Tutorial 6 - Fundamental Interactions

Olaf Lechtenfeld, Gabriel Picanço

Jun 2021

1 Feynman diagrams

a) Elaborate momentum-space Feynman rules for the system described by the following lagrangian density:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda_{1}}{3!} \phi^{3}-\frac{\lambda_{2}}{4!} \phi^{4} \tag{1}
\end{equation*}
$$

b) Elaborate momentum-space Feynman rules for the system described by the following lagrangian density:

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi-\frac{\lambda}{4}\left(\phi^{*} \phi\right)^{2} \tag{2}
\end{equation*}
$$

c) Write the expression corresponding to the following Feynman diagram (no need to solve the integrals) for the real scalar $\lambda \phi^{4}$ model:

2 Non-abelian: infinitesimal gauge transformation

In this exercise let us derive the infinitesimal gauge transformations for fermion and gauge fields in a Yang-Mills theory. Analogous to what we've seen in class, consider the N color-components q_{j} of a quark field, $j=1, \ldots, N$, that transforms under an $\mathrm{SU}(N)$ gauge group.

Let $\Omega(x)=e^{g \omega(x)} \in \mathrm{SU}(N)$, where $\omega(x)=\omega^{a}(x) t_{a}$ for $t_{a} \in \mathfrak{s u}(N)$. We know that the quark fields transform via gauge transformations as

$$
q(x) \rightarrow \Omega(x) q(x) \quad \text { and } \quad \bar{q}(x) \rightarrow \bar{q}(x) \Omega^{\dagger}(x), \quad \text { for } \quad q=\left(\begin{array}{c}
q_{1} \tag{3}\\
q_{2} \\
\vdots \\
q_{N}
\end{array}\right)
$$

a) Expanding in ω, find the infinitesimal (up to first order) gauge transformation for $q(x)$. Now find the infinitesimal transformation for its components $q_{j}(x)$ as well.

As in the abelian case, let us define a covariant derivative \hat{D}_{μ} (now a matrix) to make the term coming from the Dirac equation,

$$
\begin{equation*}
i \bar{q} \gamma^{\mu} \hat{D}_{\mu} q \tag{4}
\end{equation*}
$$

gauge invariant. Again, the extra term in the covariant derivative shall compensate the term coming from the fact that gauge transformations are local. Then let us define $\hat{D}_{\mu}=\mathbb{1} \partial_{\mu}+g \hat{A}_{\mu}$, with $\hat{A}_{\mu}(x)=A_{\mu}^{a}(x) t_{a}$. Let $f_{a b c}$ be the structure constants of the $\mathfrak{s u}(N)$ Lie algebra.
b) How should \hat{D}_{μ} and \hat{A}_{μ} transform under a gauge transformation $\Omega(x)$ such that (4) is gauge invariant? Use this to find the infinitesimal gauge transformation for \hat{A}_{μ}. Now find the infinitesimal transformation for its components A_{μ}^{a} as well.
c) Take the field strength $F_{\mu \nu}^{a} t_{a}=\hat{F}_{\mu \nu}=\frac{1}{g}\left[\hat{D}_{\mu}, \hat{D}_{\nu}\right]$. Find how $\hat{F}_{\mu \nu}$ transforms under gauge transformations. Use this to find how it transforms under infinitesimal gauge transformations. Now find the infinitesimal transformation for its components $F_{\mu \nu}^{a}$ as well.

