The Idea and Structures of Geometrodynamics

Domenico Giulini
MPI für Gravitationsphysik
Potsdam

Leipzig, September 21st 2008

William Kingdon Clifford 1870

"I wish here to indicate a manner in which these speculations may be applied to the investigation of physical phenomena. I hold in fact:

1. That small portions of space are in fact of a nature analogous to little hills on a surface which is on the average flat; namely, that the ordinary laws of geometry are not valid in them.
2. That this property of being curved or distorted is continually being passed from one portion of space to another after the manner of a wave.
3. That this variation of the curvature of space is what really happens in that phenomenon which we call the motion of matter, whether ponderable or etherial.
4. That in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity."

The Idea and
Structures of

Clifford's dream

Hamiltonian GR

Connection Variables
X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table
"People slowly accustomed themselves to the idea that the
physical states of space itself were the final physical reality."
-Professor Albert Eintetm

Einstein's equation

Topics

Clifford's dream
GR
$3+1$
Hypersurface deformations
Hamiltonian GR
Connection Variables
X without X
Superspace

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu}
$$

Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

Spacetime as space's history

Clifford's dream

3+1
Hypersurface deformations
Hamiltonian GR
Connection Variables
X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

Spacetime, M, is foliated by a one-parameter family of embeddings \mathcal{E}_{t} of the 3-manifold Σ into $M . \Sigma_{t}$ is the image in M of Σ under \mathcal{E}_{t}.

A four-function worth of arbitrariness

For $q \in \Sigma$ the image points $p=\mathcal{E}_{t}(q)$ and $p^{\prime}=\mathcal{E}_{t+d t}(q)$ are connected by the vector $\partial /\left.\partial t\right|_{p}$ whose components tangential and normal to Σ_{t} are β (three functions) and αn (one function) respectively.

Kinematics of hypersurface deformations

- In local coordinates y^{μ} of M and x^{m} of Σ the generators of normal and tangential deformations of the embedded hypersurface are

$$
\begin{aligned}
& N_{\alpha}=\int_{\Sigma} d^{3} x \alpha(x) n^{\mu}[y(x)] \frac{\delta}{\delta y^{\mu}(x)} \\
& T_{\beta}=\int_{\Sigma} d^{3} x \beta^{m}(x) \partial_{m} y^{\mu}(x) \frac{\delta}{\delta y^{\mu}(x)}
\end{aligned}
$$

- This is merely the foliation-dependent decomposition of the tangent vector $X(V)$ at $y \in \operatorname{Emb}(\Sigma, M)$, induced by the spacetime vector field $V=\alpha n+\beta^{a} \partial_{a}$:

$$
X(V)=\int_{\Sigma} d^{3} x V^{\mu}(y(x)) \frac{\delta}{\delta y^{\mu}(x)}
$$

- The vector fields $X(V)$ on $\operatorname{Emb}(\Sigma, M)$ obey

$$
[X(V), X(W)]=X([V, W])
$$

i.e. $V \mapsto X(V)$ is a Lie homomorphism from the tangent-vector fields on M to the tangent-vector fields on $\operatorname{Emb}(\Sigma, M)$.

- In terms of the normal-tangential decomposition:

$$
\begin{aligned}
& {\left[T_{\beta}, T_{\beta^{\prime}}\right]=-T_{\left[\beta, \beta^{\prime}\right]},} \\
& {\left[T_{\beta}, N_{\alpha}\right]=-N_{\beta(\alpha)}} \\
& {\left[N_{\alpha}, N_{\alpha^{\prime}}\right]=-\epsilon T_{\alpha \operatorname{grad}_{h}\left(\alpha^{\prime}\right)-\alpha^{\prime} \operatorname{grad}_{h}(\alpha)},}
\end{aligned}
$$

- Here $\epsilon=1$ for Lorentzian and $=-1$ for Euclidean spacetimes, just to keep track of signature dependence.

Hamiltonian GR

- The idea is to represent the algebraic structure of hypersurface deformations in terms of a Hamiltonian dynamical system of physical fields.
- Theorem: The most general local realisation on the cotangent bundle over Riem (Σ), coordinatised by (h, π), is

$$
\begin{aligned}
& N_{\alpha} \mapsto H_{\alpha}[h, \pi]:=\int_{\Sigma} \alpha(x) \mathcal{H}[h, \pi](x) \\
& T_{\beta} \mapsto D_{\beta}[h, \pi]:=\int_{\Sigma} \beta^{a}(x) h_{a b}(x) \mathcal{D}^{b}[h, \pi](x)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{H}[h, \pi]:=\epsilon(2 \kappa) G_{a b c d} \pi^{a b} \pi^{c d}-(2 \kappa)^{-1} \sqrt{h}(R-2 \wedge) \\
& \mathcal{D}^{b}[h, \pi]:=-2 \nabla_{a} \pi^{a b}
\end{aligned}
$$

Successive hypersurface deformations parametrised by $\left(\alpha_{1}, \beta_{1}\right)$ and $N_{2}=\left(\alpha_{2}, \beta_{2}\right)$ do not commute; rather

$$
\left[X\left(\alpha_{1}, \beta_{1}\right), X\left(\alpha_{2}, \beta_{2}\right)\right]=X\left(\alpha^{\prime}, \beta^{\prime}\right)
$$

where

$$
\begin{aligned}
& \alpha^{\prime}=\beta_{1}\left(\alpha_{2}\right)-\beta_{2}\left(\alpha_{1}\right), \\
& \beta^{\prime}=\left[\beta_{1}, \beta_{2}\right]+\alpha_{1} \operatorname{grad}_{h}\left(\alpha_{2}\right)-\alpha_{2} \operatorname{grad}_{h}\left(\alpha_{1}\right) .
\end{aligned}
$$

- Since α^{\prime} depends on h, we get the following condition for the Hamiltonians to act (via Poisson Bracket) as derivations on phase-space functions:

$$
\begin{aligned}
& \left\{\left\{F, H\left(\alpha_{1}, \beta_{1}\right)\right\}, H\left(\alpha_{2}, \beta_{2}\right)\right\}-\left\{\left\{F, H\left(\alpha_{2}, \beta_{2}\right)\right\}, H\left(\alpha_{1}, \beta_{1}\right)\right\} \\
& =\left\{F,\left\{H\left(\alpha_{1}, \beta_{1}\right), H\left(\alpha_{2}, \beta_{2}\right)\right\}\right\}=\left\{F, H\left(\alpha^{\prime}, \beta^{\prime}\right)\right\} \\
& =\{F, H\}\left(\alpha^{\prime}, \beta^{\prime}\right)+H\left(\left\{F, \alpha^{\prime}\right\},\left\{F, \beta^{\prime}\right\}\right) \\
& \stackrel{!}{=}\{F, H\}\left(\alpha^{\prime}, \beta^{\prime}\right)
\end{aligned}
$$

- The last equality must hold for all F and all $\left(\alpha_{1}, \beta_{1}\right)\left(\alpha_{2}, \beta_{2}\right)$. This implies the constraints:

$$
\mathcal{H}[h, \pi](x)=0 \quad \mathcal{D}^{a}[h, \pi](x)=0
$$

- Constraints correspond to $\perp \perp$ and $\perp \|$ components of Einstein's equation. A spacetime in which constraints are satisfied for each Σ must obey Einstein's equation.
- The constraints do not cause topological obstructions to Cauchy surface. Only special requirements do, like e.g. time-symmetry.
surface. Only special requirements do, like e.g. time-symmetry.

Connection Variables

- The phase space of GR may be described by a (complex) $S O(3)$ connection A_{a}^{i} and a densitised 3-bein \tilde{E}_{i}^{a}, where

$$
A_{a}^{i}:=\Gamma_{a}^{i}+\beta K_{a}^{i}, \quad \beta=\text { Immirzi parameter }
$$

- The Hamiltonian constraint reads:

$$
\begin{aligned}
& \varepsilon^{i j k} \tilde{E}_{i}^{a} \tilde{E}_{j}^{b} F_{a b k} \\
& -2\left(1+\beta^{-2}\right) \tilde{E}_{[i}^{a} \tilde{E}_{j]}^{b}\left(A_{a}^{i}-\Gamma_{a}^{i}\right)\left(A_{b}^{j}-\Gamma_{b}^{j}\right)=0 .
\end{aligned}
$$

- Unless $\beta=i$ the connection A_{a}^{i} cannot be thought of as restriction to space of a spacetime connection. For example, its holonomy along a spacelike curve γ in spacetime depends on the choice of $\Sigma \supset \gamma$.

Topologies for two BHs

The Idea and

Clifford's dream
GR
$3+1$
Hypersurface deformations Hamiltonian GR
Connection Variables
X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

Mass without mass

- The mass-energy of an asymptotically flat end is

$$
m \propto \lim _{R \rightarrow \infty}\left\{\int_{S_{R}^{2} \subset \Sigma} d \sigma\left(\partial_{a} h_{a b}-\partial_{b} h_{a a}\right) n^{b}\right\}
$$

- This is ≥ 0 and $=0$ for Minkowski slices only.
- Gannon's theorem implies causal geodesic incompleteness if $\pi_{1}(\Sigma) \neq 1$ (replacing \exists trapped surfaces in the hypotheses).
- Stationary regular vacuum solutions (gravitational solitons) do not exist (Einstein \& Pauli, Lichnerowicz).

Momenta without momenta

- The linear and angular momenta of an asymptotically flat end is

$$
p^{a} \propto \int_{S_{\infty}^{2}} d \sigma \pi^{a b} n_{b}, \quad J^{a} \propto \int_{S_{\infty}^{2}} d \sigma \varepsilon_{a b c} x^{b} \pi^{c d} n_{d}
$$

- Axisymmetric vacuum configurations with $J \neq 0$ and one end do not exist, even for non-orientable Σ :

$$
J_{K}=\int_{S_{\infty}^{2}} \star d K=\int_{\Sigma} \underbrace{d \star d K}_{\alpha \text { Ric }}=0
$$

- But for Killing fields K up to sign they do (Friedman \& Mayer 1981).

Charge without charge

- Electrovac solutions with non-zero overall electric charge

$$
Q_{e}=\int_{S_{\infty}^{2}} \star F
$$

only exist if $S_{\infty}^{2} \neq \partial \Sigma$, i.e. if $\left[S_{\infty}^{2}\right] \in H^{2}(\Sigma)$ is non-trivial, like e.g. in Reissner-Nordström.

- If Σ has only one end and is non-orientable, Stokes' theorem obstructs existence of electric but not of magnetic charge (Sorkin 1977):

$$
Q_{m}=\int_{S_{\infty}^{2}} F
$$

- This is because for non-orientable Σ, Stokes' theorem holds for twisted (densitised) but not for ordinary forms.

- Stokes' theorem applied to $\vec{\nabla} \cdot \vec{B}=0$ in Σ_{1} :

$$
\Phi\left(\vec{B}, \partial \Sigma_{1}, O\right)+\Phi\left(\vec{B}, S_{1}, O\right)+\Phi\left(\vec{B}, S_{2}, O\right)=0
$$

Clifford's dream
GR
Hypersurface deformations
Hamiltonian GR
Connection Variables
X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} \boldsymbol{R P}^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

- Stokes' theorem applied to $\vec{\nabla} \cdot \vec{B}=0$ in Σ_{2} :

$$
\Phi\left(\vec{B}, S_{1}, O^{\prime}\right)+\Phi\left(\vec{B}, S_{2}, O\right)=0
$$

- Hence

$$
\Phi\left(\vec{B}, \partial \Sigma_{1}, O\right)=-2 \Phi\left(\vec{B}, S_{1}, O\right) \neq 0
$$

Spin without spin

- There exist many 3-manifolds for which a full (i.e. 2π) relative rotation is not in the id-component.
- In this case the asymptotic symmetry group at spacelike infinity contains $S U(2)$ rather than $S O(3)$.
- This has been suggested as a 'fermions-from-bosons' mechanism in gravity (Friedman \& Sorkin 1982).
- The spinoriality-status of each known 3-manifold is also known.

Example: The space form S^{3} / D_{8}^{*}

- $\Sigma=S^{3} / D_{8}^{*}$ is spinorial
- $D_{8}^{*}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{2}\right\rangle$
- $\operatorname{MCG}_{\infty}(\Sigma) \cong \operatorname{Aut}\left(D_{8}^{*}\right) \cong O$
- $\operatorname{MCG}_{F}(\Sigma) \cong \operatorname{Aut}_{Z_{2}}\left(D_{8}^{*}\right) \cong O^{*}$
- This manifold is also chiral, i.e. it admits no orientation-reversing self-diffeomorphism (like many other 3-manifolds)

Clifford's dream

X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

Chirality of spherical space-forms

X without X

Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

Superspace

Clifford's dream

GR
3+1
Hypersurface deformations
Hamiltonian GR
Connection Variables
X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

Geometry

- The group $\operatorname{Diff}_{F}(\Sigma)$ acts as isometries on the Wheeler-DeWitt metric on Riem(Σ)

$$
\mathcal{G}_{h}(k, \ell):=\int_{\Sigma} d^{3} x G^{a b c d}[h](x) k_{a b}(x) \ell_{c d}(x)
$$

Hence G defines a metric on superspace in the usual way iff horizontal lifts are unique.

- Now, the vertical subspace at $h \in \operatorname{Riem}(\Sigma)$ is spanned by all vectors of the form

$$
X^{\xi}=\int_{\Sigma} d^{3} x L_{\xi} h_{a b} \frac{\delta}{\delta h_{a b}}, \quad \forall \xi .
$$

Hence $k \in T_{h} \operatorname{Riem}(\Sigma)$ is horizontal (\mathcal{G}-orthogonal to all vertical vectors) iff

$$
\mathcal{O}_{h} k=0 \Leftrightarrow \nabla^{b}\left(k_{a b}-\lambda h_{a b} k_{c}^{c}\right)=0
$$

- Horizontal projection of $k \in T_{h} \operatorname{Riem}(\Sigma)$: solve $\mathcal{O}_{h}\left(k+X^{\xi}\right)$ for ξ modulo Killing fields. This is equivalent to

$$
(\delta d+2(1-\lambda) d \delta-2 \text { Ric }) \xi=-\mathcal{O}_{h} k .
$$

- Killing fields \in kernel of the I.h.s. operator (symmetric) and right hand side is L^{2}-orthogonal to Killing fields. Non-Killing ξ in the kernel correspond precisely to those non-zero X^{ξ} that form the non-trivial intersection of the vertical and horizontal subspace of T_{h} Riem (Σ), which exist for \mathcal{G} non-pos. def. ($\lambda>1 / 3$).
- Example: $\xi=d \phi$ generate inf. dim. intersection at (locally) flat metrics in case $\lambda=1$, whereas no non-trivial intersection exists at Ric <0 metrics, which always exist, and at non-flat Einstein metrics (space forms).
- The symbol of the I.h.s. operator is

$$
\sigma(\zeta)_{b}^{a}=\|\zeta\|^{2}\left(\delta_{b}^{a}+(1-2 \lambda) \zeta^{a} \zeta_{b} /\|\zeta\|^{2}\right),
$$

which is elliptic for $\lambda \neq 1$ (strongly for $\lambda>1$) and degenerate for the GR case $\lambda=1$.

- Let now $\lambda=1$ (GR value). Since then \mathcal{G} defines a metric at points $[h] \in \mathcal{S}(\Sigma)$ where h is Einstein, it does so for the round metric on $\Sigma=S^{3}$.
- We ask: What is the signature $\left(n_{-}, n_{+}\right)$of the metric that \mathcal{G} defines in $T_{[h]} \in \mathcal{S}(\Sigma)$? The answer is given by the following
Theorem
The Wheeler-DeWitt metric in a neighbourhood of the round 3 -sphere in $\mathcal{S}(\Sigma)$ is of signature $(-1, \infty)$, that is, it is an infinite-dimensional Lorentzian metric. (DG 1995)

Topies

Clifford's cream

GR
$3+1$
Hypersurface deformations

Hamiltonian GR

Connection Variables
X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

Topology

- MCG of 3-manifolds are the π_{1} of corresponding superspace. They are topological but not homotopy invariants.
- Consider 'lens spaces' $L(p, q)=: S^{3} / \sim$, where $q<p$ are coprime integers, with $S^{3}=\left\{\left|z_{1}\right|^{2}+\left|z_{1}\right|^{2}=1 \mid\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}\right\}$ and $\left(z_{1}, z_{2}\right) \sim\left(z_{1}^{\prime}, z_{2}^{\prime}\right) \Leftrightarrow z_{1}^{\prime}=\exp (2 \pi i / p) z_{1}$ and $z_{2}^{\prime}=\exp (2 \pi i q / p) z_{2}$.
- Have homotopy (\simeq) and topological (气) equivalence properties (Whitehead 1941, Reidemeister 1935):

$$
\begin{aligned}
& L(p, q) \simeq L\left(p, q^{\prime}\right) \Leftrightarrow q^{\prime} q= \pm n^{2}(\bmod p) \\
& L(p, q) \cong L\left(p, q^{\prime}\right) \Leftrightarrow q^{\prime}= \pm q^{ \pm 1}(\bmod p) \quad\left[q^{\prime}=q^{ \pm 1} \text { for o.p. }\right]
\end{aligned}
$$

- For $p>2$ have:

$$
\operatorname{MCG}_{F}(L(p, q))= \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2} & \text { if } q^{2}=1(\bmod p) \text { and } q \neq \pm 1(\bmod p) \\ \mathbb{Z}_{2} & \text { otherwise }\end{cases}
$$

- For example, $L(15,1) \simeq L(15,4)$ and $L(15,1) \neq L(15,4)$, but

$$
\operatorname{MCG}_{F}(L(15,1))=\mathbb{Z}_{2} \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\operatorname{MCG}_{F}(L(15,4))
$$

Connected sums

- Decompose along splitting and essential 2-spheres until only prime-manifolds remain. Prime factors are unique up to permutation.
- Except for $S^{1} \times S^{2}$, a prime manifold has trivial π_{2}. The converse is true given PC. Given TGC, all finite- π_{1} primes are spherical space-forms $S^{3} / G, G \subset S O(4)$. Infinite- π_{1} primes are $S^{1} \times S^{2}$, the flat ones $\mathbb{R}^{3} / G, G \subset E_{3}$, and the huge family of locally hyperbolic ones.

The $\mathbb{R} \mathrm{P}^{3}$ geon

Topies
 Clifford's dream

GR
$3+1$
Hypersurface deformations
Hamiltonian GR
Connection Variables
X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

$$
(T, X, \theta, \varphi) \mapsto(T,-X, \pi-\theta, \varphi+\pi)
$$

$\mathbb{R P}^{3} \# \mathbb{R} P^{3}$

The Idea and

Topies
 Clifford's dream
 GR
 3+1

Hypersurface deformations
Hamiltonian GR
Connection Variables
X without X
Superspace
Geometry
Topology
3 manifolds
Prime decomposition
$\mathbb{R} R P^{3}$
$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$
Prime table

Its fundamental group

$$
\underbrace{\left\langle a, b \mid a^{2}=1=b^{2}\right\rangle}_{\mathbb{Z}_{2} * \mathbb{Z}_{2}}=\underbrace{\left\langle a, c \mid a^{2}=1, a c a^{-1}=c^{-1}\right\rangle}_{\mathbb{Z}_{2} \ltimes \mathbb{Z}}, \quad c:=a b
$$

MCG and its u.i. representations

- The group of mapping classes is given by

$$
\begin{aligned}
\mathrm{MCG}_{F} \cong & \operatorname{Aut}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2} * \mathbb{Z}_{2}=\left\langle E, S \mid E^{2}, S^{2}\right\rangle \\
& E:(a, b) \rightarrow(b, a), \quad S:(a, b) \rightarrow\left(a, a b a^{-1}\right)
\end{aligned}
$$

$\Rightarrow E S+S E \subset$ centre of group algebra. Hence $\{1, E, S, E S\}$ generate algebra of irreducible representing operators.
\Rightarrow Linear irreducible representations are at most 2-dimensional. They are: $E \mapsto \pm 1, S \mapsto \pm 1$ and, for $0<\theta<\pi$,

$$
\begin{aligned}
& E \mapsto\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
& S \mapsto\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right),
\end{aligned}
$$

\Rightarrow There are two 'statistics sectors', which get 'mixed' by S; the 'mixing angle' is θ.

Prime Π	HC	S	C	N	$H_{1}(\Pi)$	$\pi_{0}\left(D_{F}(\Pi)\right)$	$\pi_{1}\left(D_{F}(\Pi)\right)$	$\pi_{k}\left(D_{F}(\Pi)\right)$
S^{3} / D_{8}^{*}	$+$	$+$	+	-	$Z_{2} \times Z_{2}$	O^{*}	0	$\pi_{k}\left(S^{3}\right)$
$S^{3} / D_{8 n}^{*}$	$+$	$+$	$+$	-	$Z_{2} \times Z_{2}$	$D_{16 n}^{*}$	0	$\pi_{k}\left(S^{3}\right)$
$S^{3} / D_{4(2 n+1)}^{*}$	+	$+$	+	+	Z_{4}	$D_{8(2 n+1)}^{*}$	0	$\pi_{k}\left(S^{3}\right)$
S^{3} / T^{*}	?	+	+	-	Z_{3}	O^{*}	0	$\pi_{k}\left(S^{3}\right)$
S^{3} / O^{*}	w	+	+	+	Z_{2}	O^{*}	0	$\pi_{k}\left(S^{3}\right)$
S^{3} / I^{*}	?	$+$	+	-	0	I^{*}	0	$\pi_{k}\left(S^{3}\right)$
$S^{3} / D_{8}^{*} \times Z_{p}$	+	+	+	-	$Z_{2} \times Z_{2 p}$	$Z_{2} \times O^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / D_{8 n}^{*} \times Z_{p}$	+	+	$+$	-	$Z_{2} \times Z_{2 p}$	$Z_{2} \times D_{16 n}^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / D_{4(2 n+1)}^{*} \times Z_{p}$	+	+	+	$+$	$Z_{4 p}$	$Z_{2} \times D_{8(2 n+1)}^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / T^{*} \times Z_{p}$?	$+$	+	-	$Z_{3 p}$	$Z_{2} \times O^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / O^{*} \times Z_{p}$	w	$+$	$+$	$+$	$Z_{2 p}$	$Z_{2} \times O^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / I^{*} \times Z_{p}$?	$+$	+	-	Z_{p}	$Z_{2} \times I^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / D_{2^{k}(2 n+1)}^{\prime} \times Z_{p}$	$+$	$+$	$+$	$+$	$Z_{p} \times Z_{2^{k}}$	$Z_{2} \times D_{8(2 n+1)}^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / T_{8.3}^{\prime}{ }^{m} \times Z_{p}$?	$+$	+	-	$Z_{p} \times Z_{3}{ }^{m}$	O^{*}	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$L\left(p, q_{1}\right)$	w	-	$+$	$(-)^{p}$	Z_{p}	Z_{2}	Z	$\pi_{k}\left(S^{3}\right)$
$L\left(p, q_{2}\right)$	$w+$	-	+	$(-)^{p}$	Z_{p}	$Z_{2} \times Z_{2}$	$Z \times Z$	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$L\left(p, q_{3}\right)$	w	-	-	$(-)^{p}$	Z_{p}	Z_{2}	$Z \times Z$	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$L\left(p, q_{4}\right)$	w	-	+	$(-)^{p}$	Z_{p}	Z_{2}	$Z \times Z$	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$R P^{3}$	+	-	-	+	Z_{2}	1	0	0
S^{3}	+	-	-	-	1	1	0	0
$S^{2} \times S^{1}$	/	-	-	+	Z	$Z_{2} \times Z_{2}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{2}\right)$
R^{3} / G_{1}	/	$+$	-	+	$Z \times Z \times Z$	St (3, 2)	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{2}	/	$+$	-	$+$	$Z \times Z_{2} \times Z_{2}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{2}\right)$	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{3}	/	$+$	+	+	$Z \times Z_{3}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{3}\right)$	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{4}	/	$+$	+	-	$Z \times Z_{2}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{4}\right)$	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{5}	/	$+$	$+$	+	Z	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{5}\right)$	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{6}	1	$+$	+	-	$Z_{4} \times Z_{4}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{5}\right)$	0	$\pi_{k}\left(S^{3}\right)$
$S^{1} \times R_{g}$	/	+	-	-	$Z \times Z_{2 g}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(Z \times F_{g}\right)$	0	$\pi_{k}\left(S^{3}\right)$
$K(\pi, 1)_{\mathrm{sl}}$	/	+	*	*	$A \pi$	$\mathrm{Aut}_{+}^{Z_{2}(\pi)}$	0	$\pi_{k}\left(S^{3}\right)$

