 4 �YF 8 N (104)

For the Lie derivatives we thus obtain

� �� FY�`� > and
� �� 3`��P ��� �� f���g F N (105)
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4.3 Relating covariant and Lie derivatives

There is an interesting relation between covariant and Lie derivatives for sections
in bundles associated to �o������� � . Recall that both kinds of derivatives were
applications of the master formula (59) which differed in the lifting prescriptions
and hence led to different expressions for � . With respect to a local section  6¡¢¤£ �E���6� given by the field of bases ¥&¦&§©¨ over

¢
, these expressions took the

form:

� §ª �k«¬+®^¯° §® ª for covariant derivative (106)

� §ª �²±³¦A§©´µ¬"¶ ª for Lie derivative (107)

The local expression for the difference between covariant and Lie derivatives of a
section · is then given by

¸;¹ ¯·�«º� ¹ ¯·»�|¼��½¯° �*¬\�¿¾�±³¦^´µ¬"¶*�x¯· (108)

where the argument of ¼ is the matrix in ÀHÁµ�*Â2´µÃ�� with components �9¯° �*¬Ä�µ� §ª ¾
±³¦ ª ´µ¬"¶ § . This matrix can be given a neater form by employing (102), which, writ-
ing
¸;¹ ¦ ª ��±�¯° �*¬\��¶ §ª ¦ § and ± ¸�ÅÇÆ ¬È¶ § �É¡ ¸ ª ¬ § , gives

Ê § �*¬È´-¦ ª �Ë��±�¯° �*¬\��¶ §ª ¾Y±³¦ ª ´µ¬"¶ § « ¸ ª ¬ §ÍÌ (109)

Hence the Lie derivative can be expressed in terms of the covariant derivative and
the torsion:

� ¹ ¯·�� ¸ ¹ ¯·�«\¼5� ¸ ¬Î¾ÐÏ ¹ Ê �x¯· (110)

where
¸ ¬ and Ï ¹ Ê stand for the component matrices ¥ ¸ ª ¬ § ¨ and ¥A¬ ® Ê §® ª ¨ with

respect to  p�Ñ¥&¦&§(¨ . This expression should be compared to (80) which, for
example, shows that for torsion-free connections we may just replace all partial
derivatives on the right hand side of (80) with covariant ones.

5 Building new from old principal bundles

5.1 Splicing

Given two principal bundles �	Ò and �KÓ over � with groups Ô;Ò , Ô�Ó and projection
maps Õ Ò and Õ Ó respectively, we consider the following subset of the Cartesian
product of ��Ò and �KÓ :

�ÍÒ2Ö��KÓ×¡Ø�$¥H�ØÙ¿ÒA´�ÙCÓx�	Ú"�ÍÒ�Û"�KÓÝÜ�Õ�Òx�ØÙ¿ÒÞ�2��Õ�Ó^�ØÙCÓA�-¨ Ì (111)

We denote points in ��ÒCÖ5�KÓ by pairs �ØÙhÒ½´�ÙCÓx� , but have it implicitly understood that
they project to the same point on � . It is easy to see that �ÒHÖb�KÓ is itself a principal
bundle over � with group Ô;ÒÍÛ»Ô×Ó and projection ÕË�ØÙXÒA´�ÙCÓx��¡Ø�`Õ¿Ò&�ØÙ¿Ò?�Ë�`ÕCÓ�ØÙ�Óx� .
It is called the splicing of bundles � Ò and � Ó [2]. But it is also a principal bundle
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over ßÍà ( ßKá ) with group â©ãxäXå½æOç�è×á ( èÉà�ç»â©ãAä�éxæ ) and projection êë àxìØí¿à½î�íCáxïËð�í¿à
( êë á ìØí à î�í á ï�ðÎí á ). We have thus a total of five principal bundles which can be
organized in the following commuting diagram: ‘

ß à ß à2ñ ß áoo òó åß à

ô
ó å

""EE
EE

EE
EE

EE
ß à2ñ ß á ß áoo òó éß à2ñ ß á

ô
ó
��

ß á

ô
ó é

||yy
yy

yy
yy

yy

(112)

(Technically speaking: ß	à ñ ßKá can be considered as the pull-back bundle of either
ß à via ë á or ß á via ë à .) It is indeed useful to think of ß à	ñ ß á in terms of (112).
Note that all the constructions in the foregoing sections apply to any of these bun-
dles. The case of interest is where, say, ß à is the frame bundle õ�ì ô ï , and ß á any
other principal bundle. In physics the associated vector bundle sections of ß à2ñ ß á
then correspond to “ fields carrying different kind of indices”, “space (space-time)
indices and internal indices”. Clearly, the process of splicing may be iterated, for
example ß�á may itself be spliced. In this case the “internal” indices are again of
“different kind”.

Connections on ß à and ß á induce a unique connection on ß àñ ß á : The hor-
izontal subspace at ìØí à î�í á ï is the unique subspace ö"÷ ø åÇù ø éÇúüû6ý ÷ ø åµù ø éþú ì�ß àñ ß á ï ,
such that êëCÿ�� ö�÷ ø å ù ø é ú ðqö ø�� û6ý ø�� ì�ß ÿ ï (

� ð ãî�� ). The connection 1-form � on
ß à2ñ ß á is then given by ��ð êë �à � à	� êë �á � á (113)

Right-invariant liftings of vector fields on
ô

to ßà ñ ßKá bijectively correspond
to right invariant liftings to ß à and ß á , and local sections in ß àñ ß á correspond
bijectively to local sections in ß à and ß á in the obvious way. Global sections in
ß à�ñ ß á exist iff they exist for ß à and ß à ; hence ß à2ñ ß á is trivial iff ß à and ß á are
trivial.

One can now define all sorts of derivatives of sections in vector bundles as-
sociated to ß à�ñ ß á , by considering right invariant liftings to ß à and ß á and their
combinations to right invariant liftings to ßOà ñ ßKá . Consider for example the Lie
derivative for the case where ß à ð�õEì ô ï and ß á a trivial bundle. The vector field


on
ô

is then lifted to ß à according to (70) and to ß á by brute force (88) with re-
spect to some global section � in ß á . This defines a right invariant lifting to ß à^ñ ß á .
Given a local section � à����� ß à we have a local section � ����� ß àñ ß á ,�ËìØíhàAî�íCáAï � ðpì�� à ì��+ï?î��Ëì��+ïµï , with respect to which we can write down local rep-
resentatives. The Lie derivative then has coordinate expressions like:

õ���� ������ ð 
! � ������ ù  #" 
 � ù  � �  �$�&% 
  ù � � �'��  (114)

where (Ëî*)Íî,+ are coordinate-indices (with respect to � à , which we have chosen to
take values in coordinate frames), and the indices -�î�. are with respect to � . Thus,
the Lie derivative acts on coordinate indices “as usual” and does not “see” the other
indices (“treats them as scalars”). But we emphasize that this latter property is due
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to choosing the same section / for trivialization and for the definition of the lifting
of the vector field 0 .

5.2 Reduction

Reduction and extension are methods to either diminish or enlarge the structure
group, keeping the base fixed. In the process of reduction the bundle is reduced to
a have a structure group that is a subgroup of the original one. In the process of
extension, one enlarges the structure group to an extension (in the technical sense
of the word) of the original group, i.e. the new structure group has the old one as a
factor group but not necessarily as a subgroup. We will now discuss these cases in
turn, starting with reduction.

Let 132 be a subgroup of 1 and 4#56172�8 1 the embedding homomorphism.
A 192 -reduction of : is a principal 1;2 -bundle :;2 over < , with right action =;2> and
projection ? 2 , and a map @A5B: 2 8C: , such thatD 4FEG5H=JI�K >�LNM'O @&PQ@ O = 2>�LSRUTWV 2$X 1 2 (115)D 4Y4FEG5H? O @&PQ? 2[Z (116)

In other words, : 2 is a subbundle of : . If the only existing 1 2 -reduction of : is for132$P\1 , : is called irreducible. If : is reducible, an interesting question is what
the irreducible subbundles are. If : is trivial, the subset <^]`_ba is a _ca -reduction
of : . We call it the identity reduction. A useful general result is the following:
Let 132 be a closed subgroup of 1 such that 1#db1;2 is contractible (as topological
space). Then a 1 2 -reduction always exists. This can be applied to 1 2 being the
maximal compact subgroup of the Lie group 1 . The example 1CPe13f D�g R =#E ,1 2 Pih D�g E and 1;db1 2kjPmlon K nbp	q Msr*t shows that the frame bundle f D <uE always
admits a reduction to v D <wE , the bundle of orthonormal frames. In other words, <
always admits a Riemannian metric.

Clearly the inverse procedure is trivial. Given : 2 , we can always embed 1 2 into
a larger group 1 and regard :#2 as a reduction of : in the obvious way. We then say
that : is a prolongation : 2 (the word extension is saved for the process described
below). It is important to note that the question of admittance of a reduction is
dependent on the group 1 one starts from. Given 1x2 2zy{192�y|1 ( y = subgroup
of) and where :#2 is a 192 reduction of : ( : an extension of :x2 ). Then it might
happen that : admits a 172 2 -reduction whereas :#2 does not. As explicit example
we take as : 2 the non-trivial double cover of the circle (the edge of the closed
Möbius strip) regarded as a } t principal bundle over ~ q . Being non-trivial it does
not admit an identity-reduction. Embedding } t in the circle group ~ q , we obtain
it as a subbundle of the 2-torus which represents : . But the torus is the trivial~ q -bundle over ~ q and clearly admits an identity-reduction.

Since this is an important point, we also want present this rather trivial example in some analytic
detail. The base, � , is the circle ��� , � L is the connected double cover of ��� which is itself a circle,
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and � is the trivial circle bundle over � , which is the 2-torus. We represent all circles by ����� for���&� �c�����B�
. The generator of the structure group �'� of �6� is written as �o� . Then we have� �^� � �b� � � � ������ � � ��� (117)� � ��� � � � � � � � � ��� �� � �¡ ¢�¡£B¤¦¥ (118)� � � � � � § � ��� � � ��¨,©ª�� � ��� (119)�¬«��® � � � � � § � ��� � � ��¨,©ª�� § � ��� � � �¡ ¢¨¯£B°±¥²© (120)³ � � � �w´ � � �µ� �� � �¶¤ (121)· � � �b� � � � ������ § � � ��� � � �¶�²© (122)

which satisfies (115,115). The identity reduction of � to the identity-bundle � � � over � (which is a
circle) is then given by · ��� � � �B� � � � �������¸ � ��� � �F¹Aº (123)

5.3 Extension

Let »¼ be a group and ½¿¾À»¼ÂÁ ¼
a surjective homomorphism. We call Ã the

kernel of ½ and have
¼mÄÅ »¼;Æ Ã . A »¼ -extension of Ç is a principal »¼ -bundle »Ç

over È , with right action »ÉxÊË and projection »Ì , and a map ÍÎ¾x»Ç Á Ç , such thatÏ�ÐFÑ ¾ É3ÒÔÓ ÊË�Õ�Ö Í Å Í Ö »ÉxÊË × »ØÚÙ »¼ÜÛ (124)Ï�ÐYÐFÑ ¾ Ì Ö Í Å »ÌÞÝ (125)

If Ç is trivial, Ç Å Èàß ¼ , a »¼ -extension clearly always exists: just set »Ç Å Èmß »¼
and Í Ï�á Û »Ø ÑâÅ\Ï�á Û ½ Ï »Ø Ñ*Ñ .

An important example is given for Ç ÅQãAÏ È Ñ
,
¼ Å¿äâåAÏ�æ	Ñ

and »¼ Å¿ç�èWéëê�Ï�æ	Ñ
(a double cover of

äâåAÏ�æ	Ñ
). In this case the

ç�èWéëê$Ï�æ	Ñ
-extension of

ãAÏ È Ñ
is also

called a spin-structure. If È represents a 4-dimensional space-time one has instead¼ ÅeäâåìÏ,í Û�î Ñ
and »¼ ÅïçðèWéëê$Ï,í Û�î Ñ

. Since 3-dimensional orientable manifolds
have always trivial

ãAÏ È Ñ
, they in particular always have a spin-structure. For non-

compact 4-dimensional space-times it is known that they admit a spin structure if
and only if

ãAÏ È Ñ
is trivial [4].

A Construction of principal bundles

Let È be a manifold (later to be called the “base”) and a collection of open subsetsñbò6óõô È öð÷ Ùùøûú which cover È , i.e. ü ó�ýÔþ ò¬óûÅ È ; the set ø is just some
index set. Let further

¼
be some group; we consider the collection of sets

ò ó ß ¼ ,
for all ÷ ÙQø . For each ordered pair ÷ Û*ÿ Ù ø for which

ò�ó � ò����Å��
we are

given a function � ó � ¾ ò¬ó � ò�� Á ¼
, such that the following three conditions are

satisfied ( 	 is the identity of
¼

):

� óbó Ï�
$ÑâÅ 	 × 
 Ù ò¬ó Û (126)

� ó �$Ï�
�Ñ�Å� � � ó Ï�
$Ñ������ × 
 Ù ò¬ó � ò�� Û (127)

� ó �$Ï�
�Ñ � ���'Ï�
�ÑâÅ � ó � Ï�
$Ñ × 
 Ù ò¬ó � ò�� � ò � Ý (128)
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Next we take the disjoint union of the sets ������� :

� �"!$#
�&%('
)�*�+ � � ���-, (129)

and “glue” the different pieces together by using the functions . �0/ . The mathe-
matical expression for “gluing” is to identify via some equivalence relation. The
equivalence relation that we use on

�
is defined as follows:

)�*�+213+54 ,76 )�89+2:;+=< ,?> 1 ! : and
4 ! . �0/ )�: , <A@ (130)

That this is indeed an equivalence relation is directly implied by (126-128): Re-
flexivity, i.e. that

)�*9+21�+54 ,�6 )�*�+213+54 , , follows from (126); symmetry, i.e. that)�*�+213+54 ,B6 )�89+2:;+=< , implies
)�8�+2:C+=< ,B6 )�*�+213+54 , , follows from (127); and fi-

nally transitivity, i.e. that
)�*9+21�+54 ,�6 )�8�+2:C+=< , and

)�89+2:;+=< ,�6 )ED�+GFH+=I , imply)�*�+213+54 ,J6 )ED�+GFH+=I , , follows from (128).
Now we consider the space of equivalence classes, which we call K :

K �"!L�NM 6 @ (131)

We call it the principal bundle for the data: O (the base), � (the fiber or the
group), PQ� �;R (the cover), and P(. �0/ R (the transition functions). To indicate this
dependence, one could write K ) O + � + PQ� ��R + P(. �0/ R , .

We shall denote the equivalence class of
)�*�+213+54 ,TS � by U )�*�+213+54 ,�V�S K .

There is a natural surjective map W � KYXZO , given by

W ) U )�*9+21�+54 ,�V�, �"! 1N@ (132)

This is obviously well defined on equivalence classes. The preimage of some point1 S[O is given by
W�\�] )�1 , ! #^ %0_ U

)�*�+213+54 ,�V (133)

if `aSb� � . This set is homeomorphic to � ; though there is no natural homomor-
phism, since if `cSd� �fe � / , we could have just as well written down (133) with8

instead of
*

. According to (130) the relation is

#
^ %0_ U
)�*�+213+54 ,�V ! #^ %Q_ U

)�89+213+ . �0/ )�1 , 4 ,�V + (134)

which says that our identification of W \�] )�1 , with � cannot distinguish between �
and . �0/ )�1 ,2� for all

*9+28
for which

1 SB� �ge � / .
The set K carries a natural right action � , given by

�h�iK +j)�<�+ U )�*�+213+54 ,�V�,lkXmU )�*�+213+54n< ,�V @ (135)

This is well defined since for
)�*�+213+54 ,a6 )�89+2:;+=I , we have

1 ! :
and
4 !

. �0/ )�: , I , and hence also
4n< ! . �0/ )�: , IH< so that

)�*�+213+54n< ,o6 )�89+2:;+=IH< , . Note
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that this is true because we used left multiplication in our definition of the “gluing
maps” in (130). For the right action with prq�s on t we shall also write uNv or just
by juxtaposition of the point w�q[t with prq�s and a dot in-between:

u vAx tYyzta{$w�|yzu v~} w��9�cw���p (136)

This action is free on t (i.e. uAv } w����dw for some w�qit implies p���� ) and simply
transitive on each fiber �9��� }�� � (i.e. for any two w�{�wC�Jqc����� }�� � there is a unique
p�q�s such that u v~} w����cw�� ).

Our original building blocks – the sets ���c��s – can now be seen as chart
images of bundle-chart maps:

� ��x � ��� } � � �9y�� � ��sd{ � }�� { � {5pn����|y }�� {5pn� (137)

which are equivariant under the right action of s on t and �J���gs (the latter being
the obvious one: } pC{ }�� {=�C�2�7|y }�� {=�npn� , which we also denote by u-v ):

� �g��u��g��u���� � ��{¡ �prq�s�¢ (138)

In the overlap ����� } ���i£¤��¥H� the different chart maps are related by transition
functions, which are clearly just given by the

� � ¥ -functions that we used to glue
the different patches:

� � } w��9� � � ¥ } � } w��2� � ¥ } w��C{¡ ~w?qi� ��� } ���g£���¥n�C¢ (139)

The transition functions on overlapping charts are given by left s -multiplications:

� �g� � ���¥ x�} �¦�g£���¥H����s y } ���g£���¥n���?s
}�� {5pn�§|y }�� { � � ¥ }�� �~pn�C¢ (140)

This follows directly from (130). The converse map is given by

� ���¥ � � � x � ��� } �¦�g£���¥H�?y � ��� } ���g£?��¥n�
� }�� { � {5pn����|y � }�¨ { � {5pn���3�� }�� { � { � � ¥ }�� �~pn���©¢ (141)

A local section of t over ��� is a map ªC� x �¦�«yzt , such that

���7ª��«��¬®�¯¯±°Q² ¢ (142)

The chart maps
� � define obvious local sections ( ��� identity in s ):

ªC� }�� � x � � ���� }�� {=�(���� }�� { � {=�(���©¢ (143)

The relation between the sections over ��� and ��¥ is then given by

ª³¥ }�� �9��ª ��}�� �¦� � � ¥ }�� � (144)
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This follows from (141), since ´�µ;¶�·�¸�¹zº�»�¼µ ¶�·3½=¾�¸¿¹zº�»�¼µÁÀ ºCÂ À º »�¼Â ¶�·�½=¾�¸�¹
º »�¼µ À º Â�Ã ¶�Ä�½2·3½=¾�¸�Å3¹ Ã ¶�·�½5Æ�½Çº Â µ3¶�·�¸2¸�Å�¹ Ã ¶�Ä�½2·3½=¾(¸�Å;È�º Â µ�¶�·�¸9¹�´ Â ¶�·�¸�È0º Â µ�¶�·�¸ .

Conversely, given a local section ´ ÂÊÉÌË�Â�Í Î , any ÏÐYÑ »�¼ ¶ Ë�Â ¸ can be
uniquely written as ´ Â ¶�·�¸�Æ for Ë�ÂÓÒ ·Ó¹hÑ9¶"Ï�¸ and ÆBÐdÔ . Hence ´ Â defines an
obvious bundle-chart map:

º Â ¶�´ Â ¶�·�¸�Æn¸ É ¹¶�·�½5Æn¸CÕ (145)

Hence we can give the following definition of a principal bundle:

Definition 1. Let Ö be a manifold and Ô a Lie group. A principal bundle over Ö
with standard fiber Ô consists of a manifold Î and a free right action ÔØ× ÎÙÍÚÎ ,
¶EÆC½�Ï�¸�ÛÍzÜÞÝ ¶"Ï�¸�¹cÏ«È�Æ such that the following conditions hold:

1. Let ÏàßbÏCá iff âãÆ�ÐcÔ s.t. ÏCá3¹¤ÏrÈ�Æ be the equivalence relation defined by
Ô , then Ö is diffeomorphic to Îåä ß (also denoted by Îåä Ô ). The canonical
projection map Ñ É~ÎYÍ Ö is differentiable.

2. Î is locally trivial in the following sense: there is a covering of Ö by open
sets Ë Â , Ä�Ðcæ , and diffeomorphisms º�Â É Ñ »�¼ ¶ Ë Â³¸ ÍçË Â[×TÔ such that
ÜÞÝ À º Â ¹èº Â À ÜÞÝ .

Remark: Sometimes it is more convenient to use the inverse chart maps é�Â É ¹
º »�¼Â .
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