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Introduction

• Doppler Tracking is a common method of tracking the position of vehicles in
space. It involves measuring the Doppler shift of a radio signal sent from a
spacecraft to a tracking station on Earth, this signal either coming from an onboard
oscillator or being one that the spacecraft has coherently transponded in response
to a signal received from the ground station. The second of these modes is more
useful for navigation because the returning signal is measured against the same
frequency reference as that of the originally transmitted signal. The Earth-based
frequency reference is also more stable than the oscillator onboard the spacecraft.

• This talk is based on Matteo Carrera & D.G, CQG 26 (2006) 7483-7492 and partly
on an ESA-Study gr-qc/0602098.
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Elementary Theory 1

• At the event p0 = (t0,~x0) a radio
signal of frequency ω0 is emitted
towards the spacecraft and received
by it at event p1 = (t1,~x1) with
frequency ω1.

• In case of simple reflection , a
returning radio signal is emitted at
p1 = (t1,~x1) with frequency ω1 and
received by us at event p2 = (t2,~x2)

with frequency ω2.

• Note: All frequencies refer to those
measured by observers that are
locally co-moving with the given world
lines (γ = world line of spacecraft)
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p2
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Elementary Theory 2

• For given world-lines (of us and of the
spacecraft) p0 and p1 are determined
by p2 (for example). Hence t1 and t0

are determined by t2.

• We are interested in the ratio ω2/ω0

as function of t2, which is determined
once the world lines are given.

• In SR we get for purely radial motion

ω2(t2)

ω0(t0)
=

1 − β(t1)

1 + β(t1)

where β(t1) = v(t1)/c and v(t1) is the
velocity of the spacecraft with respect
to our (global) inertial system at the
time t1 of signal reflection.
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Elementary Theory 3

• We wish to take the differential quotient of ω(t2)/ω(t0) with respect to t2, assuming
a constant function ω0. We get

ω̇(t2)

ω0

=
−2β̇(t1)

`

1 + β(t1)
´2

dt1

dt2

(1)

• If we are resting at the origin and r is the radial coordinate of the spacecraft, we
have t2 − t1 = r(t1)/c and therefore

1 −
dt1

dt2

=
1

c

dr(t1)

dt1

dt1

dt2

⇐⇒
dt1

dt2

=
1

1 + β(t1)
(2)

• Hence 1 becomes (β̇ ≡ α)

ω̇(t2)

ω0

=
−2β̇(t1)

`

1 + β(t1)
´3

≈ −2α(t1)
“

1 − 3β(t1) + · · ·
”

(3)
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Geometric Theory 1

• In a general spacetime (M, g) [we use signature (+, −, −, −) for g] there is
no privileged (e.g. inertial) global reference frame by means of which we
may introduce kinematical variables that characterize world lines (different ones
collectively). Hence “appropriate” fiducial observer-fields need to be introduced.

• An observer at the event p is a future pointing unit timelike vector. An observer
field is a field of observers. Any observer u at p gives rise to an orthogonal split of
the Tangent space at p, Tp(M) = T‖

p (M) ⊕ T⊥
p (M), where

T
‖
p (M) := Span{u} , T

⊥
p (M) := {v ∈ Tp(M) | g(v, u) = 0} (4)

The associated projection operators are given by

P
‖
u : Tp → T

‖
p (M) , v 7→P

‖
u(v) := u g(u, v) (5a)

P
⊥
u : Tp → T

⊥
p (M) , v 7→P

⊥
u (v) := v − u g(u, v) (5b)
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Geometric Theory 2

• If two observers u and v are defined at the same point, the relative velocity (over c)
of v with respect to u is given by (we write ‖v‖ :=

p

|g(v, v)|)

~βu(v) :=
P⊥

u (v)

‖P
‖
u(v)‖

∈ T
⊥
(M) and βu(v) := ‖~βu(v)‖ =

q

1 − 1/
ˆ

g(u, v)
˜2

(6)

so that
g(u, v) = 1/

q

1 − β2
u(v) (→ “gamma-factor”) (7)

• Note that βu(v) = βv(u), though ~βu(v) and ~βv(u) are linearly independent: they lie
in PuT(M) and PvT(M) respectively.

• Let e ∈ P⊥
u T(M) be a (spacelike) unit vector. We define the e-component of v’s

velocity relative to u by

β
e
u(v) = −g(e, ~βu(v)) = −

g(e, v)

g(u, v)
(8)
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Intermezzo: The One-Way Doppler Formula

• Given a lightlike vector k (wave vector) and observers u, v at the same spacetime
point. The observed frequencies are

ωv(k) := g(v, k) ωu(k) := g(u, k) (9)

whose ratio is given by

ωv(k)

ωu(k)
=

g(v, k)

g(u, k)
=

g(P‖
uv + P⊥

u v, k)

g(u, k)
= g(u, v)

"

1 +
g(v, P⊥

u k)

g(u, v)g(u, k)

#

= g(u, v)
ˆ

1 − β
k̂
u(v)
˜

(10)

where the spacelike unit vector k̂ := P⊥
u k/‖P⊥

u k‖ defines the direction of k in the
rest system of u.

D. Giulini (2007): Doppler-Tracking Formula 8/21



Geometric Theory 3

• Let u be an observer field along one
integral line of which we are moving.
As before, γ is the world line of the
spacecraft. The field u is defined in a
neighbourhood of γ.

• The wave-vector k0 emitted at p0

suffers three changes:
1. propagation from p0 to p1: k0 → k1

2. reflection at p1: k1 → k ′
1

3. propagation from p1 to p2: k ′
1 → k2

• We are interested in

ω2

ω0

=
g(u2, k2)

g(u0, k0)
=

»

ω2

ω ′
1

– »

ω ′
1

ω1

– »

ω1

ω0

–

— γ

– us

p0

p1

p2

k0

k1

k̂1

k ′
1

k2
u2

u0

u1
γ̇(p1)
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What happens at “reflection” ?

• With respect to the spacecraft moving along γ with four-velocity γ̇, the wave vector
k1 at p1 splits according to

k1 = P
‖
γ̇(k1) + P

⊥
γ̇ (k1) =: k

‖
1

+ k
⊥
1 (11)

• A corner-cube reflector transported along γ will reverse k⊥
1 while keeping k

‖
1

intact
(i.e. neglecting a possible transponder shift):

k1 7→ k
′
1 = k

‖
1

− k
⊥
1 = 2k

‖
1

− k1 (12)

Hence ω1 := ωu(k1) = g(u1, k1) and ω ′
1 := ωu(k ′

1) = g(u1, k
′
1), the in- and out-

going frequencies measured by the observer u1 at p1, are related by

ω ′
1

ω1

=
g(u1, k

′
1)

g(u1, k1)
= 2

g(u, γ̇)g(γ̇, k ′)|p1

g(u, k)|p1

− 1 = 2
1 − βk̂

u(γ̇)|p1

1 − β2
u(γ̇)|p1

− 1 (13)
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Geometric Theory 4

• To account for the propagation effects, use the laws of geometric optics in (curved)
spacetime to relate ω0 = g(u0, k0) (at p0) and ω2 = g(u2, k2) (at p2) to kinematical
quantities of γ at p1.

• For example, if u is Killing (like u = ∂/∂t in SR), we have g(u0, k0) = g(u1, k1) and
g(u2, k2) = g(u1, k

′
1). Hence we obtain

ω2

ω0

=

»

ω2

ω ′
1

– »

ω ′
1

ω1

– »

ω1

ω0

–

=
g(u1, k

′
1)

g(u1, k1)
= 2

1 − βk̂
u(γ̇)|p1

1 − β2
u(γ̇)|p1

− 1 (14)

• In FLRW-spacetimes u = ∂/∂t is not Killing though almost conformally Killing.
One has a0g(u0, k0) = a1g(u1, k1) and a2g(u2, k2) = a1g(u1, k

′
1) and gets instead

of (14)

ω2

ω0

=

»

ω2

ω ′
1

– »

ω ′
1

ω1

– »

ω1

ω0

–

=
a0

a2

g(u1, k
′
1)

g(u1, k1)
=

a0

a2

{

2
1 − βk̂

u(γ̇)|p1

1 − β2
u(γ̇)|p1

− 1

}

(15)
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Approximation

• In standard FLRW coordinates have geodesic field u = ∂/∂t.
We set ∆t := (t2 − t1)/2 and H := ȧ/a.

• To linear order in β and H∆t have

ω2

ω1

≈ 1 − 2
`

β
k̂
u(γ̇)|p1

+ H∗∆t
´

(16)

where H∗ = H(t∗) with t∗ anywhere in [t1, t2].
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Relative Spatial Acceleration

• Given a world-line γ and an observer field u in its neighbourhood. Spatial tensor
fields along γ are those whose contractions with u vanish. For them we introduce
the following covariant derivative:

∇
u
γ̇ := ‖P

‖
uγ̇‖

−1
P
⊥
u ◦ ∇

u
γ̇ ◦ P

⊥
u (17)

which is compatible with the spatial metric

σu := −P
⊥
u g (18)

• In particular, we define the relative spatial acceleration (over c) of γ with respect
to u by

~αu(γ) := ∇u
γ̇
~βu(γ̇) (19)

and its component along the spatial direction e by

α
e
u(γ) := σu

`

e, ~αu(γ)
´

= −g
`

e, ~αu(γ)
´

(20)
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Geometric Theory 5

• In order to calculate the derivative ω̇2(t2)/ω0(t0) we need to know the derivatives
dt1/dt2 and dt0/dt2. They follow from (restricting to the flat FLRW case for
simplicity):

∫ t2

t1(t2)

dt

a(t)
= −

1

c

∫ r2

r1(t1(t2))

dr ⇒
dt1

dt2

=
a(t1)

a(t2)

“

1 + β
k̂
u(γ̇)|p1

”−1

(21)

and likewise

∫ t2

t0(t2)

dt

a(t)
=

1

c

{∫ r1(t1(t2))

r0

−

∫ r2

r1(t1(t2))

}

dr ⇒
dt0

dt2

=
a(t0)

a(t2)

1 − βk̂
u(γ̇)|p1

1 + βk̂
u(γ̇)|p1

(22)
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Geometric Theory 6

• The exact formula for the t2–derivative of the frequency-shift rate is now given by

1

ω0

dω2(t2)

dt2

= −
a0

a1

{

2
ˆ

α
k̂

+ σ(β,∇u
γ̇k̂)
˜a1

a2

ˆ

1 + β
k̂˜−1ˆ

1 − β
2˜−1

− 4σ(~α, ~β)
a1

a2

"

1 − βk̂

1 + βk̂

#

ˆ

1 − β
2˜−2

+

"

ȧ2

a2

−
ȧ0

a2

 

1 − βk̂

1 + βk̂

!#"

1 − 2βk̂ + β2

1 − β2

#}

(23)
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Geometric Theory 7

• For purely radial motion have βk̂ = β and αk̂ = α, and we obtain the simpler
expression

1

ω0

dω2(t2)

dt2

= −
a0a1

a2
2

{

2α(1 + β)
−3

+

»

ȧ2

a1

−
ȧ0

a1

„

1 − β

1 + β

«–»

1 − β

1 + β

–

}

(24)

• Keeping only quadratic terms in β, linear terms in H∆t, and also mixed terms
βH∆t, we get,

1

ω0

dω2(t2)

dt2

≈ −
2

c

{
cα
`

1 − 3β − 3H∆t
´

+ Hcβ

}
=: − 2 a∗/c (25)

where a∗ is the naive Doppler-tracking acceleration. Hence in this approximation
there are two modifications due to cosmic expansion:
1. a downscaling of acceleration by (1 − 3H∆t) ⇒ Pioneer: ∆a/a < 10−12

2. a constant contribution Hcβ in velocity direction ⇒ Pioneer: ∆a/a < 10−7
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Generalization to McVittie Spacetime

• McVittie’s solution describes an isotropic but inhomogeneous situation
approaching flat FLRW at large and Schwarzschild small radial distances
from the centre of isotropy:

g =

»

1 − m0/a(t)r

1 + m0/a(t)r

–2

c
2
dt

2
−

»

1 +
m0

2a(t)r

–4

a
2
(t)
`

dr
2
+ r

2
dΩ

2´ (26)

• Taking the observer field u parallel to ∂/∂t (which is not geodesic) we obtain in the
same approximation

1

ω0

dω2(t2)

dt2

≈ −
2

c

{
cα
`

1 − 3β − 3H∆τ + (m0c/R
2
)∆τ
´

+ Hcβ

}
(27)
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Other Coordinates 1

• Instead of the standard co-moving radial coordinate r in FLRW models on may
employ the cosmologically simultaneous geodesic distance r∗ (here flat case):

(t , r) 7→ (t∗ , r∗) := (t , a(t)r) (28)

so that the new field of geodesically equidistant observers r∗ = const. is

u∗ =
1

‖∂/∂t∗‖

∂

∂t∗
where

∂

∂t∗
=

∂

∂t
− H(t)r

∂

∂r
(29)

• Since u∗ is not geodesic (inward accelerated) get additional cosmological
acceleration (ä/a)r∗ in radial direction in Newtonian equation of motion. More
general, for geodesics in McVittie spacetime, we obtain to leading order

αu∗(γ) ≈

„

ä

a
r∗ −

m0

r2
∗

«

~er ◦ γ (30)
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Other Coordinates 2

• In (t∗, r∗) coordinates, the flat FLRW metric assumes the form

g = c
2
{

1 −
`

Hr∗/c
´2

}{
dt∗ +

Hr∗/c2

1 −
`

Hr∗/c
´2

dr∗

︸ ︷︷ ︸
θ=simultaneity 1-form

}2

−

{
dr2

∗

1 −
`

Hr∗/c
´2

+ r
2
∗ dΩ

2

︸ ︷︷ ︸
h=spatial radar metric

}
(31)

• Radar distance (measured by h) and Einstein simultaneity (θ = 0) are given by

l∗ = (c/H) sin−1
(Hr∗/c) ≈ r∗

{
1 + 1

6
(Hr∗/c)

2
+ O(3)

}
(32)

∆t∗ = (1/2H) ln
`

1 − (Hr∗/c)
2´ ≈ (r∗/c)

{
− 1

2
(Hr∗/c) + O(2)

}
(33)

• Mapping out a trajectory l∗(t∗) in terms of radar distance of Einstein-simultaneous events
hence means to write

l∗(t∗) := (c/H) sin−1`
r∗(t∗ + ∆t∗)H/c

´

≈ r∗ − 1
2
(v/c)(Hc)(r∗/c)

2
+ · · · (34)

which in leading order leads to
l̈∗ ≈ r̈∗ − (Hc)(v/c)

3
+ · · · (35)
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Cosmological vs. Einstein Simultaneity

• The reflection-event p1 lies on the
same hypersurface of constant
cosmological time t = t∗ as the event
p ′

1 on our worldline. However, our
eigentime at p ′

1 is not the mean of
our eigentimes at p0 and p2. Rather,
this is true for the event p ′′

1 , which is
hence Einstein-simultaneous with p1

and which lies to the future of p ′
1 by

the amount |∆t∗|, given by (33).
p0

p2

p1p ′′
1

p ′
1

|∆t∗|
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Summary

• Derivation of exact double-Doppler-formula for FLRW spacetimes.

• Derivation of approximate double-Doppler-formula for McVittie spacetime.

⇒ There exist no Pioneer-like anomalies due to cosmic expansion.

⇒ Kinematical effects consistently estimated, which e.g. lead to Hc–term at
(v/c)3–suppressed level.
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