The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

The Idea and Structures of Geometrodynamics

Domenico Giulini

MPI für Gravitationsphysik Potsdam

Leipzig, September 21st 2008

Clifford's dream GR 3-1 Hypersurface deformations Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{3}$ $\mathbb{R}P^{3}\mathbb{R}P^{3}$

William Kingdon Clifford 1870

"I wish here to indicate a manner in which these speculations may be applied to the investigation of physical phenomena. I hold in fact:

- 1. That small portions of space *are* in fact of a nature analogous to little hills on a surface which is on the average flat; namely, that the ordinary laws of geometry are not valid in them.
- 2. That this property of being curved or distorted is continually being passed from one portion of space to another after the manner of a wave.
- 3. That this variation of the curvature of space is what really happens in that phenomenon which we call the *motion of matter*, whether ponderable or etherial.
- 4. That in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity."

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p3}$ $\mathbb{R}P^{3} \oplus \mathbb{R}P^{3}$ Prime table

"People slowly accustomed themselves to the idea that the physical states of space itself were the final physical reality." —PROFESSOR ALBERT EINITEIN

The New Youher

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition RRP³ RP⁵ RP³

Einstein's equation

 $R_{\mu
u}-rac{1}{2}R\,g_{\mu
u}+\Lambda\,g_{\mu
u}=\kappa T_{\mu
u}$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream

GR

Hypersurface deformation: Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p^3}$ $\mathbb{R}P^3 \mathbb{R}P^3$

Spacetime as space's history

Spacetime, *M*, is foliated by a one-parameter family of embeddings \mathcal{E}_t of the 3-manifold Σ into *M*. Σ_t is the image in *M* of Σ under \mathcal{E}_t .

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 341 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3 \mathbb{R}P^3$

A four-function worth of arbitrariness

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 341 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p}$ $\mathbb{R}P^{3}\mathbb{R}P^{3}$

For $q \in \Sigma$ the image points $p = \mathcal{E}_t(q)$ and $p' = \mathcal{E}_{t+dt}(q)$ are connected by the vector $\partial/\partial t|_p$ whose components tangential and normal to Σ_t are β (three functions) and αn (one function) respectively.

Kinematics of hypersurface deformations

In local coordinates y^μ of M and x^m of Σ the generators of normal and tangential deformations of the embedded hypersurface are

$$N_{\alpha} = \int_{\Sigma} d^{3}x \, \alpha(x) \, n^{\mu}[y(x)] \, \frac{\delta}{\delta y^{\mu}(x)}$$
$$T_{\beta} = \int_{\Sigma} d^{3}x \, \beta^{m}(x) \, \partial_{m}y^{\mu}(x) \, \frac{\delta}{\delta y^{\mu}(x)}$$

This is merely the foliation-dependent decomposition of the tangent vector X(V) at y ∈ Emb(Σ, M), induced by the spacetime vector field V = α n + β^a∂_a:

$$X(V) = \int_{\Sigma} d^3x \ V^{\mu}(y(x)) \ \frac{\delta}{\delta y^{\mu}(x)}$$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics Ciliford's dream GR 341 Hypersurface deformations Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3 \mathbb{R}P^3$ • The vector fields X(V) on $\text{Emb}(\Sigma, M)$ obey

[X(V), X(W)] = X([V, W]),

i.e. $V \mapsto X(V)$ is a Lie homomorphism from the tangent-vector fields on *M* to the tangent-vector fields on Emb(Σ , *M*).

In terms of the normal-tangential decomposition:

$$\begin{split} [T_{\beta}, T_{\beta'}] &= -T_{[\beta,\beta']}, \\ [T_{\beta}, N_{\alpha}] &= -N_{\beta(\alpha)}, \\ [N_{\alpha}, N_{\alpha'}] &= -\epsilon T_{\alpha \operatorname{grad}_{h}(\alpha') - \alpha' \operatorname{grad}_{h}(\alpha)}, \end{split}$$

Here ∈ = 1 for Lorentzian and = −1 for Euclidean spacetimes, just to keep track of signature dependence. The Idea and Structures of Geometrodynamics

Domenico Giulini

Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR

Hamiltonian GR

- The idea is to represent the algebraic structure of hypersurface deformations in terms of a Hamiltonian dynamical system of physical fields.
- Theorem: The most general local realisation on the cotangent bundle over Riem(Σ), coordinatised by (h, π), is

$$\begin{split} & \mathcal{N}_{\alpha} \ \mapsto \mathcal{H}_{\alpha}[h,\pi] := \int_{\Sigma} \alpha(x) \, \mathcal{H}[h,\pi](x) \\ & \mathcal{T}_{\beta} \ \mapsto \mathcal{D}_{\beta}[h,\pi] := \int_{\Sigma} \beta^{a}(x) \, h_{ab}(x) \, \mathcal{D}^{b}[h,\pi](x) \end{split}$$

where

$$\begin{aligned} \mathcal{H}[h,\pi] &:= \varepsilon(2\kappa) G_{ab\,cd} \pi^{ab} \pi^{cd} - (2\kappa)^{-1} \sqrt{h} \left(R - 2\Lambda\right) \\ \mathcal{D}^{b}[h,\pi] &:= -2 \nabla_{a} \pi^{ab} \end{aligned}$$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics Clifford's dream GR 3+1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Suparspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p^3} = \mathbb{R}P^3$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Concess Ciliford's dream GR 3+1 Hypersurface deformation: Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p^2}$ $\mathbb{R}P^2\mathbb{R}E^{p}$

Successive hypersurface deformations parametrised by (α_1, β_1) and $N_2 = (\alpha_2, \beta_2)$ do not commute; rather

$$[X(\alpha_1,\beta_1), X(\alpha_2,\beta_2)] = X(\alpha',\beta'),$$

where

$$\begin{aligned} \alpha' &= \beta_1(\alpha_2) - \beta_2(\alpha_1) \,, \\ \beta' &= [\beta_1, \beta_2] + \alpha_1 \operatorname{grad}_h(\alpha_2) - \alpha_2 \operatorname{grad}_h(\alpha_1) \,. \end{aligned}$$

Since α' depends on h, we get the following condition for the Hamiltonians to act (via Poisson Bracket) as derivations on phase-space functions:

 $\{\{F, H(\alpha_1, \beta_1)\}, H(\alpha_2, \beta_2)\} - \{\{F, H(\alpha_2, \beta_2)\}, H(\alpha_1, \beta_1)\}$ = $\{F, \{H(\alpha_1, \beta_1), H(\alpha_2, \beta_2)\}\} = \{F, H(\alpha', \beta')\}$ = $\{F, H\}(\alpha', \beta') + H(\{F, \alpha'\}, \{F, \beta'\})$ $\stackrel{!}{=} \{F, H\}(\alpha', \beta')$

The last equality must hold for all *F* and all (α₁, β₁) (α₂, β₂). This implies the constraints:

 $\mathcal{H}[h,\pi](\mathbf{x}) = \mathbf{0}$ $\mathcal{D}^{\mathbf{a}}[h,\pi](\mathbf{x}) = \mathbf{0}$

- Constraints correspond to ⊥⊥ and ⊥ || components of Einstein's equation. A spacetime in which constraints are satisfied for each Σ must obey Einstein's equation.
- The constraints do not cause topological obstructions to Cauchy surface. Only special requirements do, like e.g. time-symmetry.

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics Clifford's dream GR 3+1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p}$ $\mathbb{R}P^{3}\mathbb{R}P^{3}$

Connection Variables

 The phase space of GR may be described by a (complex) SO(3) connection Aⁱ_a and a densitised 3-bein E^a_i, where

 $A_a^i := \Gamma_a^i + \beta K_a^i$, $\beta =$ Immirzi parameter.

The Hamiltonian constraint reads:

$$\begin{split} \varepsilon^{ijk} \tilde{E}^a_i \tilde{E}^b_j \, F_{ab\,k} \\ - 2(1+\beta^{-2}) \, \tilde{E}^a_{[i} \tilde{E}^b_{j]} \left(A^i_a - \Gamma^i_a \right) \left(A^j_b - \Gamma^j_b \right) = 0 \,. \end{split}$$

Unless β = i the connection Aⁱ_a cannot be thought of as restriction to space of a spacetime connection. For example, its holonomy along a spacelike curve γ in spacetime depends on the choice of Σ ⊃ γ.

The Idea and Structures of Geometrodynamics

Domenico Giulini

```
Fopics
Clifford's dream
GR
3+1
Hypersurface deformations
Hamiltonian GR
Connection Variables
X without X
Superspace
Geometry
```

Topology manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3 \#\mathbb{R}P^3$

Topologies for two BHs

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

- Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables
- X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3 \#\mathbb{R}P^3$

Mass without mass

The mass-energy of an asymptotically flat end is

$$m \propto \lim_{R \to \infty} \left\{ \int_{S^2_R \subset \Sigma} d\sigma (\partial_a h_{ab} - \partial_b h_{aa}) n^b \right\}$$

- This is ≥ 0 and = 0 for Minkowski slices only.
- Gannon's theorem implies causal geodesic incompleteness if π₁(Σ) ≠ 1 (replacing ∃ trapped surfaces in the hypotheses).
- Stationary regular vacuum solutions (gravitational solitons) do not exist (Einstein & Pauli, Lichnerowicz).

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables

X without X

Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3 \# \mathbb{R}P^3$ Prime table

Momenta without momenta

 The linear and angular momenta of an asymptotically flat end is

$$p^a \propto \int_{S^2_{\infty}} d\sigma \, \pi^{ab} n_b \,, \qquad J^a \propto \int_{S^2_{\infty}} d\sigma \, \varepsilon_{abc} \, x^b \pi^{cd} n_d$$

Axisymmetric vacuum configurations with J ≠ 0 and one end do not exist, even for non-orientable Σ:

$$J_{K} = \int_{S_{\infty}^{2}} \star dK = \int_{\Sigma} \underbrace{d \star dK}_{\propto \mathsf{Ric}} = 0$$

 But for Killing fields K up to sign they do (Friedman & Mayer 1981). The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables

X without X

Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3 \# \mathbb{R}P^3$ Prime table

Charge without charge

Electrovac solutions with non-zero overall electric charge

 $Q_e = \int_{\mathcal{S}^2_{\infty}} \star F$

only exist if $S_{\infty}^2 \neq \partial \Sigma$, i.e. if $[S_{\infty}^2] \in H^2(\Sigma)$ is non-trivial, like e.g. in Reissner-Nordström.

If Σ has only one end and is non-orientable, Stokes' theorem obstructs existence of electric but not of magnetic charge (Sorkin 1977):

$$Q_m = \int_{S^2_{\infty}} F$$

 This is because for non-orientable Σ, Stokes' theorem holds for twisted (densitised) but not for ordinary forms. The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables

X without X

Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3_{\#}\mathbb{R}P^3$ Prime table

- ► Stokes' theorem applied to $\vec{\nabla} \cdot \vec{B} = 0$ in Σ_1 : $\Phi(\vec{B}, \partial \Sigma_1, O) + \Phi(\vec{B}, S_1, O) + \Phi(\vec{B}, S_2, O) = 0$
- ► Stokes' theorem applied to $\vec{\nabla} \cdot \vec{B} = 0$ in Σ_2 : $\Phi(\vec{B}, S_1, O') + \Phi(\vec{B}, S_2, O) = 0$

Hence

 $\Phi(\vec{B}, \partial \Sigma_1, O) = -2 \, \Phi(\vec{B}, S_1, O) \neq 0$

The Idea and Structures of Geometrodynamics

Domenico Giulini

opics Clifford's dream

3+1 Hypersurface deformations Hamiltonian GR Connection Variables

X without X

Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p^{3}}$ $\mathbb{R}P^{3}_{\#}\mathbb{R}P^{3}$ Prime table

Spin without spin

- There exist many 3-manifolds for which a full (i.e. 2π) relative rotation is not in the id-component.
- In this case the asymptotic symmetry group at spacelike infinity contains SU(2) rather than SO(3).
- This has been suggested as a 'fermions-from-bosons' mechanism in gravity (Friedman & Sorkin 1982).
- The spinoriality-status of each known 3-manifold is also known.

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables

X without X

Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3 \# \mathbb{R}P^3$ Prime table

Example: The space form S^3/D_8^*

- $\Sigma = S^3/D_8^*$ is spinorial
- $\blacktriangleright D_8^* = \langle a, b \mid a^2 = b^2 = (ab)^2 \rangle$
- $MCG_{\infty}(\Sigma) \cong Aut(D_8^*) \cong O$
- $MCG_{F}(\Sigma) \cong Aut_{\mathbb{Z}_{2}}(D_{8}^{*}) \cong O^{*}$
- This manifold is also chiral, i.e. it admits no orientation-reversing self-diffeomorphism (like many other 3-manifolds)

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables

X without X

Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p^3}$ $\mathbb{R}P^3 \# \mathbb{R}P^3$ Prime table

Chirality of spherical space-forms

 $\deg(\tilde{f}) \cdot \deg(p) = \deg(p) \cdot \deg(f)$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables

X without X

Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3$ $\mathbb{R}P^2$

Superspace

 $Riem(\Sigma)$. . $\pi_1 \cong MCG_F(\Sigma)$ The Idea and Structures of Geometrodynamics

Domenico Giulini

Concest GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables X without X Superspace Geometry

Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3 \# \mathbb{R}P^3$

Geometry

 The group Diff_F(Σ) acts as isometries on the Wheeler-DeWitt metric on Riem(Σ)

$$\mathcal{G}_h(k,\ell) := \int_{\Sigma} d^3x \; G^{ab\,cd}[h](x) \; k_{ab}(x) \, \ell_{cd}(x) \, .$$

Hence *G* defines a metric on superspace in the usual way iff horizontal lifts are unique.

Now, the vertical subspace at h ∈ Riem(Σ) is spanned by all vectors of the form

$$X^{\xi} = \int_{\Sigma} d^3x \, L_{\xi} h_{ab} \, \frac{\delta}{\delta h_{ab}} \,, \quad \forall \xi \,.$$

Hence $k \in T_h \operatorname{Riem}(\Sigma)$ is horizontal (*G*-orthogonal to all vertical vectors) iff

$$\mathcal{O}_h k = 0 \Leftrightarrow \nabla^b (k_{ab} - \lambda h_{ab} k_c^c) = 0$$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Ciliford's dream GR 3+1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds $\mathbb{R}R^{p3}$ $\mathbb{R}P^{3}\mathbb{R}P^{3}$ ► Horizontal projection of $k \in T_h \operatorname{Riem}(\Sigma)$: solve $\mathcal{O}_h(k + X^{\xi})$ for ξ modulo Killing fields. This is equivalent to

 $(\delta d + 2(1 - \lambda)d\delta - 2\operatorname{Ric}) \xi = -\mathcal{O}_h k$.

- Killing fields ∈ kernel of the l.h.s. operator (symmetric) and right hand side is L²-orthogonal to Killing fields. Non-Killing ξ in the kernel correspond precisely to those non-zero X^ξ that form the non-trivial intersection of the vertical and horizontal subspace of *T_h*Riem(Σ), which exist for *G* non-pos. def. (λ > 1/3).
- Example: ξ = dφ generate inf. dim. intersection at (locally) flat metrics in case λ = 1, whereas no non-trivial intersection exists at Ric < 0 metrics, which always exist, and at non-flat Einstein metrics (space forms).
- The symbol of the l.h.s. operator is

 $\sigma(\zeta)_b^a = \|\zeta\|^2 \left(\delta_b^a + (1-2\lambda)\zeta^a \zeta_b / \|\zeta\|^2\right) \,,$

which is elliptic for $\lambda \neq 1$ (strongly for $\lambda > 1$) and degenerate for the GR case $\lambda = 1$.

The Idea and Structures of Geometrodynamics

Domenico Giulini

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

- ► Let now $\lambda = 1$ (GR value). Since then \mathcal{G} defines a metric at points $[h] \in \mathcal{S}(\Sigma)$ where *h* is Einstein, it does so for the round metric on $\Sigma = S^3$.
- We ask: What is the signature (n_−, n₊) of the metric that G defines in T_[h] ∈ S(Σ)? The answer is given by the following

Theorem

The Wheeler–DeWitt metric in a neighbourhood of the round 3-sphere in $S(\Sigma)$ is of signature $(-1, \infty)$, that is, it is an infinite-dimensional Lorentzian metric. (DG 1995)

Clifford's dream GR GR 3-1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p^{2}} \oplus \mathbb{R}P^{2}$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Concord Citrord's dream GR 3+1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}RP^3$ $\mathbb{R}P^3\mathbb{R}P^3$ Prime table

Topology

- MCG of 3-manifolds are the π₁ of corresponding superspace. They are topological but *not* homotopy invariants.
- ► Consider 'lens spaces' $L(p,q) =: S^3 / \sim$, where q < p are coprime integers, with $S^3 = \{|z_1|^2 + |z_1|^2 = 1 \mid (z_1, z_2) \in \mathbb{C}^2\}$ and $(z_1, z_2) \sim (z'_1, z'_2) \Leftrightarrow z'_1 = \exp(2\pi i/p)z_1$ and $z'_2 = \exp(2\pi iq/p)z_2$.
- Have homotopy (≃) and topological (≅) equivalence properties (Whitehead 1941, Reidemeister 1935):

 $egin{aligned} L(p,q) &\simeq L(p,q') \ \Leftrightarrow \ q'q = \pm n^2 \ (ext{mod } p) \ L(p,q) &\cong L(p,q') \ \Leftrightarrow \ q' = \pm q^{\pm 1} \ (ext{mod } p) \ [q'=q^{\pm 1} \ ext{for } o.p.] \end{aligned}$

For p > 2 have:

 $\mathrm{MCG}_{\mathcal{F}}(L(p,q)) = \begin{cases} \mathbb{Z}_2 \times \mathbb{Z}_2 & \text{if } q^2 = 1 \pmod{p} \text{ and } q \neq \pm 1 \pmod{p} \\ \mathbb{Z}_2 & \text{otherwise} \end{cases}$

▶ For example, $L(15, 1) \simeq L(15, 4)$ and $L(15, 1) \not\cong L(15, 4)$, but

 $\mathrm{MCG}_{\mathsf{F}}(L(15,1)) = \mathbb{Z}_2 \neq \mathbb{Z}_2 \times \mathbb{Z}_2 = \mathrm{MCG}_{\mathsf{F}}(L(15,4))$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3-1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry **Topology** 3 manifolds Prime decomposition $\mathbb{R}RP^{3}$ $\mathbb{R}P^{3}$ Prime table

Connected sums

- Decompose along *splitting* and *essential* 2-spheres until only *prime-manifolds* remain. Prime factors are unique up to permutation.
- Except for S¹ × S², a prime manifold has trivial π₂. The converse is true given PC. Given TGC, all finite-π₁ primes are spherical space-forms S³/G, G ⊂ SO(4). Infinite-π₁ primes are S¹ × S², the flat ones ℝ³/G, G ⊂ E₃, and the huge family of locally hyperbolic ones.

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3+1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition RRP³ RP³ #RP³

The $\mathbb{R}P^3$ geon

The Idea and Structures of Geometrodynamics

Domenico Giulini

Clifford's dream GR 3+1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition **ERP³ RP³ RP³ RP³**

 $(T, X, \theta, \phi) \mapsto (T, -X, \pi - \theta, \phi + \pi)$

$\mathbb{R}P^3 \# \mathbb{R}P^3$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition ERP³ ERP³

Prime table

Its fundamental group

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics

Clifford's dream GR 3-1 Hypersurface deformation Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition RCP³ RCP³ RCP³ RCP³

MCG and its u.i. representations

The group of mapping classes is given by

$$\begin{split} \mathrm{MCG}_{\mathsf{F}} &\cong \mathrm{Aut}(\mathbb{Z}_2 \ast \mathbb{Z}_2) \cong \mathbb{Z}_2 \ast \mathbb{Z}_2 = \langle \mathsf{E}, \mathsf{S} \mid \mathsf{E}^2, \mathsf{S}^2 \rangle \\ & \mathsf{E} : (\mathsf{a}, \mathsf{b}) \to (\mathsf{b}, \mathsf{a}), \quad \mathsf{S} : (\mathsf{a}, \mathsf{b}) \to (\mathsf{a}, \mathsf{a}\mathsf{b}\mathsf{a}^{-1}) \end{split}$$

- $\Rightarrow ES + SE \subset \text{centre of group algebra. Hence } \{1, E, S, ES\}$ generate algebra of irreducible representing operators.
- ⇒ Linear irreducible representations are at most 2-dimensional. They are: $E \mapsto \pm 1$, $S \mapsto \pm 1$ and, for $0 < \theta < \pi$,

$$egin{array}{lll} E\mapsto \left(egin{array}{cc} 1&0\0&-1\end{array}
ight) \ S\mapsto \left(egin{array}{cc} \cos heta&\sin heta\ \sin heta&-\cos heta\end{array}
ight), \end{array}$$

⇒ There are two 'statistics sectors', which get 'mixed' by S; the 'mixing angle' is θ.

The Idea and Structures of Geometrodynamics

Domenico Giulini

Colico: Clifford's dream GR 3+1 Hypersurface deformations Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition $\mathbb{R}R^{p^2}$ $\mathbb{R}P^2 \# \mathbb{R}P^2$ Prime table

Prime II	$_{\rm HC}$	\mathbf{S}	С	Ν	$H_1(\Pi)$	$\pi_0(D_F(\Pi))$	$\pi_1(D_F(\Pi))$	$\pi_k(D_F(\Pi))$
S^{3}/D_{8}^{*}	+	+	+	-	$Z_2 \times Z_2$	O*	0	$\pi_k(S^3)$
S^{3}/D_{8n}^{*}	+	$^+$	+	-	$Z_2 \times Z_2$	D_{16n}^{*}	0	$\pi_k(S^3)$
$S^3/D^*_{4(2n+1)}$	+	+	+	÷	Z_4	$D^{*}_{8(2n+1)}$	0	$\pi_k(S^3)$
S^{3}/T^{*}	?	+	+	-	Z_3	0*	0	$\pi_k(S^3)$
S^{3}/O^{*}	w	$^+$	+	+	Z_2	0*	0	$\pi_k(S^3)$
S^{3}/I^{*}	?	+	+	-	0	I^*	0	$\pi_k(S^3)$
$S^3/D_8^* \times Z_p$	+	+	+	-	$Z_2 \times Z_{2p}$	$Z_2 \times O^*$	Z	$\pi_k(S^3)\times\pi_k(S^3)$
$S^3/D^*_{8n} \times Z_p$	+	+	+	-	$Z_2 \times Z_{2p}$	$Z_2 \times D^*_{16n}$	Z	$\pi_k(S^3)\times\pi_k(S^3)$
$S^3/D^*_{4(2n+1)} \times Z_p$	+	+	+	+	Z_{4p}	$Z_2 \times D^*_{8(2n+1)}$	Z	$\pi_k(S^3)\times\pi_k(S^3)$
$S^3/T^* \times Z_p$?	+	+	-	Z_{3p}	$Z_2 \times O^*$	Z	$\pi_k(S^3)\times\pi_k(S^3)$
$S^3/O^* \times Z_p$	w	+	+	+	Z_{2p}	$Z_2 \times O^*$	Z	$\pi_k(S^3)\times\pi_k(S^3)$
$S^3/I^* \times Z_p$?	+	+	-	Z_p	$Z_2 \times I^*$	Z	$\pi_k(S^3)\times\pi_k(S^3)$
$S^{3}/D'_{2^{k}(2n+1)} \times Z_{p}$	+	+	+	+	$Z_p \times Z_{2^k}$	$Z_2 \times D^*_{8(2n+1)}$	Z	$\pi_k(S^3)\times\pi_k(S^3)$
$S^3/T'_{8\cdot 3^m} \times Z_p$?	+	+	-	$Z_p \times Z_{3^m}$	O*	Z	$\pi_k(S^3)\times\pi_k(S^3)$
$L(p, q_1)$	w	-	+	$(-)^p$	Z_p	Z_2	Ζ	$\pi_k(S^3)$
$L(p, q_2)$	w+	-	+	$(-)^p$	Z_p	$Z_2 \times Z_2$	$Z \times Z$	$\pi_k(S^3) \times \pi_k(S^3)$
$L(p, q_{3})$	w	-	-	$(-)^p$	Z_p	Z_2	$Z \times Z$	$\pi_k(S^3) \times \pi_k(S^3)$
$L(p, q_4)$	w	-	+	$(-)^p$	Z_p	Z_2	$Z \times Z$	$\pi_k(S^3) \times \pi_k(S^3)$
RP^3	+	-	-	+	Z_2	1	0	0
S^3	+	-	-	-	1	1	0	0
$S^2 \times S^1$	/	-	-	+	Z	$Z_2 \times Z_2$	Z	$\pi_k(S^3)\times\pi_k(S^2)$
R^{3}/G_{1}	/	+	-	+	$Z\times Z\times Z$	St(3, Z)	0	$\pi_k(S^3)$
R^{3}/G_{2}	1	+	-	÷	$Z\times Z_2\times Z_2$	$\operatorname{Aut}_{+}^{\mathbb{Z}_2}(G_2)$	0	$\pi_k(S^3)$
R^{3}/G_{3}	/	+	+	+	$Z \times Z_3$	$\operatorname{Aut}_{+}^{\mathbb{Z}_2}(G_3)$	0	$\pi_k(S^3)$
R^{3}/G_{4}	/	+	+	-	$Z \times Z_2$	$\operatorname{Aut}_{+}^{\mathbb{Z}_2}(G_4)$	0	$\pi_k(S^3)$
R^{3}/G_{5}	1	+	+	+	Z	$Aut_{+}^{Z_{2}}(G_{5})$	0	$\pi_k(S^3)$
R^{3}/G_{6}	1	+	+	-	$Z_4 \times Z_4$	$Aut_{+}^{Z_{2}}(G_{5})$	0	$\pi_k(S^3)$
$S^1 \times R_g$	/	+	-	-	$Z \times Z_{2g}$	$\operatorname{Aut}_{+}^{\mathbb{Z}_2}(\mathbb{Z} \times F_g)$	0	$\pi_k(S^3)$
$K(\pi, 1)_{sl}$	/	+	*	*	$A\pi$	$Aut_{\perp}^{Z_2}(\pi)$	0	$\pi_{k}(S^{3})$

The Idea and Structures of Geometrodynamics

Domenico Giulini

Topics Clifford's dream GR 3+1 Hypersurface deformatione Hamiltonian GR Connection Variables X without X Superspace Geometry Topology 3 manifolds Prime decomposition RCP³ RCP³

Prime table

taken from D.G. 1996