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The Galilei–Newton law of inertia

Textbook wisdom

“A body remains in the state
of rest or uniform rectilinear
motion, unless this state is
changed by the action of
external forces”.

• Do force-free bodies exist (perhaps
only approximately) ? If so, how do
we recognize them ?

• With reference to what spacial
reference system ?

• With reference to what measure of
time ?
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The Galilei–Newton law of inertia

“Material points of sufficient mutual separation move uniformly
along straight lines—given that one refers the motion to a
suitably chosen reference system and that time is suitably
defined.

Who does not feel the embarrassment that lies in such a
formulation. But suppressing the final clause means committing
a dishonesty”.

Albert Einstein, 1920
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James Thomson and Peter Guthrie Tait

“A set of points move, Galilei wise, with reference to a system of
co-ordinate axes; which may, itself, have any motion whatever.
From observation of the relative positions of the points, merely,
to find such co-ordinate axes.”

P. G. Tait, 1884
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Tait’s Solution: 1

Aim: Reconstruct the inertial system and timescale from an unordered finite number of
snapshots (“instances”) of instantaneous relative spatial configurations.

• Consider n + 1 mass-points Pi (0 ≤ i ≤ n) moving inertially, i.e. without internal
and external forces, in flat space.

• Their trajectories are represented by n + 1 functions t 7→ ~xi(t) with respect to
some, yet unspecified, spatial reference frame and timescale.

• However, the only directly measurable quantities at this point are the n(n + 1)/2

instantaneous mutual separations of the particles, or, equivalently, their squares:

Rij := ‖~xi − ~xj‖
2

for 0 ≤ i < j ≤ n . (1)
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Tait’s Solution: 2

• The knowledge of the n(n + 1)/2 squared distances, Rij, is equivalent to the
n(n + 1)/2 inner products

Qij := (~xi − ~x0) · (~xj − ~x0) for 1 ≤ i ≤ j ≤ n . (2)

• Their simple linear relations are given by (no summation over repeated indices
here)

Rij = Qii + Qjj − 2Qij for 1 ≤ i < j ≤ n , (3a)

Ri0 = Qii for 1 ≤ i ≤ n , (3b)

Qij = 1
2

`

Ri0 + Rj0 − Rij

´

for 1 ≤ i ≤ j ≤ n . (3c)
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Tait’s Solution: 3

• We seek an inertial system and an inertial timescale, with respect to which all
particles move uniformly on straight lines; that is,

~xi(t) = ~ai + ~vit for 0 ≤ i ≤ n (4)

hold for some time-independent vectors ~ai and ~vi.

• The 11-parameter redundancy by which such inertial systems and timescales are
defined, is given by
a) spatial translations: ~x 7→ ~x + ~a, ~a ∈ R

3, accounting for three parameters,
b) three spatial boosts: ~x 7→ ~x + ~vt, ~v ∈ R

3, accounting for three parameters,
c) three spatial rotations: ~x 7→ R · ~x, R ∈ O(3), accounting for three parameters,
d) time translations: t 7→ t + b, b ∈ R, accounting for one parameter, and
e) time dilations: t 7→ at, a ∈ R − {0}, accounting for one parameter.
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Tait’s Solution: 4

• The redundancies a) and b) are now eliminated by assuming P0 to rest at the origin
of our spatial reference frame. We then have

Qij(t) = ~xi(t) · ~xj(t) = ~ai · ~aj + t (~ai · ~vj + ~aj · ~vi) + t2 ~vi · ~vj . (5)

• Measuring the mutual distances, i.e. the Qij, at k instances ta (1 ≤ a ≤ k) in time
we obtain the kn(n + 1)/2 numbers Qij(tq). From these we wish to determine
the following unknowns, which we order in four groups:
1) the k times ta,
2) the n(n + 1)/2 products ~ai · ~aj,
3) the n(n + 1)/2 products ~vi · ~vj, and
4) the n(n + 1)/2 symmetric products ~ai · ~vj + ~aj · ~vi.
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Tait’s Solution: 5

• The arbitrariness in choosing the origin and scale of the time parameter t

(corresponding to points d) and e) above) can e.g. be eliminated by choosing
t1 = 0 and t2 = 1.

• Hence the first group has left the k − 2 unknowns t3, . . . , tk. The last
remaining redundancy, corresponding to spatial rotations (point c) above), is almost
eliminated by choosing P1 on the z axis and P2 in the xz plane. This is possible as
long as P0, P1, P2 are not colinear. Otherwise we choose three other mass points
for which this is true (we exclude the exceptional case where all mass points are
colinear). We said that this ‘almost’ eliminates the remaining redundancy, since a
spatial reflection at the origin is still possible.
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Tait’s Solution: 6

• Tait’s strategy is now as follows: for each instant in time ta consider the n(n+1)/2

equations (5). There are k− 2 unknowns from the first and n(n +1)/2 unknowns
each from groups 2), 3), and 4). This gives a total of kn(n + 1)/2 equations for
the k − 2 + 3n(n + 1)/2 unknows.

• The number of equations minus the number of unknowns is

(k − 3)n(n + 1) + 2 − k . (6)

• This is positive, if and only if n ≥ 2 and k ≥ 4. Hence the minimal procedure
is to take four snapshots (k = 4) of three particles (n = 2), which results in 12
equations for 11 unknowns.
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Ludwig Lange (1863 - 1936)
“a wrongly forgotten person”

Definition An inertial system is any reference system with respect
to which the trajectories of three force-free mass points, ejected
from a common point in three linearly independent directions, are
straight lines.

Theorem Relative to an inertial system any force-free mass point will
move on a straight line.

Definition An inertial timescale is any timescale, with respect to
which a force-free mass point moves uniformly on its trajectory, i.e.
travels equal distances in equal times.

Theorem Relative to an inertial timescale any force-free mass point
will move uniformly.

L. Lange, 1886
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Which astronomical reference system is inertial ?

• ICRS/F (International Celestial Reference System/Frame; 1989): > 600

extragalactic radio sources, located by VLBI (Very Large Baseline Interferometry);
Accuracy < 0.1 mas (mas = milli arc-seconds). Presently the best realisation of a
“globally non-rotating reference system”.

• HIPPARCOS (HIgh Precision PARalax COllecting Satellite; 1989-93): 120 000
galactic sources (stars); accuracy: < 1.0 mas. Increase by 2 orders of magnitude
expected from ESA-Mission GAIA, whose launch is scheduled for 2009.

⇒ galactic rotation: T = 225 · 106 y ⇒ Ω = 5.76 mas/y.

⇒ Can galactic reference-frame be dynamically proven to be non-inertial ?

D. Giulini (2006): Inertia & Gravitomagnetism 12



Newton versus Einstein

NEWTON

field: ϕ (scalar, spin 0)

∆ϕ = 4πG ρ

~̈x = −~∇ϕ

EINSTEIN

field: gab (2. rank tensor, spin 2)

G
ab

(g, ∂g, ∂
2
g) = 8πG

c4
T

ab

ẍa + Γa
bc(g, ∂g) ẋbẋc = 0

Newton: Gravitation is a force, i.e. causes deviations from inertial motion. The
global inertial structure is defined independently (absolute space).

Einstein: Gravitation is identical to inertial structure and hence no force in
Newton’s sense. Inertial systems are defined locally (as field!) any may be
relatively accelerated.
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GR: T
ab as source for the gravitational field
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~g : momentum density

σαβ : momentum-current density

(−stress tensor)
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Formal analogy to electrodynamics

• Let ηab = diag(−1, 1, 1, 1) = Minkowski–metric. Set gab = ηab + hab, where hab

perturbation of the form

h00 = h11 = h22 = h33 =: 2
c2

φ and h0α =: −1
c Aα

• Set ~E := −~∇φ and ~B := ~∇ × ~A. Perform linear approximation in field and v/c

(weak field low velocities). Einstein’s equations become (ρ := W/c2):

∆φ = 4πGρ ∆ ~A = 16πG
c2 ρ~v ~̇v = ~E + ~v ×

~B

equals static Maxwell eq. for ε0 → −1/4πG and µ0 → −16πG/c2
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Spin precession in magnetic field

• A spinning particle of charge e and mass m is placed in a magnetic field ~B. Its
spin vector σ will precess according to:

~̇σ = ~Ω × ~σ ~Ω = −
g

2
·

e

m
· ~B

• In the gravitational case have e = m and g = 1 (equivalence principle); hence

~Ω = −
1
2

~B

• The influence of mass-currents upon local inertial systems is called frame dragging
or a Machian effect .
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Gravitomagnetic dipole

~S

~Ω

30◦ r

~Ω(~x) =
G

c2
·

3~n(~n ·
~S) − ~S

r3

at Earth’s north-pole (NP):

Ω(NP) =
4

5
·

GM/c2

R
· ω

= 5.5 · 10−10
· ω
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Effect in polar orbits

On a polar orbit, the Newtonian effects due to higher multipoles of Earth are
suppressed. Averaging ~n along the orbit (i.e. all directions) leads to ~n(~n · ~S) →
~S/2.
Hence:

~Ωtop(satellite) =
1

5
·

GM/c2

(R + 640 km)3
· ~ω ≈ 41 mas/y · ω̂

where ‘mas’=‘milli-arc-second’ ≈ 3 · 10−7 angular degrees = opening angle by
which an object of size 1.9 m (e.g. an astronaut) on the Moon is seen from Earth !
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The ‘Gravity Probe-B’ experiment

• Geodetic precession is a consequence
of pure spatial curvature (‘electric-’ or
‘Coulomb-part’ of gravitational field):
6.6 as/y

• Lense-Thirring precession is a
consequence of mixed space-time
curvature (‘magnetic’- oder ‘current-
part’ of gravitational field): 0.041 as/y
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“On the verge of the technically feasible”
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The most perfect man-made spheres

• Niobium-coated balls of fused quartz,
∅ = 3.8 cm, ν = 10 000 U/min

• Homogeneity = 2 ·10−6, sphericity = 3 ·
10−7 (40 atom layers → 2 m mountains
on earth)

• Orientation control by measurements of
magnetic flux using SQUIDs; accuracy
0.1 mas = 3 · 10−8 Deg

• Orientation stability < 3 · 10−2mas/y

• Temperature T = 1.82 K
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Quasars realise the inertial frame

• Reference direction kept by on-
board telescope to star IM Pegasi:
red giant, M=1.5 M�, R=13R�,
magnetically active ⇒ radio-loud,
d = 320 lj

• Proper motion of IM Pegasi:
35 mas/y against quasar-
background, monitored by VLBI.

• Long-time accuracy < 0.5 mas/y
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Where to find IM Pegasi

↓
Scheat

↑
Markab

↓
Sirrah
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Periastron precession

~Ω = −

2G

c2
·

3L̂(L̂ ·
~S) − ~S

a3(1 − ε2)3/2

L̂ = direction of ang. momentum
a = major semi-axis
ε = orbit’s eccentricity
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Periastron precession of Hulse-Taylor pulsar

• Measured periastron precession of
4.2 Deg/y in good agreement with
GR-prediction.

• Theoretically it is the sum of a
‘gravitoelectric’ contribution of
10.4 Deg/y and ‘gravitomagnetic’
contribution, given by −6.3 Deg/y
(retrograde!)

⇒ Establishes indirect measurement
of gravitomagnetic field.
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Decrease of periastron period
for the Hulse-Taylor pulsar

gravitational waves !

D. Giulini (2006): Inertia & Gravitomagnetism 26



Precession of orbital planes

~Ω =
2G

c2
·

~S

a3(1 − ε2)3/2

a = semi-major axis
ε = orbit’s eccentricity
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LAGEOS (LAser GEOdynamic Satellite)

• For orbit around Earth with
a ≈ 12 000 km and ε ≈ 0 have
Ω = 33 mas/y.

• Confirmed at 10%-level by Ciufolini &
Pavlis (Nature, 21. Oct. 2004).

• Main sources of inaccuracy are 1) small
orbit-eccentricities (bad localisability of
perigee) and 2) current incomplete
knowledge of Earth’s higher multipole
moments. Note: orbits of satellites are
neither polar nor supplementary.
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Quasi-periodic oscillations in X-ray binaries

• Accretion disc around neutron star.
Outer parts of disc ‘bulge out’
and precess, as consequence of
gravitomagnetism. This implies quasi-
periodic occlusions of X-ray emission
regions and hence of seen X-
ray amplitudes. Typical modulation
frequencies for few solar mass NS are
a few kHz.

• Apparently ‘seen’ by RXTE (Rossi X-
ray Timing Explorer; time resolution:
0.1 ms) in case of 14 systems.
(Uncertainties: q-moment, viscosity
effects)
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The old and new Machian problem

⇒ Mach’s Principle (according to A.E.): The totality of all masses and their state of
motion determine the local inertial systems.

• In this strict form it cannot be fulfilled in GR, since physical degrees of freedom
residing in gravitational field cannot be neglected. (Just as the electromagnetic
field is not determined by the charge and current distribution.)
Replacing ‘determine’ ⇒ ‘influence’ renders it correct though also more trivial.

• Then the question remains: Why is, apart from local effects of the sort just
discussed, the ICRS a globally non-rotating (i.e. inertial) system ? Can invoke
‘cosmological principles’ at a fundamental level, like isotropy. But can this also be
understood merely from dynamical reasons ? (→ boundary conditions). We don’t
know !

THE END
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