On the Statistical Viewpoint of Entropy Increase

- A Reminder on the Ehrenfests' Urn Model -

Domenico Giulini Physikalisches Institut Universität Freiburg

Konstanz, 10.06.2005

D. Giulini (2005): Entropy & Ehrenfests' Urn Model

Basic Statements

- Assumption: At time t_i the system is in a state $z(t_i)$ of *non-maximal* entropy.
- Statement 1: The probability that the state z(t_i) will develop *in the future* to a state z(t_{i+1}) of larger entropy is larger than the probability for a development into a state of smaller entropy.
- Statement 2: The probability that the state z(t_i) developped in the past out of a state z(t_{i-1}) of larger entropy is larger than the probability that it developped out of a state of smaller entropy.

Consequences and Remarks

- **Consequence 1:** The likely increase of entropy in the future state development $z(t_i) \mapsto z(t_{i+1})$ does not imply a likely decrease for the (fictitious) past development $z(t_i) \mapsto z(t_{i-1})$. Rather, the latter is also connected with a likely increase of entropy.
- **Remark:** To properly understand the last consequence, recall that our **condition** is placed on $z(t_i)$, that is, at time t_i . For $z(t_i) \mapsto z(t_{i+1})$ this means a *retarded* or *initial* condition, for $z(t_{i-1}) \mapsto z(t_i)$, however, an *advanced* or *final* condition. It is this change of condition which makes this behaviour of entropy possible.
- Consequence 2 The likely increase of entropy in any direction away from a low-entropy state does not provide an orientation ("thermodynamic arrow") of time. Rather, an orientation is usually given by considering a finite time-interval and imposing a low-entropy condition at one of its two ends. However, without further structural elements, which would independently allow to distinguish the two ends, the apparently existing *two* possibilities are, in fact, identical. An apparent distinction is sometimes introduced by stating that the condition at one end is to be understood as *initial*. But, at this level, this merely defines 'initial' to be used for that end where the condition is placed.

Ehrenfests' Urn Model

- Let U₀ and U₁ be two urns with N (even) numbered (i.e. distinguishable) balls distributed amongst them.
- **Microstate:** Individual numbers of balls contained in U₁. Space of microstates ('phase space') is $\Gamma := \{0, 1\}^N$ with elements $(x_1, \dots x_N)$ (tells urn for each ball). Have $card(\Gamma) = 2^N$.
- Macrostate: Cardinality of set of balls in U₁. Space of macrostates ('coarse grained phase space') is Ω := {0, · · · N} with elements z. Have card(Ω) = N + 1.
- **Coarse Graining:** Projection map ('forget the individual numbers')

$$\label{eq:phi} \begin{array}{ll} \pi:\Gamma\to\Omega\,, & (x_1,\cdots x_N)\mapsto\sum_{i=1}^N x_i \end{array}$$

 Have
$$\mbox{card}(\pi^{-1}(z))=\binom{N}{z}$$

Probability Measures, Dynamics, and Observables

• A priori probability distribution on Ω:

$$W_{ap}(z) := 2^{-N} \cdot card(\pi^{-1}(z)) = 2^{-1} {N \choose z}$$

To make this a **physical** probability measure, one has to prove from the **dynamical laws** that each microstate is equally probable in the sense of being reached equally often on time average.

- Markoffian Dynamics: At equidistant points in time, t_i, choose a random number ∈ {1, · · · , N} and 'instanta-neously' let the corresponding ball change urns.
- **Observables:** Microscopically all functions $\Gamma \to \mathbb{R}$, i.e. $f(x_1, \dots, x_N)$. Macroscopically the only 'coarse grained' observables ('relevant observables') are functions of $z = \sum_i x_i$.
- Let random variable $X : \Omega \to \mathbb{R}$ be X(z) := z; then

$$E(X, ap) = \frac{N}{2}$$
 $S(X, ap) = \frac{\sqrt{N}}{2}.$

Dynamics

- Let the macrostate at time t_i be z. For evolution $z(t_i) \mapsto z(t_{i+1})$ have two possibilities:
 - Picked number corresponds to ball in U_0 ; then $z(t_{i+1}) = z(t_i) + 1$.
 - Picked number corresponds to ball in U_1 ; then $z(t_{i+1}) = z(t_i) - 1$.
- Conditional Probabilities for $z \pm 1$ to occur at t_{i+1} , given macrostate at t_i is z, are:

$$W(z+1, t_{i+1}|z, t_i) = \frac{N-z}{N} =: W_{ret}(z+1|z)$$
$$W(z-1, t_{i+1}|z, t_i) = \frac{z}{N} =: W_{ret}(z-1|z)$$

. .

Where 'ret' indicates that probabilities are **past**conditioned or retarded.

Dynamics on Distributions and Stationary States

 Induced forward (in time) dynamics on probability distributions W(z, t) is:

$$\begin{split} W(z;t_{i+1}) &= & W(z,t_{i+1}|z+1,t_i) \, W(z+1,t_i) \\ &+ & W(z,t_{i+1}|z-1,t_i) \, W(z-1,t_i) \\ &= & \frac{z+1}{N} \, W(z+1,t_i) + \frac{N-z+1}{N} \, W(z-1,t_i) \end{split}$$

• **Proposition:** W_{ap} is the unique stationary distribution for this evolution law.

Bayes' Rule and Backward (in time) Dynamics I

Given a probability space and set of events, {A₁,..., A_n}, which is 1) complete (cover) and 2) exclusive (disjoint). Let B be some event. Bayes' Rule states:

$$W(A_k|B) = \frac{W(B|A_k)W(A_k)}{\sum_{i=1}^n W(B|A_i)W(A_i)} = \frac{W(B|A_k)W(A_k)}{W(B)}$$

We identify the A_i with the N + 1 events (z'; t_i), where for z' ∈ {0, · · · , N}, and A_k with the special event (z ± 1; t_i). The event B we identify with (z; t_{i+1}), i.e. the occurrence of z at the later time t_{i+1}. Then we can calculate the backward (in time) propagator:

$$\begin{split} W(z \pm 1, t_i \mid z, t_{i+1}) &= \frac{W(z, t_{i+1} \mid z \pm 1, t_i) W(z \pm 1, t_i)}{\sum_{z'=0}^{N} W(z, t_{i+1} \mid z', t_i) W(z', t_i)} \\ &= \frac{W(z, t_{i+1} \mid z \pm 1, t_i) W(z \pm 1, t_i)}{W(z, t_{i+1})} \end{split}$$

Bayes' Rule and Backward (in time) Dynamics II

• Using the known values for **past-conditioned** probabilities (forward propagators), which were

$$\begin{split} W(z+1,t_{i+1}|z,t_i) &= \frac{N-z}{N} \; =: \; W_{\rm ret}(z+1|z) \,, \\ W(z-1,t_{i+1}|z,t_i) \; = \; \; \frac{z}{N} \; \; =: \; W_{\rm ret}(z-1|z) \,, \end{split}$$

we can now calculate the **future-conditioned** probabilities (backward propagators):

$$\begin{split} W(z+1,t_i|z,t_{i+1}) \ &= \ \frac{W(z+1,t_i)}{W(z+1,t_i) + \frac{N-z+1}{z+1}W(z-1,t_i)} \\ W(z-1,t_i|z,t_{i+1}) \ &= \ \frac{W(z-1,t_i)}{W(z-1,t_i) + \frac{z+1}{N-z+1}W(z+1,t_i)} \end{split}$$

Flow Equilibrium

- The condition for having flow equilibrium between times $t_i \ \ \text{and} \ t_{i+1}$ reads

 $W(z \pm 1; t_{i+1}|z; t_i)W(z; t_i) = W(z; t_{i+1}|z \pm 1; t_i)W(z \pm 1; t_i)$

• **Proposition:** The above condition implies $W(z, t_i) = W_{ap}(z)$, i.e. the stationary distribution. Hence we also have stationarity and flow equilibrium for all $t_j > t_i$.

Time-Reversal Invariance I

 To be distinguished from flow equilibrium is time-reversal invariance. The latter is given by the following equality of past- and future-conditioned probabilities:

$$\begin{split} W(z \pm 1, t_{i+1} | z, t_i) &= W(z \pm 1, t_i | z, t_{i+1}) \\ &= W(z, t_{i+1} | z \pm 1, t_i) \frac{W(z \pm 1, t_i)}{W(z, t_{i+1})}, \\ &\iff W(z, t_{i+1}) &= \frac{z+1}{N-z} W(z+1, t_i) \\ &= \frac{N-z+1}{z} W(z-1, t_i). \end{split}$$

• The condition of time-reversal invariance is strictly weaker that that of flow equilibrium. The former is implied, but does not itself imply the equilibrium distribution.

Time-Reversal Invariance II

 Proposition: Time-reversal invariance is stable under time-evolution. It is equivalent to the following 'constraint' on initial distribution:

$$W(z+1;t_i) = \frac{N-z}{z+1} \frac{N-z+1}{z} W(z-1;t_i).$$

which has a one-parameter family of solutions. On those future and past time-evolutions coincide.

Past and future evolution are **not** mutually inverse operations. The reason being that such a change in the direction of development is linked with a change from retarded to advanced conditionings.

Back to Statements 1 and 2

• Restrict to W_{ap} , then future-conditioned probabilities, too, are time-independent. Have $W(z \pm 1; t_i | z; t_{i+1}) =: W_{av}(z \pm 1 | z)$, hence

$$W_{\text{ret}}(z+1|z) = W_{av}(z+1|z) = \frac{N-z}{N}$$
$$W_{\text{ret}}(z-1|z) = W_{av}(z-1|z) = \frac{z}{N}$$

 Can now give a qualitative expression of Statement 1 and Statement 2. Let W_{max}(z), W_{min}(z), W_{up}(z), and W_{down}(z) denote the probabilities for z to be a local maximum, minimum, to be on an ascending or descending branch respectively. Then

$$W_{\max}(z) = W_{av}(z - 1|z)W_{ret}(z - 1|z) = (z/N)^{2}$$

$$W_{\min}(z) = W_{av}(z + 1|z)W_{ret}(z + 1|z) = (1 - z/N)^{2}$$

$$W_{up}(z) = W_{av}(z - 1|z)W_{ret}(z + 1|z) = (z/N)(1 - z/N)$$

$$W_{down}(z) = W_{av}(z + 1|z)W_{ret}(z - 1|z) = (z/N)(1 - z/N)$$

Back to Statements 1 and 2

• Let's use instead of $z \in \{1, \cdots, N\}$ the bounded (in limit $N \to \infty$) variable σ , where $z = \frac{N}{2}(1 + \sigma)$. Then

$$W_{\max}(\sigma) : W_{\min}(\sigma) : W_{up}(\sigma) : W_{down}(\sigma)$$
$$= \frac{1+\sigma}{1-\sigma} : \frac{1-\sigma}{1+\sigma} : 1 : 1$$

• Boltzmann entropy is

$$S_{B}(|\sigma|) := \ln(\operatorname{card}(\pi^{-1}(z)))$$

$$\approx N \ln(N) - z \ln(z) - (N - z) \ln(N - z)$$

$$= -\frac{N}{2} \left[\ln \frac{1 - \sigma^{2}}{4} + \sigma \ln \frac{1 + \sigma}{1 - \sigma} \right]$$
(1)

so that $S_B(|\sigma|):[0,1]\to [\ln 2^N,0]$ is strictly monotonically decreasing.

Thermodynamic Limit and Deterministic Dynamics

• Deterministic evolution for random variables results in the limit $N \to \infty$. Take $\Sigma = \sigma = \frac{2z}{N} - 1$; have

$$\begin{split} & E(\Sigma,t_{i+1}) \;=\; (1-2/N)\, E(\Sigma,t_i) \\ & V(\Sigma,t_{i+1}) \;=\; (1-4/N)\, V(\Sigma,t_i) + \frac{4}{N^2} \big(1-E^2(\Sigma,t_i)\big) \end{split}$$

• In order to have a seizable fraction of balls moved within a macroscopic time span τ , we have to appropriately decrease the time steps $\Delta t := t_{i+1} - t_i$ with growing N, e.g. like $\Delta t = \frac{2}{N}\tau$, where τ is some positive real constant (the time span in which N/2 balls change urns). Now we can take the limit N $\rightarrow \infty$:

$$\frac{d}{dt} E(\Sigma, t) = -\frac{1}{\tau} E(\Sigma, t) \Rightarrow E(\Sigma, t) = E_0 \exp\left(\frac{-(t-t_1)}{\tau}\right)$$
$$\frac{d}{dt} V(\Sigma, t) = -\frac{2}{\tau} V(\Sigma, t) \Rightarrow V(\Sigma, t) = V_0 \exp\left(\frac{-2(t-t_2)}{\tau}\right)$$

D. Giulini (2005): Entropy & Ehrenfests' Urn Model

The Moral Once More

According to the previous discussions it is clear that identical formulae would have emerged if W_{aν} instead of W_{ret} had been used. Most importantly, the backward evolution is **not** obtained by taking the forward evolution and replacing in it t → −t. The origin of this difference is the fact already emphasized before, that W_{aν}(z; z') is not the inverse matrix to W_{ret}(z; z'), but rather the matrix computed according to Bayes' rule !!

THE END