Introduction to General Relativity

Exercise sheet 1: Special relativity and tensor calculus

Please prepare your solutions to the following problems, ready to present in the class on **27.04.2022** at **16:00**. In these problems we always assume, unless otherwise stated, a $\{-, +, +, +\}$ metric signature, and we choose units so that the speed of light is c = 1.

- 1. A cart rolls straight across a table with speed v with respect to the table. On the cart is another cart, rolling with speed u with respect to the first cart, in the same direction.
 - (a) What is the speed of the second cart with respect to the table?
 - (b) Now assume u = v. On the second cart there is a third cart moving at speed v with respect to the second, and in the same direction. On the third cart there is a fourth cart moving at speed v relative to the third, in the same direction. And so on, up to an *n*-th cart.
 - i. What is the speed v_n of the *n*-th cart with respect to the table?
 - ii. What is the limit $\lim_{n\to\infty} v_n$?
- 2. Consider a quasar that ejects gas with speed v at angle θ with respect to the line of sight of an observer on Earth. Projected onto the sky, the gas appears to travel perpendicular to the line of sight, with angular speed $v_{\rm app}/D$, where D is the distance to the quasar, and $v_{\rm app}$ is the apparent speed.
 - (a) Derive an expression for v_{app} in terms of v and θ .
 - (b) Show that there are appropriate values of v and θ so that $v_{app} > 1$.
- 3. Suppose X and Y are rank (0,3) tensors related via

$$X_{\gamma\alpha\beta} + X_{\beta\alpha\gamma} = Y_{\alpha\beta\gamma}.$$

Suppose further that X is symmetric in its latter two indices (i.e. $X_{\alpha\beta\gamma} = X_{\alpha(\beta\gamma)}$).

- (a) Write $X_{\alpha\beta\gamma}$ solely in terms of the tensor Y.
- (b) How does your answer to part (a) change if X is antisymmetric in its latter two indices (i.e. $X_{\alpha\beta\gamma} = X_{\alpha[\beta\gamma]}$)?
- 4. Prove the following about four-vectors v^{μ} and w^{μ} in Minkowski space:
 - (a) If v^{μ} is timelike and $v^{\mu}w_{\mu} = 0$, then w^{μ} is spacelike.
 - (b) If both v^{μ} and w^{μ} are timelike and $v^{\mu}w_{\mu} < 0$, then either both are future-pointing or both are past-pointing.
 - (c) If v^{μ} and w^{μ} are null and $v^{\mu}w_{\mu} = 0$, then v^{μ} is proportional to w^{μ} .
 - (d) If v^{μ} is null and $v^{\mu}w_{\mu} = 0$, then either w^{μ} is proportional to v^{μ} , or w^{μ} is spacelike.