The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Types of masses Weak EP Various EPs LPI and redshift Grav. binding energy EPs and QM

The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Leibniz Universität Hannover ZARM Bremen

QUEST TG2-Meeting, May 21st 2010

Three types of masses

In Newtonian physics we have to distinguish between three types of masses:

1. The **inertial mass** Determines the force, that acts against an imposed acceleration:

$$\vec{F}_{\text{inertial}} = -m_{\text{in}}\vec{a}.$$
 (1)

2. The **passive gravitational mass** determines the force, by which a body is acted upon in an external gravitational field \vec{g} :

$$\vec{F}_{\text{gravitational}} = m_{\rho g} \vec{g}$$
 . (2)

3. The **active gravitational mass** determines the gravitational field produced by a body; e.g. outside a spherical mass distribution centred at \vec{x}'

$$\vec{g}(\vec{x}) = -G m_{ag} \frac{\vec{x} - \vec{x}'}{\|\vec{x} - \vec{x}'\|^3}$$
 (3)

The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Types of masses Weak EP Various EPs LPI and redshift Grav. binding energy EPs and OM

The impact of *actio* = *reactio*

 What remains unexplained is the equality of inertial and gravitational mass, i.e. why should

$$\frac{m_i}{m_g}$$
 = universal constant? (7)

The Principle of

Equivalence

Weak equivalence principle for pointlike test masses

> The motion of a pointlike test masses is determined through by

 $\vec{F}_i + \vec{F}_g = 0 \iff -m_i \ddot{x}(t) + m_g \vec{g}(\vec{x}(t)) = 0$

• If $m_i = m_g$ this is equivalent to

 $\ddot{ec{x}}(t) = ec{g}(ec{x}(t)) = -ec{
abla} \varphi(ec{x}(t))$

- Weak equivalence principle: The motion of a pointlike test mass in an external gravitational field depends only on the initial position and velocity
- Q1 How small is pointlike?
- A1 Much smaller than typical length over which \vec{g} varies appreciably.
- Q2 What is a test mass?
- A2 No higher multipoles in mass distribution, no charge, no spin, no significant gravitational self-energy (not too small).

The Principle of Equivalence - a very brief introduction -

Domenico Giulini

(8)

(9)

Types of masses Weak EP Various EPs LPI and redshift Grav. binding energy EPs and QM

Principles of Equivalence

Three formulations of the equivalence principle should be clearly distinguished

- 1. The **weak equivalence principle (WEP)** states the universality of free fall (**UFF**), as seen above.
- The strong equivalence principle (SEP) states the universality of free fall also for bodies whose gravitational self-energy is not negligible.
- 3. The **Einstein equivalence principle (EEP)** states that for all nongravitational interactions, which do not couple to tidal gravitational fields, the usual laws (special relativistic) hold in a local inertial (freely falling and non rotating) reference frame.
- ⇒ Geometrisation of gravitational interaction and universal couplingscheme for interaction between gravity and matter.

$$\eta_{\mu\nu} \mapsto g_{\mu\nu} \qquad \vartheta_{\mu} \mapsto \nabla_{\mu} := \vartheta_{\mu} + D_*(\Gamma_{\mu})$$
 (10)

We see EEP as the foundation of the statements that space-time is curved and that gravity and inertia are merely attributes of spacetime's geometry. The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Types of masses Weak EP Various EPs LPI and redshift Grav. binding energy EPs and QM

The EEP canonised

The Einstein Equivalence Principle is usually canonised in the following form (cf. C. Will: Living Reviews 2006): EEP is equivalent to

- WEP is valid.
- The outcome of any local non-gravitational experiment is independent of the velocity of the freely-falling reference frame in which it is performed.
 - \Rightarrow Local Lorentz invariance (LLI).
- The outcome of any local non-gravitational experiment is independent of where and when in the universe it is performed.
 - \Rightarrow Local position invariance (LPI).

The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Types of masses

Weak EF

Various EPs LPI and redshift

Grav. binding energy

LPI and redshift -1

► Let there be a static gravitational field $\vec{g} = -g\vec{e}_z$. Assume validity of EEP - LPI = WEP + LLI. Then WEP guarantees local existence of freely-falling frame F^3 with coordinates $\{x_f^{\mu}\}$ whose acceleration is the same as that of test particles:

 $ct_f = (z_s + c^2/g) \sinh(gt_s/c),$ $x_f = x_s,$ $y_f = y_s,$ $z_f = (z_s + c^2/g) \coth(gt_s/c).$

► LLI guarantees that, *locally*, time measured by, e.g., an atomic clock is proportional to Minkowskian proper length in F³. If we consider violations of LPI, the constant of proportionality might depend on the space-time point, i.e. via dependence on gravitational potential φ:

$$c^{2} d\tau^{2} = F^{2}(\phi) \left[c^{2} dt_{f}^{2} - dx_{f}^{2} - dy_{f}^{2} - dz_{f}^{2} \right]$$
(11)
= $F^{2}(\phi) \left[\left(1 + \frac{gz_{s}}{c^{2}} \right)^{2} c^{2} dt_{s}^{2} - dx_{s}^{2} - dy_{s}^{2} - dz_{s}^{2} \right].$ (12)

The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Types of masses Weak EP Various EPs LPI and redshift Grav. binding energy

LPI and redshift -2

The redshift ζ between two identical clocks placed at rest wrt. {x_s^μ} at different heights z_s in the static gravitational field is then given by (all coordinates are x_s^μ now, so we drop the subscript s):

$$\begin{split} \zeta &:= \frac{\gamma_{em} - \gamma_{rec}}{\gamma_{rec}} = \frac{\gamma_{em}}{\gamma_{rec}} - 1 = \frac{\Delta \tau_{rec}}{\Delta \tau_{em}} - 1 \\ &= \frac{F(\varphi_{rec})(1 + gz_{rec}/c^2)}{F(\varphi_{em})(1 + gz_{em}/c^2)} - 1 \end{split}$$

• For small $\Delta z = z_{rec} - z_{em}$ this gives to first order in Δz

$$\Delta \zeta = (1+\alpha) \Delta \phi / c^2$$
 (13)

where

$$\alpha = \frac{c^2}{g} \left(\vec{e}_z \cdot \vec{\nabla} \ln(F) \right) \tag{14}$$

parametrises the deviation from GR result. α may depend on position, gravitational potential, and the type of clock one is using. The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Types of masses Weak EP Various EPs LPI and redshift Grav. binding energy

Gravitational binding energy

The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Types of masses Weak EP Various EPs LPI and redshift Grav. binding energy

EPs and QM

$\frac{E_g}{mc^2}$	≈	$\frac{Gm^2/R}{mc^2} =$	$\frac{Gm/c^2}{R} =$	Schwarzschild radius geometric radius
	~	10 ⁻³⁹		atomic nucleus
	\approx	10 ⁻²⁷		lab. mass (10kg, 0.1m)
	\approx	$2 \cdot 10^{-11}$		Moon
	\approx	$5\cdot 10^{-11}$		Earth
	\approx	10 ⁻⁸		Jupiter
	\approx	10 ⁻⁵		Sun
	\approx	0.2		neutron star

Nordtvedt parameter

Let ρ(x) be the density of some mass distribution. The Nordtvedt parameter η, measures the violation of m_g = m_i due to gravitational self-energy contributions:

$$\frac{m_g}{m_i} = 1 + \eta \quad \frac{E_g}{mc^2}$$

$$= 1 + \eta \quad \frac{\frac{1}{2} \int d^3x \int d^3y \ G \ \frac{\rho(\vec{x}) \rho(\vec{y})}{\|\vec{x} - \vec{y}\|}}{c^2 \int \rho(\vec{x}) \ d^3x}$$

In Post-Newtonian parametrised theories we have

 $\eta = 2\beta - \gamma - 3 - \tfrac{10}{3}\xi - \alpha_1 + \tfrac{2}{3}\alpha_2 - \tfrac{2}{3}\zeta_1 - \tfrac{1}{3}\zeta_3$

General Relativity is characterised by

 $\beta=\gamma=1$, all other parameters $~=0\Rightarrow\eta=0$

For comparison: In Brans-Dicke theory we have the non-zero parameters

$$\beta = 1, \quad \gamma = \frac{1+\omega}{2+\omega} \quad \Rightarrow \eta = 1-\gamma = \frac{1}{2+\omega}$$

The Principle of Equivalence - a very brief introduction -

Domenico Giulini

Types of masses Weak EP Various EPs LPI and redshift Grav. binding energy

EPs and QM

Equivalence principle(s) and QM

• According to EEP, a homogeneous gravitational field cannot be distinguished from uniform acceleration wrt. an inertial system. The single-particle Schrödinger equation in a homogeneous gravitational field $\vec{g} = -g\vec{e}_z$ is given by

$$i\hbar\partial_t\Psi = \left(-\frac{\hbar^2}{2m_i}\Delta + m_g gz\right)\Psi$$
 (15)

• Let *K* be an inertial reference frame without gravitational field. Let K' be constantly accelerated by $\vec{a} = g\vec{e}_z$ relativ to *K*. Then

$$\vec{x}', t' = \vec{x} - \frac{1}{2}gt^2, \quad t' = t$$
 (16)

In terms of (\vec{x}', t') the free one-particle Schrödinger equation is equivalent to

$$i\hbar\partial_{t'}\Psi' = \left(-\frac{\hbar^2}{2m_i}\Delta' + m_igz'\right)\Psi'$$
 (17)

where

$$\Psi'(\vec{x}',t') = \Psi(\vec{x},t) \exp\left(-i\frac{m_ig}{\hbar}\left(z't' - \frac{1}{6}gt'^3\right)\right)$$
(18)

 \Rightarrow If $m_i = m_g$, evolution of *rays* is identical to (15).

Equivalence - a very brief introduction -Domenico Giulini vpes of masses /eak EP arious EPs

The Principle of

arav. binding energy

EPs and QM