Aspects of Classical Physics - Tutorial 2

Olaf Lechtenfeld, Gabriel Picanço
05 Nov 2021

1 Baker-Campbell-Hausdorff up to third order

The Baker-Campbell-Hausdorff formula is given by

$$
\begin{equation*}
\log \left(\mathrm{e}^{X} \mathrm{e}^{Y}\right):=Z=X+\int_{0}^{1} \mathrm{~d} t g\left(\mathrm{e}^{\operatorname{ad} X} \mathrm{e}^{t \mathrm{ad} Y}\right)(Y) \tag{1}
\end{equation*}
$$

with $g(z)=\frac{\log z}{1-z^{-1}}$. One can expand this function in z :

$$
\begin{equation*}
g(z)=1+\frac{1}{2}(z-1)-\frac{1}{6}(z-1)^{2}+\ldots \tag{2}
\end{equation*}
$$

We will use this expansion to find an approximation of the BCH formula.
a) Prove that $\left(\mathrm{e}^{\operatorname{ad} X} \mathrm{e}^{t a d Y}-I\right)^{n}$ only contains terms of order n or higher in ad $X($ or ad $Y)$.
b) Expand $g\left(\mathrm{e}^{\operatorname{ad} X} \mathrm{e}^{t a d} Y\right)$ up to 2nd order in ad X or ad Y.
c) Integrate the approximation of $g\left(\mathrm{e}^{X} \mathrm{e}^{t Y}\right)(Y)$ and show that

$$
\begin{equation*}
\log \left(\mathrm{e}^{X} \mathrm{e}^{Y}\right) \approx(X+Y)+\frac{1}{2}[X, Y]+\frac{1}{12}[X,[X, Y]]-\frac{1}{12}[Y,[X, Y]]+\ldots \tag{3}
\end{equation*}
$$

that is, the Baker-Campbell-Hausdorff formula can be written entirely as the sum of commutators.
d) Extra item: Expand $\log \left(\mathrm{e}^{X} \mathrm{e}^{Y}\right)$ up to 3rd order in X and Y in order to get the same approximation.

2 A counterexample

The following matrices are given:

$$
X=\pi\left(\begin{array}{cc}
0 & -1 \tag{4}\\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Let us show that there is no matrix $Z=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $\mathrm{e}^{X} \mathrm{e}^{Y}=\mathrm{e}^{Z}$.
a) Compute $\mathrm{e}^{X}, \mathrm{e}^{Y}$ and $\mathrm{e}^{X} \mathrm{e}^{Y}$.
b) Prove that a matrix Z must have zero trace to satisfy what we want. Also, determine Z^{2} and e^{Z}.
c) Prove that such a matrix Z does not exist.

3 The Heisenberg Group

The Lie algebra of the Heisenberg group is given by

$$
\mathfrak{g}=\left\{\left(\begin{array}{ccc}
0 & \alpha & \beta \tag{5}\\
0 & 0 & \gamma \\
0 & 0 & 0
\end{array}\right)\right\}
$$

with $\alpha, \beta, \gamma \in \mathbb{R}$. The Lie algebra is related to the canonical commutation relations. Indeed, if we define

$$
q=\left(\begin{array}{lll}
0 & 1 & 0 \tag{6}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \frac{p}{i \hbar}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad z=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

then $[q, p]=i \hbar z$ and $[p, z]=[q, z]=0$.
The center $Z(\mathfrak{g})$ of a Lie algebra is the set of elements $X \in \mathfrak{g}$ such that $[X, Y]=0$ for all $Y \in \mathfrak{g}$. Find the center of the Lie algebra of the Heisenberg group and show that $[X, Y] \in Z(\mathfrak{g})$ for all $X, Y \in \mathfrak{g}$. Use these results to show with an explicit calculation that

$$
\begin{equation*}
\mathrm{e}^{X} \mathrm{e}^{Y}=\mathrm{e}^{X+Y+\frac{1}{2}[X, Y]} \tag{7}
\end{equation*}
$$

for all $X, Y \in \mathfrak{g}$.

4 Ad and ad

Let matrices X, Y be given. Recall that the adjoint mapping ad X is defined by $(\operatorname{ad} X)(Y)=$ $[X, Y]$.
a) Using induction, prove that

$$
\begin{equation*}
(\operatorname{ad} X)^{n}(Y)=\sum_{k=0}^{n}\binom{n}{k} X^{k} Y(-X)^{n-k} \tag{8}
\end{equation*}
$$

b) Prove that

$$
\begin{equation*}
\mathrm{e}^{\operatorname{ad} X}(Y)=\operatorname{Ad}\left(\mathrm{e}^{X}\right)(Y):=\mathrm{e}^{X} Y e^{-X} \tag{9}
\end{equation*}
$$

The last equation is the definition of $\operatorname{Ad}(X)(Y)$.

