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Energy-Momentum Tensor: As usual

I Let (M,g) be a spacetime (4-dimensional globally hyperbolic Lorentzian
manifold). We consider sections

T = 1
2
Tµνeµ ∨ eν ∈ S(TM ∨ TM) (1a)

for some g-orthonormal frame {e0, e1, e2, e3}, with e0 timelike and all other
ea spacelike.

I The components in time/space decomposition have the following physical
interpretation: {

Tµν
}
=

(
W cGn

Sm/c Mmn

)
(1b)

W = energy density

Sm = [energy-current density]m

Gn = [momentum density]n

Mmn = [momentum-current density]mn

(1c)

I We further say (following Laue) that T represents a complete system (or
T is complete for short), if

∇µTµν = 0 (1d)
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Energy-Momentum Tensor: Equivariance

I T depends on sets of fields which we separate into F ∈ F and F̃ ∈ F̃ .
Here F collectively denotes the fields the energy-momentum distribution
of which is represented by T , and F̃ denotes all other fields on which T
depends as well (“background fields”), like external currents, metric, etc.
We sometimes write

T = T [F, F̃] (2)

I The dependence of T on the fields (F, F̃) is complete in the sense that, for
p ∈ M, T(p) is determined by F(p) and F̃(p). Hence, given that the sets
F and F̃ of fields are endowed with representations of D : Diff(M) →
Aut(F) and D̃ : Diff(M)→ Aut(F̃) of Diff(M), then

T
[
D(Φ)F, D̃(Φ)F̃

]
= Φ∗

(
T [F, F̃]

)
(3)

This condition is sometimes called naturality, equivariance, covariance, or
simply a physical principle (V. Fock 1960). It will turn out important later
on.

3 / 15



EMT & Symmetries

EMT

- as usual

- naive integration

- more natural

Symmetries

- isometries

- momentum map

- global charges

- co-adjoint representation

Laue’s Theorem

- history

- traditional formulation

- modern formulation

End

Energy-Momentum Tensor: Integration

I Can we construct global energy-momentum from integrating its local dis-
tribution? If so, how do you characterise the value-space of these global
quantities? Does global energy-momentum form a “four vector” of sorts?

I Give proper mathematical meaning to expressions like

Pµ :=

∫
Σ

d3xTµ0 (4)

I Note that in SR, a boost-transformation xµ 7→ x̂µ with β = v/c results in

T̂00 = γ2
[
T00 + 2βT0‖ + β2T‖‖

]
(5a)

T̂0‖ = γ2
[
(1 + β2)T0‖ + β(T00 + T‖‖)

]
(5b)

T̂‖‖ = γ2
[
T‖‖ + 2βT0‖ + β2T00

]
(5c)

T̂0⊥ = γ
[
T0⊥ + βT‖⊥

]
(5d)

T̂‖⊥ = γ
[
T‖⊥ + βT0⊥

]
(5e)

T̂⊥⊥ = T⊥⊥ (5f)

I A standard text-book statement is, that “4-vector transformation property”
of (4) depends on vanishing of integrals of certain components of T
(→ Laue’s theorem). But that makes no unambiguous mathematical
sense!
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Energy-Momentum Tensor: Alternative representation

I Energy-Momentum distribution is measured by a 3-form valued 1-form,
that is, by an element in S

(
T∗M⊗

∧3T∗M). Suppressing the dependence

on F, F̃ for the moment, we have:

T = [T[[]? = Tµνθ
µ ⊗ ?θµ

= 1
3!
Tµν ε

ν
αβγ θ

µ ⊗
(
θα ∧ θβ ∧ θγ

) (6)

I It defines a C∞(M)-linear map

T : STM→ S∧3T∗M, X 7→ ixT =: T (X) (7)

so that for any compact hypersurface Σ ⊂M and not necessarily complete
T the following pairing makes sense (re-introducing F, F̃)

M[Σ, F, F̃](X) :=

∫
Σ

T [F, F̃](X) (8)

I If T is complete and, in addition, X is Killing, then integrand is closed:

∇µTµν = 0 LXg = 0 ⇒ d
(
T [F, F̃](X)

)
= 0 (9)
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Isometries

I Let G be a Lie group that acts through isometries on (M; g). Hence there
is a homomorphisms

Φ : G→ Diff(M) , g 7→ Φg ∈ Diff(M) (10)

such that
Φe = idM and Φg ◦Φh = Φgh (11)

I This induces an anti-homomorphisms (see (13a)) of Lie algebras, given by
V : Lie(G)→ STM, ξ 7→ Vξ, where

Vξ(p) :=
d

ds

∣∣∣
s=0

Φexp(sξ)(p) (12)

I Vξ is called the fundamental vector field associated to ξ ∈ Lie(G). The
linear map ξ 7→ Vξ satisfies:[

Vξ, Vη
]
= −V[ξ,η] (13a)

(Φg)∗Vξ = VAdg(ξ) (13b)

I From (9) get for complete T :

d
(
T [F, F̃](Vξ)

)
= 0 , ∀ξ ∈ Lie(G) (14)
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Momentum map

I Given a 3-dimensional submanifold Σ ⊂ M we have the following three
maps, each of which is linear:

V : Lie(G) → STM , ξ 7→ Vξ (15a)

T : STM → S
∧3TM , X 7→ T (X) (15b)∫

Σ

: S
∧3T∗M → R , F 7→ ∫

Σ

F (15c)

I Hence, given EMT (not necessarily complete) and hypersurface Σ, the
composition of these maps result in a linear map MΣ : Lie(G) → R,
i.e. an element in Lie∗(G), the dual of the Lie algebra. It is called the
momentum map:

M[Σ, F, F̃](ξ) :=

∫
Σ

T [F, F̃]
(
Vξ
)

(16)

I If T is complete closedness (14) implies that dependence on Σ is only though
its homology class, modulo boundary components in the complement of
T ’s support: Suppose K ⊂ M has ∂K = Σ ∪ Σ ′ ∪ Z with either Z = ∅ or
T |Z ≡ 0, then, for all ξ ∈ Lie(G), have

M[Σ, F, F̃](ξ) +M [Σ ′, F, F̃](ξ) = 0 (17)

I This implies independence of M[Σ, F, F̃] on Σ within the class of Cauchy
hypersurfaces, and hence existence and uniqueness of global G-charges.
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The habitat of global conserved quantities

I In view of the homomorphism φ : G→ Diff(M) (left action of G on M by
isometries), the condition of equivariance (3) becomes

T
[
D(Φg)F, D̃(Φg)F̃

]
= (Φg)∗

(
T [F, F̃]

)
(18)

I Proposition: For not necessarily complete T have

M
[
Φg(Σ) , D(Φg)F , D̃(Φg)F̃

]
= Ad∗g

(
M[Σ, F, F̃]

)
(19)

I Corollary: If T is complete and Φg(Σ) ∼ Σ (homologous modulo supp(T))

and g ∈ StabG(F̃) ⊆ G, then

M
[
Σ , D(Φg)F , F̃

]
= Ad∗g

(
M[Σ , F , F̃]

)
(20)

Momentum, as function of the relevant fields alone, lives in Lie∗(G) and
transforms under co-adjoint representation of StabG(F̃). In particular, if F̃
contains the metric only, then StabG(F̃) = G and M[F] ∈ Lie transforms
via Ad∗ under all of G.

I Claim: The concept of “local charges” always refers to a global construc-
tion with some splitting T =

∑
i Ti. In particular: No G, no momenta!
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Co-adjoint representation of the Poincaré group

I Let (V, η) be a real, 4-dimensional vector space with Minkowski metric η.
We use η to identify V with V∗. In this way we also identify Lie(Poin)
and Lie∗(Poin) with the same vactor space:

Lie(Poin) ∼= Lie∗(Poin) ∼= V ⊕ (V ∧ V) (21)

I As Poin ∼= V o Lor, we have

(a,A)(b, B) = (a + Ab , AB) (22)

Let s 7→ (
b(s), B(a)

)
be a curve in Poin through identity at s = 0. Then,

with d/ds|s=0
(
b(s), B(s)

)
= (m,M) ∈ V ⊕ (V ∧ V), have

Ad(a,A)(m,M) :=
d

ds

∣∣∣∣
s=0

(
a,A

)(
b(s), B(s)

)(
a,A

)−1
=
(
Am − [(A⊗ A)M]a , (A⊗ A)M

) (23)

I The co-adjoint representation is the transposed-inverse of that:

Ad∗(a,A)(m,M) :=
(
Ad(a,A)−1

)>
(m,M)

=
(
Am , (A⊗ A)M − a ∧ Am

) (24)
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Existence of global conserved charges
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Laue’s Theorem

Ann. d. Physik, 340 (1911), 524

I Laue’s theorem explains many of
the apparent paradoxial features in
special-relativistic dynamics, like: fac-
tor 4/3 in momentum of charged
structures; momenta not ‖ veloci-
ties; energy-momentum integrals do
not form four-vector; stressed sys-
tems need torque in oder to be
set into translatory motion (Trouton-
Noble experiment).

I A recent applications is to coupling of
gravity to quantum systems (gravita-
tional decoherence): How does inter-
nal energy of a systems of charged
particles (large molecule) couple to
Newtonian potential? Is is via H0 =
Tint +U (Pikovski et al. 2015) or via
Heff = 3Tint + 2U (Rudnicki 2017).
The answer is: It’s the same!
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Laue’s Theorem: Generalised traditional formulation

I Theorem: Let Tαβ be the contravariant components of a symmetric ten-
sor in Minkowski space with respect to some inertial frame K. Let T be
conserved and stationary:

∂µT
µν = 0 , (Laue: “complete system”) (25a)

∂tT
µν = 0 , (Laue: “stationary system”) (25b)

Let further T have either compact spacelike support or spatial fall-off at
least O(1/r3+ε). Then ∫

t=const.
Tmν d3x = 0 (26)

I Proof:
∂a(T

aνxm) = (∂aT
aν)xm + Tmν (27)

The first term on the r.h.s. vanishes due to (25). Upon spatial integration
the l.h.s. vanishes on account of Gauß’ theorem and fall-off consitions.
Hence result follows.

Q How should the statement and the proof of Laue’s theorem be phrased, so
as to make proper differential-geometric sense?
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Laue’s Theorem: Proper differential-geometric formulation

I Theorem: Let (M,g) be a spacetime, T ∈ S(T∗M ∨ T∗M) a symmetric
and conserved energy-momentum tensor, V,U ∈ STM Killing fields, i.e.
LVg = LUg = 0, such that T and V are invariant under the flow of U:

LUT = 0 (28a)

LUV = [U, V ] = 0 . (28b)

Then, for any smooth function ϕ ∈ C∞(M) and any 3-dimensional sub-
manifold Ω ⊂M such that ϕT |∂Ω ≡ 0 we have

0 =

∫
Ω

dϕ ∧ iUT (V) ≡
∫
Ω

(
U(ϕ) ? (iVT)

[ − (iVT)(ϕ) ? U
[
)

(29)

I Proof: Equations (28) together with LUg = 0 and dT (V) = 0 (here
LUg = 0 is used) imply 0 = LUT (V) = diUT (V) = 0; hence dϕ ∧

iuT (V) = d(ϕiUT (V)), which proves first equality. The second equality
is also immediate from iU(dϕ ∧ T (V)) = U(ϕ)T (V) − dϕ ∧ iUT (V) and
the definition of ?: iU(dϕ ∧ ?(iVT)

[) = iUε 〈dϕ, (iVT)[〉 = ivT(ϕ) ? U[.

I Special case: The standard formulation in Minkowski space is recovered
by setting U = ∂/∂t, V = ∂/∂xµ, ϕ = xm and Ω = {xµ | t = const}.
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? HAPPY BIRTHDAY FRIEDRICH ?

und ... weiter so!
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EMT & Symmetries

Laue’s theorem for conserved currents

I Laue’s theorem is actually a result for conserved currents J, here applied
to J := iVT . To see that, let J = Jµ ∂/∂xµ ∈ STM be a conserved current,

∇µJµ = 0 (30)

I This is equivalent to J := ?J[ ∈ S
∧3TM being closed

dJ = 0 (31)

I Theorem: Let J ∈ S
∧3TM be closed and U ∈ STM a symmetry of it:

LUJ = 0 (32)

Then, for any ϕ ∈ C∞(M) and any 3-dimensional submanifold Ω ⊂ M
such that ϕJ|∂Ω ≡ 0 we have∫

Ω

dϕ ∧ iUJ ≡
∫
Ω

(
U(ϕ) ? J[ − J(ϕ) ? U[

)
(33)

I Proof: Due to (31), condition (32) is equivalent to d(iUJ ) = 0 so that
integrand id dϕ ∧ iUJ = d(ϕiUJ ) and integral vanishes if ϕJ|∂Ω = 0.
The second equality follows from iU(dϕ∧ J ) = U(ϕ)J − dϕ∧ iUJ and
the definition of ? applied to lhs: iU(dϕ∧ ?J[) = iUε〈dϕ, J[〉 = J(ϕ) ?U[.
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