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Basic Statements

• Assumption: At time ti the system is in a state z(ti) of
non-maximal entropy.

• Statement 1: The probability that the state z(ti) will
develop in the future to a state z(ti+1) of larger entropy is
larger than the probability for a development into a state of
smaller entropy.

• Statement 2: The probability that the state z(ti) develop-
ped in the past out of a state z(ti−1) of larger entropy is
larger than the probability that it developped out of a state
of smaller entropy.
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Consequences and Remarks

• Consequence 1: The likely increase of entropy in the
future state development z(ti) 7→ z(ti+1) does not imply
a likely decrease for the (fictitious) past development
z(ti) 7→ z(ti−1). Rather, the latter is also connected with a
likely increase of entropy.

• Remark: To properly understand the last consequence,
recall that our condition is placed on z(ti), that is, at time
ti. For z(ti) 7→ z(ti+1) this means a retarded or initial
condition, for z(ti−1) 7→ z(ti), however, an advanced or
final condition. It is this change of condition which makes
this behaviour of entropy possible.

• Consequence 2 The likely increase of entropy in any di-
rection away from a low-entropy state does not provide an
orientation (“thermodynamic arrow”) of time. Rather, an ori-
entation is usually given by considering a finite time-interval
and imposing a low-entropy condition at one of its two
ends. However, without further structural elements, which
would independently allow to distinguish the two ends, the
apparently existing two possibilities are, in fact, identical.
An apparent distinction is sometimes introduced by stating
that the condition at one end is to be understood as initial.
But, at this level, this merely defines ‘initial’ to be used for
that end where the condition is placed.
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Ehrenfests’ Urn Model

• Let U0 and U1 be two urns with N (even) numbered (i.e.
distinguishable) balls distributed amongst them.

• Microstate: Individual numbers of balls contained in
U1. Space of microstates (‘phase space’) is Γ := {0, 1}N

with elements (x1, · · · xN) (tells urn for each ball). Have
card(Γ) = 2N.

• Macrostate: Cardinality of set of balls in U1. Space of ma-
crostates (‘coarse grained phase space’) is Ω := {0, · · ·N}

with elements z. Have card(Ω) = N + 1.

• Coarse Graining: Projection map (‘forget the individual
numbers’)

π : Γ → Ω , (x1, · · · xN) 7→
N∑

i=1

xi

• Have card(π
−1

(z)) =
“N

z

”
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Probability Measures, Dynamics, and
Observables

• A priori probability distribution on Ω:

Wap(z) := 2
−N · card(π

−1
(z)) = 2

−1
“N

z

”

To make this a physical probability measure, one has to
prove from the dynamical laws that each microstate is
equally probable in the sense of being reached equally
often on time average.

• Markoffian Dynamics: At equidistant points in time, ti,
choose a random number ∈ {1, · · · , N} and ‘instanta-
neously’ let the corresponding ball change urns.

• Observables: Microscopically all functions Γ → R, i.e.
f(x1, · · · , xN). Macroscopically the only ‘coarse grained’
observables (‘relevant observables’) are functions of
z =

∑
i xi.

• Let random variable X : Ω → R be X(z) := z; then

E(X, ap) =
N

2
S(X, ap) =

√
N

2
.
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Dynamics

• Let the macrostate at time ti be z. For evolution
z(ti) 7→ z(ti+1) have two possibilities:

– Picked number corresponds to ball in U0;
then z(ti+1) = z(ti) + 1.

– Picked number corresponds to ball in U1;
then z(ti+1) = z(ti) − 1.

• Conditional Probabilities for z ± 1 to occur at ti+1, given
macrostate at ti is z, are:

W(z + 1, ti+1|z, ti) =
N − z

N
=: Wret(z + 1|z)

W(z − 1, ti+1|z, ti) =
z

N
=: Wret(z − 1|z)

Where ‘ret ′ indicates that probabilities are past-
conditioned or retarded .
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Dynamics on Distributions and
Stationary States

• Induced forward (in time) dynamics on probability distribu-
tions W(z, t) is:

W(z; ti+1) = W(z, ti+1|z + 1, ti) W(z + 1, ti)

+ W(z, ti+1|z − 1, ti) W(z − 1, ti)

=
z + 1

N
W(z + 1, ti) +

N − z + 1

N
W(z − 1, ti)

• Proposition: Wap is the unique stationary distribution for
this evolution law.
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Bayes’ Rule and Backward (in time)
Dynamics I

• Given a probability space and set of events, {A1, . . . , An},
which is 1) complete (cover) and 2) exclusive (disjoint). Let
B be some event. Bayes’ Rule states:

W(Ak|B) =
W(B|Ak)W(Ak)

∑n

i=1 W(B|Ai)W(Ai)
=

W(B|Ak)W(Ak)

W(B)

• We identify the Ai with the N + 1 events (z ′; ti), where for
z ′ ∈ {0, · · · , N}, and Ak with the special event (z ± 1; ti).
The event B we identify with (z; ti+1), i.e. the occurrence of
z at the later time ti+1. Then we can calculate the backward
(in time) propagator:

W(z ± 1, ti | z, ti+1) =
W(z, ti+1|z ± 1, ti)W(z ± 1, ti)
∑N

z ′=0 W(z, ti+1|z ′, ti)W(z ′, ti)

=
W(z, ti+1|z ± 1, ti)W(z ± 1, ti)

W(z, ti+1)
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Bayes’ Rule and Backward (in time)
Dynamics II

• Using the known values for past-conditioned probabilities
(forward propagators), which were

W(z + 1, ti+1|z, ti) =
N − z

N
=: Wret(z + 1|z) ,

W(z − 1, ti+1|z, ti) =
z

N
=: Wret(z − 1|z) ,

we can now calculate the future-conditioned probabilities
(backward propagators):

W(z + 1, ti|z, ti+1) =
W(z + 1, ti)

W(z + 1, ti) + N−z+1
z+1

W(z − 1, ti)

W(z − 1, ti|z, ti+1) =
W(z − 1, ti)

W(z − 1, ti) + z+1
N−z+1

W(z + 1, ti)
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Flow Equilibrium

• The condition for having flow equilibrium between times ti

and ti+1 reads

W(z± 1; ti+1|z; ti)W(z; ti) = W(z; ti+1|z± 1; ti)W(z± 1; ti)

• Proposition: The above condition implies W(z, ti) =

Wap(z), i.e. the stationary distribution. Hence we also have
stationarity and flow equilibrium for all tj > ti.
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Time-Reversal Invariance I

• To be distinguished from flow equilibrium is time-reversal
invariance. The latter is given by the following equality of
past- and future-conditioned probabilities:

W(z ± 1, ti+1|z, ti) = W(z ± 1, ti|z, ti+1)

= W(z, ti+1|z ± 1, ti)
W(z ± 1, ti)

W(z, ti+1)
,

⇐⇒ W(z, ti+1) =
z + 1

N − z
W(z + 1, ti)

=
N − z + 1

z
W(z − 1, ti).

• The condition of time-reversal invariance is strictly weaker
that that of flow equilibrium. The former is implied, but
does not itself imply the equilibrium distribution.
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Time-Reversal Invariance II

• Proposition: Time-reversal invariance is stable under
time-evolution. It is equivalent to the following ‘constraint’
on initial distribution:

W(z + 1; ti) =
N − z

z + 1

N − z + 1

z
W(z − 1; ti).

which has a one-parameter family of solutions. On those
future and past time-evolutions coincide.

• Past and future evolution are not mutually inverse operati-
ons. The reason being that such a change in the direction
of development is linked with a change from retarded to
advanced conditionings.

D. Giulini (2005): Entropy & Ehrenfests’ Urn Model 12/16



Back to Statements 1 and 2

• Restrict to Wap, then future-conditioned probabilities, too,
are time-independent. Have W(z± 1; ti|z; ti+1) =: Wav(z±
1|z), hence

Wret(z + 1|z) = Wav(z + 1|z) =
N − z

N

Wret(z − 1|z) = Wav(z − 1|z) =
z

N

• Can now give a qualitative expression of Statement 1 and
Statement 2 . Let Wmax(z), Wmin(z), Wup(z), and Wdown(z)

denote the probabilities for z to be a local maximum, mini-
mum, to be on an ascending or descending branch respec-
tively. Then

Wmax(z) = Wav(z − 1|z)Wret(z − 1|z) = (z/N)
2

Wmin(z) = Wav(z + 1|z)Wret(z + 1|z) = (1 − z/N)
2

Wup(z) = Wav(z − 1|z)Wret(z + 1|z) = (z/N)(1 − z/N)

Wdown(z) = Wav(z + 1|z)Wret(z − 1|z) = (z/N)(1 − z/N)
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Back to Statements 1 and 2

• Let’s use instead of z ∈ {1, · · · , N} the bounded (in limit
N → ∞) variable σ, where z = N

2
(1 + σ). Then

Wmax(σ) : Wmin(σ) : Wup(σ) : Wdown(σ)

=
1 + σ

1 − σ
:

1 − σ

1 + σ
: 1 : 1

• Boltzmann entropy is

SB(|σ|) := ln(card(π
−1

(z)))

≈ N ln(N) − z ln(z) − (N − z) ln(N − z)

= −
N

2

"

ln
1 − σ2

4
+ σ ln

1 + σ

1 − σ

#

(1)

so that SB(|σ|) : [0, 1] → [ln 2N, 0] is strictly monotonically
decreasing.
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Thermodynamic Limit and
Deterministic Dynamics

• Deterministic evolution for random variables results in the
limit N → ∞. Take Σ = σ = 2z

N
− 1; have

E(Σ, ti+1) = (1 − 2/N) E(Σ, ti)

V(Σ, ti+1) = (1 − 4/N) V(Σ, ti) +
4

N2

`

1 − E
2
(Σ, ti)

´

• In order to have a seizable fraction of balls moved within a
macroscopic time span τ, we have to appropriately decre-
ase the time steps ∆t := ti+1 − ti with growing N, e.g. like
∆t = 2

N
τ, where τ is some positive real constant (the time

span in which N/2 balls change urns). Now we can take
the limit N → ∞:

d

dt
E(Σ, t) = −

1

τ
E(Σ, t) ⇒ E(Σ, t) = E0 exp

“

−(t−t1)

τ

”

d

dt
V(Σ, t) = −

2

τ
V(Σ, t) ⇒ V(Σ, t) = V0 exp

“

−2(t−t2)

τ

”
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The Moral Once More

• According to the previous discussions it is clear that iden-
tical formulae would have emerged if Wav instead of Wret

had been used. Most importantly, the backward evolution is
not obtained by taking the forward evolution and replacing
in it t 7→ −t. The origin of this difference is the fact already
emphasized before, that Wav(z; z

′) is not the inverse matrix
to Wret(z; z

′), but rather the matrix computed according to
Bayes’ rule !!

THE END
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