Energy-momentum tensors and space-time symmetries
 - Laue's theorem in particular -

Domenico Giulini

ZARM Bremen
and
EMT

- as usual
- naive integration
- more natural

Symmetries

- isometries
- momentum map
global charges
- co-adjoint representation

Laue's Theorem

- history
- traditional formulation
- modern formulation

Riemann Center for Geometry and Physics
Leibniz University of Hannover

Geometric Foundations of Gravity in Tartu
August 28th - September 1st 2017

Energy-Momentum Tensor: As usual

- Let (M, g) be a spacetime (4-dimensional globally hyperbolic Lorentzian manifold). We consider sections

$$
\begin{equation*}
\mathrm{T}=\frac{1}{2} \mathrm{~T}^{\mu v} e_{\mu} \vee e_{\nu} \in \mathcal{S}(\mathrm{TM} \vee \mathrm{TM}) \tag{1a}
\end{equation*}
$$

for some g-orthonormal frame $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$, with e_{0} timelike and all other e_{a} spacelike.

- The components in time/space decomposition have the following physical interpretation:

$$
\begin{align*}
& \left\{\mathrm{T}^{\mu \mathrm{m}}\right\}=\left(\begin{array}{cc}
W & c G^{n} \\
\mathrm{~S}^{m} / \mathrm{c} & \mathrm{M}^{\mathrm{mn}}
\end{array}\right) \tag{1b}\\
\mathrm{W} & =\text { energy density } \\
\mathrm{S}^{\mathrm{m}} & =[\text { energy-current density }]^{\mathrm{m}} \\
\mathrm{G}^{n} & =[\text { momentum density }]^{n} \tag{1c}\\
\mathrm{M}^{\mathrm{mn}} & =[\text { momentum-current density }]^{\mathrm{mn}}
\end{align*}
$$

- We further say (following Laue) that T represents a complete system (or T is complete for short), if

$$
\begin{equation*}
\nabla_{\mu} \mathrm{T}^{\mu \nu}=0 \tag{1d}
\end{equation*}
$$

емт

- as usual
- naive integration
- more natural

Symmetries

- isometries
- momentum map
- global charges
- co-adjoint representation

Laue's Theorem

- history
- traditional formulation
- modern formulation

Energy-Momentum Tensor: Equivariance

- T depends on sets of fields which we separate into $F \in \mathcal{F}$ and $\tilde{F} \in \tilde{\mathcal{F}}$. Here F collectively denotes the fields the energy-momentum distribution of which is represented by T , and $\tilde{\mathrm{F}}$ denotes all other fields on which T depends as well ("background fields"), like external currents, metric, etc. We sometimes write

$$
\begin{equation*}
\mathrm{T}=\mathrm{T}[\mathrm{~F}, \tilde{\mathrm{~F}}] \tag{2}
\end{equation*}
$$

- The dependence of T on the fields (F, \tilde{F}) is complete in the sense that, for $p \in M, T(p)$ is determined by $F(p)$ and $\tilde{F}(p)$. Hence, given that the sets

EmT

as usual

- naive integration
- more natural

Symmetries

- isometries
- momentum map
global charges
- co-adjoint representation

Laue's Theorem

- history

traditional formulation

- modern formulation \mathcal{F} and $\tilde{\mathcal{F}}$ of fields are endowed with representations of $\mathrm{D}: \operatorname{Diff}(\mathcal{M}) \rightarrow$ $\operatorname{Aut}(\mathcal{F})$ and $\tilde{\mathrm{D}}: \operatorname{Diff}(M) \rightarrow \operatorname{Aut}(\tilde{\mathcal{F}})$ of $\operatorname{Diff}(M)$, then

$$
\begin{equation*}
\mathrm{T}[\mathrm{D}(\Phi) \mathrm{F}, \tilde{\mathrm{D}}(\Phi) \tilde{\mathrm{F}}]=\Phi_{*}(\mathrm{~T}[\mathrm{~F}, \tilde{\mathrm{~F}}]) \tag{3}
\end{equation*}
$$

This condition is sometimes called naturality, equivariance, covariance, or simply a physical principle (V. Fock 1960). It will turn out important later on.

Energy-Momentum Tensor: Integration

- Can we construct global energy-momentum from integrating its local distribution? If so, how do you characterise the value-space of these global quantities? Does global energy-momentum form a "four vector" of sorts?
- Give proper mathematical meaning to expressions like

$$
\begin{equation*}
\mathrm{P}^{\mu}:=\int_{\Sigma} \mathrm{d}^{3} x \mathrm{~T}^{\mu 0} \tag{4}
\end{equation*}
$$

- Note that in SR, a boost-transformation $\chi^{\mu} \mapsto \hat{x}^{\mu}$ with $\beta=v / \mathrm{c}$ results in

$$
\begin{align*}
& \hat{T}^{00}=\gamma^{2}\left[T^{00}+2 \beta T^{0 \|}+\beta^{2} T^{\| \|}\right] \tag{5a}\\
& \hat{o}^{0 \|}=\gamma^{2}\left[\left(1+\beta^{2}\right) T^{0 \|}+\beta\left(T^{00}+T^{\| \|}\right)\right] \tag{5b}\\
& \hat{T}^{\| \|}=\gamma^{2}\left[T^{\| \|}+2 \beta T^{0 \|}+\beta^{2} T^{00}\right] \tag{5c}\\
& \hat{T}^{0 \perp}=\gamma\left[T^{0 \perp}+\beta T^{\| \perp}\right] \tag{5d}\\
& \hat{T}^{\| \perp}=\gamma\left[T^{\| \perp}+\beta T^{0 \perp}\right] \tag{5e}\\
& \hat{T}^{\perp \perp}=T^{\perp \perp} \tag{5f}
\end{align*}
$$

- A standard text-book statement is, that "4-vector transformation property" of (4) depends on vanishing of integrals of certain components of T (\rightarrow Laue's theorem). But that makes no unambiguous mathematical sense!

Energy-Momentum Tensor: Alternative representation

- Energy-Momentum distribution is measured by a 3-form valued 1-form, that is, by an element in $\mathcal{S}\left(\mathrm{T}^{*} M \otimes \bigwedge^{3} \mathrm{~T}^{*} M\right)$. Suppressing the dependence on F, \tilde{F} for the moment, we have:

$$
\begin{align*}
\mathcal{T}=\left[T^{b b}\right]_{\star} & =T_{\mu \nu} \theta^{\mu} \otimes \star \theta^{\mu} \tag{6}\\
& =\frac{1}{3!} T_{\mu \nu} \varepsilon^{\nu}{ }_{\alpha \beta \gamma} \theta^{\mu} \otimes\left(\theta^{\alpha} \wedge \theta^{\beta} \wedge \theta^{\gamma}\right)
\end{align*}
$$

- It defines a $C^{\infty}(M)$-linear map

$$
\begin{equation*}
\mathcal{T}: \mathcal{S} T M \rightarrow \mathcal{S} \bigwedge^{3} \mathrm{~T}^{*} M, \quad \mathrm{X} \mapsto \mathfrak{i}_{\mathcal{x}} \mathcal{T}=: \mathcal{T}(\mathrm{X}) \tag{7}
\end{equation*}
$$

емт

- as usual
- naive integration
- more natural

Symmetries

- isometries
- momentum map
- global charges
- co-adjoint representation

Laue's Theorem

- history

- traditional formulation
- modern formulation
so that for any compact hypersurface $\Sigma \subset M$ and not necessarily complete T the following pairing makes sense (re-introducing F, \tilde{F})

$$
\begin{equation*}
\mathfrak{M}[\Sigma, F, \tilde{F}](X):=\int_{\Sigma} \mathcal{T}[F, \tilde{F}](X) \tag{8}
\end{equation*}
$$

- If T is complete and, in addition, X is Killing, then integrand is closed:

$$
\begin{equation*}
\nabla_{\mu} T^{\mu \nu}=0 \quad \mathrm{~L}_{X} \mathrm{~g}=0 \Rightarrow \mathrm{~d}(\mathcal{T}[\mathrm{~F}, \tilde{\mathrm{~F}}](\mathrm{X}))=0 \tag{9}
\end{equation*}
$$

Isometries

- Let G be a Lie group that acts through isometries on ($M ; g$). Hence there is a homomorphisms

$$
\begin{equation*}
\Phi: G \rightarrow \operatorname{Diff}(M), \quad g \mapsto \Phi_{g} \in \operatorname{Diff}(M) \tag{10}
\end{equation*}
$$

such that

$$
\begin{equation*}
\Phi_{e}=\mathrm{id}_{\mathrm{M}} \quad \text { and } \quad \Phi_{\mathrm{g}} \circ \Phi_{\mathrm{h}}=\Phi_{\mathrm{gh}} \tag{11}
\end{equation*}
$$

- This induces an anti-homomorphisms (see (13a)) of Lie algebras, given by $\mathrm{V}: \operatorname{Lie}(\mathrm{G}) \rightarrow \mathcal{S} \mathrm{TM}, \xi \mapsto \mathrm{V}_{\xi}$, where

$$
\begin{equation*}
V_{\xi}(p):=\left.\frac{\mathrm{d}}{\mathrm{ds}}\right|_{s=0} \Phi_{\exp (\mathrm{s} \xi)}(p) \tag{12}
\end{equation*}
$$

EMT

- as usual
- naive integration
- more natural

Symmetries

- isometries

- momentum map
- global charges
- co-adjoint representation

Laue's Theorem

history

- traditional formulation
- modern formulation

End

- V_{ξ} is called the fundamental vector field associated to $\xi \in \operatorname{Lie}(G)$. The linear map $\xi \mapsto V_{\xi}$ satisfies:

$$
\begin{align*}
{\left[\mathrm{V}_{\xi}, \mathrm{V}_{\mathrm{\eta}}\right] } & =-\mathrm{V}_{[\xi, \mathfrak{\eta}]} \tag{13a}\\
\left(\Phi_{\mathrm{g}}\right)_{*} \mathrm{~V}_{\xi} & =\mathrm{V}_{\mathrm{Ad}_{\mathrm{g}}(\xi)} \tag{13b}
\end{align*}
$$

- From (9) get for complete T:

$$
\begin{equation*}
\mathrm{d}\left(\mathcal{T}[\mathrm{~F}, \tilde{\mathrm{~F}}]\left(\mathrm{V}_{\xi}\right)\right)=0, \quad \forall \xi \in \operatorname{Lie}(\mathrm{G}) \tag{14}
\end{equation*}
$$

Momentum map

- Given a 3-dimensional submanifold $\Sigma \subset M$ we have the following three maps, each of which is linear:

$$
\begin{array}{lllll}
\mathrm{V} & : \operatorname{Lie}(\mathrm{G}) & & \rightarrow \mathcal{S} \mathrm{TM}, & \xi \mapsto \mathrm{~V}_{\xi} \\
\mathcal{T}: \mathcal{S T M} & \rightarrow \mathcal{S} \wedge^{3} \mathrm{TM}, & \mathrm{X} \mapsto \mathcal{T}(\mathrm{X}) \\
\int_{\Sigma}: \mathcal{S} \wedge^{3} \mathrm{~T}^{*} \mathrm{M} & \rightarrow & \mathbb{R}, & & \mathrm{~F} \mapsto \int_{\Sigma} \mathrm{F} \tag{15c}
\end{array}
$$

- Hence, given EMT (not necessarily complete) and hypersurface Σ, the composition of these maps result in a linear map $\mathfrak{M}_{\Sigma}: \operatorname{Lie}(G) \rightarrow \mathbb{R}$, i.e. an element in Lie* (G), the dual of the Lie algebra. It is called the momentum map:

$$
\begin{equation*}
\mathfrak{M}[\Sigma, F, \tilde{F}](\xi):=\int_{\Sigma} \mathcal{T}[F, \tilde{F}]\left(V_{\xi}\right) \tag{16}
\end{equation*}
$$

- If T is complete closedness (14) implies that dependence on Σ is only though its homology class, modulo boundary components in the complement of T's support: Suppose $K \subset M$ has $\partial K=\Sigma \cup \Sigma^{\prime} \cup Z$ with either $Z=\emptyset$ or $\left.\mathrm{T}\right|_{z} \equiv 0$, then, for all $\xi \in \operatorname{Lie}(\mathrm{G})$, have

$$
\begin{equation*}
\mathfrak{M}[\Sigma, F, \tilde{F}](\xi)+\mathfrak{M}\left[\Sigma^{\prime}, F, \tilde{F}\right](\xi)=0 \tag{17}
\end{equation*}
$$

- This implies independence of $\mathfrak{M}[\Sigma, F, \tilde{F}]$ on Σ within the class of Cauchy hypersurfaces, and hence existence and uniqueness of global G-charges.

EMT

- as usual
- naive integration
-more natural

Symmetries

- isometries
- momentum map
- global charges
- co-adjoint representation

Laue's Theorem

- history

traditional formulation

- modern formulation

End

The habitat of global conserved quantities

- In view of the homomorphism $\phi: G \rightarrow \operatorname{Diff}(M)$ (left action of G on M by isometries), the condition of equivariance (3) becomes

$$
\begin{equation*}
\mathrm{T}\left[\mathrm{D}\left(\Phi_{\mathrm{g}}\right) \mathrm{F}, \tilde{\mathrm{D}}\left(\Phi_{\mathrm{g}}\right) \tilde{\mathrm{F}}\right]=\left(\Phi_{\mathrm{g}}\right)_{*}(\mathrm{~T}[\mathrm{~F}, \tilde{\mathrm{~F}}]) \tag{18}
\end{equation*}
$$

- Proposition: For not necessarily complete T have

$$
\begin{equation*}
\mathfrak{M}\left[\Phi_{g}(\Sigma), \mathrm{D}\left(\Phi_{\mathrm{g}}\right) \mathrm{F}, \tilde{\mathrm{D}}\left(\Phi_{\mathrm{g}}\right) \tilde{\mathrm{F}}\right]=\operatorname{Ad}_{\mathrm{g}}^{*}(\mathfrak{M}[\Sigma, \mathrm{~F}, \tilde{F}]) \tag{19}
\end{equation*}
$$

- Corollary: If T is complete and $\Phi_{\mathrm{g}}(\Sigma) \sim \Sigma$ (homologous modulo $\operatorname{supp}(\mathrm{T})$) and $g \in \operatorname{Stab}_{G}(\tilde{F}) \subseteq G$, then

$$
\begin{equation*}
\mathfrak{M}\left[\Sigma, \mathrm{D}\left(\Phi_{\mathrm{g}}\right) \mathrm{F}, \tilde{\mathrm{~F}}\right]=\operatorname{Ad}_{\mathfrak{g}}^{*}(\mathfrak{M}[\Sigma, \mathrm{~F}, \tilde{\mathrm{~F}}]) \tag{20}
\end{equation*}
$$

Momentum, as function of the relevant fields alone, lives in Lie*(G) and transforms under co-adjoint representation of $\operatorname{Stab}_{G}(\tilde{F})$. In particular, if \tilde{F} contains the metric only, then $\operatorname{Stab}_{G}(\tilde{F})=G$ and $\mathfrak{M}[F] \in$ Lie transforms via Ad* * under all of G.

- Claim: The concept of "local charges" always refers to a global construction with some splitting $\mathrm{T}=\sum_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}$. In particular: No G, no momenta!

EMT

- as usual
- naive integration
more natural
Symmetries
- isometries
- momentum map
global charges
- co-adjoint representation

Laue's Theorem

- history
traditional formulation
modern formulation

Co-adjoint representation of the Poincaré group

- Let (V, η) be a real, 4-dimensional vector space with Minkowski metric η. We use η to identify V with V^{*}. In this way we also identify Lie(Poin) and Lie* (Poin) with the same vactor space:

$$
\begin{equation*}
\operatorname{Lie}(\operatorname{Poin}) \cong \operatorname{Lie}^{*}(\operatorname{Poin}) \cong \mathrm{V} \oplus(\mathrm{~V} \wedge \mathrm{~V}) \tag{21}
\end{equation*}
$$

- As Poin $\cong \mathrm{V} \rtimes$ Lor, we have

$$
\begin{equation*}
(a, A)(b, B)=(a+A b, A B) \tag{22}
\end{equation*}
$$

Let $s \mapsto(\mathrm{~b}(\mathrm{~s}), \mathrm{B}(\mathrm{a}))$ be a curve in Poin through identity at $s=0$. Then, with $\mathrm{d} /\left.\mathrm{ds}\right|_{s=0}(\mathrm{~b}(\mathrm{~s}), \mathrm{B}(\mathrm{s}))=(\mathrm{m}, \mathrm{M}) \in \mathrm{V} \oplus(\mathrm{V} \wedge \mathrm{V})$, have

$$
\begin{align*}
\operatorname{Ad}_{(a, A)}(m, M) & :=\left.\frac{d}{d s}\right|_{s=0}(a, A)(b(s), B(s))(a, A)^{-1} \tag{23}\\
& =(A m-[(A \otimes A) M] a,(A \otimes A) M)
\end{align*}
$$

- The co-adjoint representation is the transposed-inverse of that:

$$
\begin{align*}
\operatorname{Ad}_{(a, A)}^{*}(m, M): & =\left(A d_{(a, A)-1}\right)^{\top}(m, M) \\
& =(A m,(A \otimes A) M-a \wedge A m) \tag{24}
\end{align*}
$$

Existence of global conserved charges

EMT

- as usual
- naive integration
- more natural

Symmetries

- isometries
- momentum map
- global charges
- co-adjoint representation

Laue's Theorem

- history
- traditional formulation
- modern formulation

End

EMT

7. Zur Dynamik der Relativitatstheorie;

 von M. Laue.Die Dynamik des Massenpunktes hat A. Einstein ${ }^{1}$) schon in seiner ersten grundlegenden Arbeit über das Relativitätsprinzip, kurz darauf auch M. Planck ${ }^{2}$) behandelt. Das wesentlichste Ergebnis ihrer Untersuchung waren die bekannten, seither am Elektron verschiedentlich experimentell bestätigten Formeln für die Abhăngigkeit der longitudinalen und der transversalen Masse von der Geschwindigkeit. Als Ausgangspunkt diente die Annahme, daB im Grenzfall unendlich kleiner Geschwindigkeit die Newtonsche Dynamik bestehen bleibt. Später hat Planck ${ }^{9}$) die Theorie nach der thermodynamischen Seite hin erweitert, und hat dabei die mechanische Trägheit völlig auf Energie (und Druck) zurückgeführt. Dabei legte er das Prinzip der kleinsten Wirkung der Betrachtung zugrunde, mußte aber nebenbei noch eine Annahme uber die Transformation der Kräfte einfuhren.

Dennoch gibt es in der Dynamik noch ungelöste Probleme. Z. B. fragt P. Ehrenfest ${ }^{4}$), ob die Dynamik des Massenpunktes auch dann noch für ein Elektron gilt, wenn man diesem nicht - wie ublich - radiale Symmetrie sondern etwa elliptische Gestalt zuschreibt. Einstein ${ }^{\text {}}$) bejaht dies, weil im Grenzfall unendlich kleiner Geschwindigkeit unter allen Umständen die Newton sche Mechanik gelten müsse. Diese Annahme ist aber in dieser Allgemeinheit sicherlich nicht zutreffend, wie wir später sehen werden. Auch M. Born ${ }^{\text {g }}$) glaubt dem Elektron Kugelsymmetrie zuschreiben zu müssen,

[^0]Ann. d. Physik, 340 (1911), 524

- Laue's theorem explains many of the apparent paradoxial features in special-relativistic dynamics, like: factor $4 / 3$ in momentum of charged structures; momenta not $\|$ velocities; energy-momentum integrals do not form four-vector; stressed systems need torque in oder to be set into translatory motion (TroutonNoble experiment).
- A recent applications is to coupling of gravity to quantum systems (gravitational decoherence): How does internal energy of a systems of charged particles (large molecule) couple to Newtonian potential? Is is via $\mathrm{H}_{0}=$ $\mathrm{T}_{\text {int }}+\mathrm{U}$ (Pikovski et al. 2015) or via $\mathrm{H}_{\text {eff }}=3 \mathrm{~T}_{\text {int }}+2 \mathrm{U}$ (Rudnicki 2017). The answer is: It's the same!
- as usual
- naive integration
- more natural

Symmetries

- isometries
momentum map
- global charges
- co-adjoint representation

Laue's Theorem

history

traditional formulation

- modern formulation

End

Laue's Theorem: Generalised traditional formulation

- Theorem: Let $\mathrm{T}^{\alpha \beta}$ be the contravariant components of a symmetric tensor in Minkowski space with respect to some inertial frame K. Let T be conserved and stationary:

$$
\begin{align*}
& \partial_{\mu} T^{\mu \nu}=0, \tag{25a}\\
& \partial_{\mathrm{t}} T^{\mu \nu}=0, \quad(\text { Laue: "complete system" }) \tag{25b}\\
& \text { Laue: "stationary system") }
\end{align*}
$$

Let further T have either compact spacelike support or spatial fall-off at least $\mathrm{O}\left(1 / r^{3+\varepsilon}\right)$. Then

$$
\begin{equation*}
\int_{t=\text { const. }} T^{m v} d^{3} x=0 \tag{26}
\end{equation*}
$$

- Proof:

$$
\begin{equation*}
\partial_{a}\left(T^{a v} x^{m}\right)=\left(\partial_{a} T^{a v}\right) x^{m}+T^{m v} \tag{27}
\end{equation*}
$$

The first term on the r.h.s. vanishes due to (25). Upon spatial integration the I.h.s. vanishes on account of Gauß' theorem and fall-off consitions. Hence result follows.
\mathbb{Q} How should the statement and the proof of Laue's theorem be phrased, so as to make proper differential-geometric sense?

EMT

as usual

- naive integration
more natural

Symmetries

- isometries
- momentum map
global charges
- co-adjoint representation

Laue's Theorem

- history
traditional formulation
- modern formulation

Laue's Theorem: Proper differential-geometric formulation

- Theorem: Let (M, g) be a spacetime, $T \in S\left(T^{*} M \vee T^{*} M\right)$ a symmetric and conserved energy-momentum tensor, $\mathrm{V}, \mathrm{U} \in \mathcal{S} T M$ Killing fields, i.e. $\mathrm{L}_{\mathrm{V}} \mathrm{g}=\mathrm{L}_{\mathrm{ug}}=0$, such that T and V are invariant under the flow of U :

$$
\begin{align*}
& \mathrm{L}_{\mathrm{u}} \mathrm{~T}=0 \tag{28a}\\
& \mathrm{~L}_{\mathrm{u}} \mathrm{~V}=[\mathrm{U}, \mathrm{~V}]=0 . \tag{28b}
\end{align*}
$$

Then, for any smooth function $\varphi \in C^{\infty}(M)$ and any 3-dimensional submanifold $\Omega \subset M$ such that $\left.\varphi T\right|_{\partial \Omega} \equiv 0$ we have

$$
\begin{equation*}
0=\int_{\Omega} \mathrm{d} \varphi \wedge i_{\mathrm{u}} \mathcal{T}(\mathrm{~V}) \equiv \int_{\Omega}\left(\mathrm{U}(\varphi) \star\left(i_{V} T\right)^{b}-\left(i_{V} T\right)(\varphi) \star \mathrm{U}^{b}\right) \tag{29}
\end{equation*}
$$

- Proof: Equations (28) together with $\mathrm{L}_{\mathrm{ug}}=0$ and $\mathrm{d} \mathcal{T}(\mathrm{V})=0$ (here $\mathrm{L}_{\mathrm{ug}}=0$ is used) imply $0=\mathrm{L}_{\mathrm{u}} \mathcal{T}(\mathrm{V})=\operatorname{di}_{\mathrm{u}} \mathcal{T}(\mathrm{V})=0$; hence $\mathrm{d} \varphi \wedge$ $\mathfrak{i}_{u} \mathcal{T}(\mathrm{~V})=\mathrm{d}\left(\varphi \mathfrak{i}_{\mathrm{u}} \mathcal{T}(\mathrm{V})\right)$, which proves first equality. The second equality is also immediate from $\mathfrak{i}_{\mathrm{u}}(\mathrm{d} \varphi \wedge \mathcal{T}(\mathrm{V}))=\mathrm{U}(\varphi) \mathcal{T}(\mathrm{V})-\mathrm{d} \varphi \wedge \mathfrak{i}_{\mathrm{U}} \mathcal{T}(\mathrm{V})$ and the definition of $\star: \mathfrak{i}_{\mathrm{U}}\left(\mathrm{d} \varphi \wedge \star\left(\mathfrak{i}_{V} T\right)^{b}\right)=\mathfrak{i}_{\mathrm{U}} \varepsilon\left\langle\mathrm{d} \varphi,\left(\mathfrak{i}_{V} T\right)^{b}\right\rangle=\mathfrak{i}_{\nu} T(\varphi) \star \mathrm{U}^{b}$.
- Special case: The standard formulation in Minkowski space is recovered by setting $U=\partial / \partial t, V=\partial / \partial x^{\mu}, \varphi=x^{m}$ and $\Omega=\left\{x^{\mu} \mid t=\right.$ const $\}$.

* HAPPY BIRTHDAY FRIEDRICH *

und ... weiter so!

EMT

- as usual
- naive integration
more natural

Symmetries

- isometries
- momentum map
- global charges
- co-adjoint representation

Laue's Theorem

- history
- traditional formulation
- modern formulation

Laue's theorem for conserved currents

- Laue's theorem is actually a result for conserved currents J, here applied to $\mathrm{J}:=\mathfrak{i}_{V} \mathrm{~T}$. To see that, let $\mathrm{J}=\mathrm{J}^{\mu} \partial / \partial \mathrm{x}^{\mu} \in \mathcal{S} T M$ be a conserved current,

$$
\begin{equation*}
\nabla_{\mu} J^{\mu}=0 \tag{30}
\end{equation*}
$$

- This is equivalent to $\mathcal{J}:=\star \mathrm{J}^{\mathrm{b}} \in \mathcal{S} \bigwedge^{3} \mathrm{TM}$ being closed

$$
\begin{equation*}
\mathrm{d} \mathcal{J}=0 \tag{31}
\end{equation*}
$$

- Theorem: Let $\mathcal{J} \in \mathcal{S} \bigwedge^{3} \mathrm{TM}$ be closed and $\mathrm{U} \in \mathcal{S}$ TM a symmetry of it:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{u}} \mathcal{J}=0 \tag{32}
\end{equation*}
$$

Then, for any $\varphi \in C^{\infty}(M)$ and any 3-dimensional submanifold $\Omega \subset M$ such that $\left.\varphi \mathrm{J}\right|_{\partial \Omega} \equiv 0$ we have

$$
\begin{equation*}
\int_{\Omega} \mathrm{d} \varphi \wedge \mathfrak{i}_{\mathrm{u}} \mathcal{J} \equiv \int_{\Omega}\left(\mathrm{U}(\varphi) \star \mathrm{J}^{b}-\mathrm{J}(\varphi) \star \mathrm{U}^{b}\right) \tag{33}
\end{equation*}
$$

- Proof: Due to (31), condition (32) is equivalent to $d\left(\mathfrak{i}_{u} \mathcal{J}\right)=0$ so that integrand id $\mathrm{d} \varphi \wedge \mathfrak{i}_{\mathrm{u}} \mathcal{J}=\mathrm{d}\left(\varphi \mathfrak{i}_{\mathrm{u}} \mathcal{J}\right)$ and integral vanishes if $\left.\varphi \mathrm{J}\right|_{\partial \Omega}=0$. The second equality follows from $\mathfrak{i}_{\mathrm{u}}(\mathrm{d} \varphi \wedge \mathcal{J})=\mathrm{U}(\varphi) \mathcal{J}-\mathrm{d} \varphi \wedge \mathfrak{i}_{\mathrm{u}} \mathcal{J}$ and the definition of \star applied to Ihs: $\mathfrak{i}_{\mathrm{u}}\left(\mathrm{d} \varphi \wedge \star \mathrm{J}^{\mathrm{b}}\right)=\mathfrak{i}_{\mathrm{u}} \epsilon\left\langle\mathrm{d} \varphi, \mathrm{J}^{\mathrm{b}}\right\rangle=\mathrm{J}(\varphi) \star \mathrm{U}^{b}$.

[^0]: 1) A. Einstein, Ann. d. Phys. 17. p. 891. 1905.
 2) M. Planek, Verh. d. Deutsch. Physilk. Ges. 4. p. 136. 1906.
 3) M. Planck, Berliner Ber. 1907. p. 542; Ann. d. Phys. 26. p. 1. 1908.
 4) P. Ehrenfest, Ann. d. Phys. 23. p. 204. 1907.
 5) A. Einstein, Ann. d. Phy. 23. p. 206. 1907.
 6) M. Born, Ann. d. Phya. 30. p. 1. 1909.
