Fundamental Interactions

Problem 8: Two-particle decay For the decay $1 \rightarrow 2+3$, where particle 1 is assumed to be at rest, the decay rate is given by

$$
\begin{equation*}
\Gamma=\frac{S}{32 \pi^{2} m_{1}} \int|\mathcal{M}|^{2} \frac{\delta^{4}\left(p_{1}-p_{2}-p_{3}\right)}{\sqrt{\vec{p}_{2}^{2}+m_{2}^{2}} \sqrt{\vec{p}_{3}^{2}+m_{3}^{2}}} d^{3} \vec{p}_{2} d^{3} \vec{p}_{3} \tag{1}
\end{equation*}
$$

where m_{i} is the mass of the i th particle, p_{i} is its four-momentum, and \vec{p}_{i} is its spatial momentum. S is a statistical factor that corrects double-counting when there are identical particles in the final state: i.e. if particle 2 and 3 are identical then $S=1 / 2$!. The dynamics of the decay process is contained in the amplitude $\mathcal{M}\left(p_{1}, p_{2}, p_{3}\right)$, which we assume to be averaged over spin degrees of freedom.
(i) Express the 4-dimensional delta function into the temporal and the 3-dimensional spatial delta function. Employing that particle 1 is at rest, perform the integral over \vec{p}_{3}.
(ii) The amplitude originally depended on all three four-momenta. However, p_{1} is constant for the integration, and p_{3} has been taken care of in the previous step. Moreover, \mathcal{M} must be a Lorentz scalar, such that it can only depend on \vec{p}_{2}^{2}.
For the remaining integral change to spherical coordinates (r, θ, ϕ) for \vec{p}_{2} and perform the angular integration.
(iii) Simplify the argument of the remaining 1-dimensional delta function by a change of variable to

$$
\begin{equation*}
u=\sqrt{r^{2}+m_{2}^{2}}+\sqrt{r^{2}+m_{3}^{2}} . \tag{2}
\end{equation*}
$$

Now, evaluate the final integral and verify that

$$
\begin{equation*}
\Gamma=\frac{S\left|\vec{p}_{2}\right|}{8 \pi \mathrm{~m}_{1}^{2}}\left|\mathcal{M}\left(\overrightarrow{\mathrm{p}}_{2}^{2}\right)\right|^{2}, \tag{3}
\end{equation*}
$$

where the formula is evaluated at the particular value

$$
\begin{equation*}
\left|\vec{p}_{2}\right|=\frac{1}{2 m_{1}} \sqrt{m_{1}^{4}+m_{2}^{4}+m_{3}^{4}-2 m_{1}^{2} m_{2}^{2}-2 m_{1}^{2} m_{3}^{2}-2 m_{2}^{2} m_{3}^{2}} \tag{4}
\end{equation*}
$$

determined from the conservation laws.
Without ever knowing the functional form of \mathcal{M} we have been able to carry out the integrals for the 2-body decay. Formula (3) is sometimes referred to as golden rule for a 2-body decay.

Problem 9: Z width We recall that the Standard Model Lagrangian contains the following interaction vertex

$$
\begin{equation*}
\frac{-i g_{2}}{2 \cos \theta_{w}} \gamma^{\mu}\left(c_{V}(f)-c_{A}(f) \gamma^{5}\right) \tag{5}
\end{equation*}
$$

between the Z boson and a fermion anti-fermion pair $f \bar{f} . c_{V}\left(c_{A}\right)$ denotes the vector (axial-vector) coupling of the fermion to the Z-boson and are given by

$$
\begin{align*}
& c_{V}(f)=T_{3}(f)-2 Q(f) \sin ^{2} \theta_{W} \tag{6a}\\
& c_{A}(f)=T_{3}(f) . \tag{6b}
\end{align*}
$$

Standard Model fermions		Q	T_{3}	$\mathrm{~m}_{\mathrm{f}}$ (approximate)
leptons	e^{-}, μ^{-}, τ^{-}	-1	$-\frac{1}{2}$	$511 \mathrm{keV}, 105 \mathrm{MeV}, 1776 \mathrm{MeV}$
neutrinos	$v_{e}, \nu_{\mu}, v_{\tau}$	0	$\frac{1}{2}$	$<2 \mathrm{eV}$
up-type quarks	$\mathrm{u}, \mathrm{c}, \mathrm{t}$	$\frac{2}{3}$	$\frac{1}{2}$	$2,3 \mathrm{MeV}, 1,275 \mathrm{GeV}, 173,5 \mathrm{GeV}$
down-type quarks	$\mathrm{d}, \mathrm{s}, \mathrm{b}$	$-\frac{1}{3}$	$-\frac{1}{2}$	$4,8 \mathrm{MeV}, 95 \mathrm{MeV}, 4,2 \mathrm{GeV}$

Table 1: Particle properties, cf. Particle data group http://pdg.lbl.gov.

Here, T_{3} denotes the third component of the weak isospin and Q the electric charge. These properties are provided in Tab. 1 for the Standard Model fermions. The amplitude $\mathcal{M}_{Z \rightarrow f \bar{f}}$ is computed by multiplying the fermion (anti-fermion) wave-function from the right(left), as well as the polarisation vector for the Z-boson, and averaging over the spin and color space. In the approximation that $m_{f} \ll m_{Z}$ (m_{Z} denotes the Z-boson mass), one obtains

$$
\begin{equation*}
\left|\mathcal{M}_{Z \rightarrow \bar{f}}\right|^{2}=\frac{N_{c}}{3} \frac{g_{2}^{2}}{\cos ^{2} \theta_{W}} m_{Z}^{2}\left(c_{V}^{2}(f)+c_{\mathcal{A}}^{2}(f)\right) \tag{7}
\end{equation*}
$$

and N_{c} is the number of different color states the fermion f can occupy.
i) What are the fermion anti-fermion pairs relevant for the decay $Z \rightarrow f \bar{f}$? You should identify four distinct cases.
ii) Employing (3) in the limit $\mathfrak{m}_{f} \ll m_{Z}$ and (7), verify that the decay width $\Gamma_{f \bar{f}}$ of the Z-boson into a fermion anti-fermion pair is given by

$$
\begin{equation*}
\Gamma_{\mathrm{f} \overline{\mathrm{f}}}=\frac{\mathrm{N}_{\mathrm{c}}}{48 \pi} \frac{\mathrm{~g}_{2}^{2}}{\cos ^{2} \theta_{W}} m_{\mathrm{Z}}\left(\mathrm{c}_{\mathrm{V}}^{2}+\mathrm{c}_{\mathrm{A}}^{2}\right) \tag{8}
\end{equation*}
$$

iii) Evaluate c_{V}, c_{A} for the four cases and provide the explicit formula for $\Gamma_{\bar{f} \bar{f}}$.
iv) Using $\sin ^{2} \theta_{w}=0,23, g_{2}=\frac{e}{\sin \theta_{w}}$ (or more conveniently $g_{2}^{2} \approx \frac{4 \pi}{30}$), and $m_{Z}=91,187 \mathrm{GeV}$, compute the numerical values for the partial widths $\Gamma_{f \bar{f}}$ as well as the total Z decay width

$$
\begin{equation*}
\Gamma_{Z}=\sum_{f} \Gamma_{f \bar{f}} . \tag{9}
\end{equation*}
$$

