Aspects of Classical Physics - Tutorial 1

Olaf Lechtenfeld, Gabriel Picanço

22 Oct 2021

Maxwell's equations with differential forms

- a) Show that every exact form is closed. (Recall: a form ω is said to be exact if $\exists \rho$ such that $\omega = d\rho$, and ω is said to be closed if $d\omega = 0$.)
- b) Writing the four-potential as a one-form, $A = (\phi/c)dx^0 + A_i dx^i$, compute the two-form dA. Write its components in matrix form.
- c) When we use differential forms $d^2A = 0$ is just a trivial statement (as d^2 of any form is zero). Expand the components of this expression in terms of the electromagnetic fields. What is the physical meaning of each equation?
- d) How do we see in this formulation that a gauge transformation does not change the electromagnetic fields?
- e) Compute the Hodge star of the following two-forms: $dx^0 \wedge dx^1$, $dx^0 \wedge dx^2$ and $dx^1 \wedge dx^3$.
- f) We already know what happens with the action of the differential operator $d: \Omega^p(M) \to \Omega^{p+1}(M)$ on F = dA. Now act with the so-called codifferential operator $\delta: \Omega^p(M) \to \Omega^{p-1}(M)$ defined as $\delta = \star d\star$. What do we get from this?