Exercise sheet 1: Special relativity and tensor calculus

Please prepare your solutions to the following problems, ready to present in the class on 27.04.2022 at 16:00. In these problems we always assume, unless otherwise stated, a $\{-,+,+,+\}$ metric signature, and we choose units so that the speed of light is $c=1$.

1. A cart rolls straight across a table with speed v with respect to the table. On the cart is another cart, rolling with speed u with respect to the first cart, in the same direction.
(a) What is the speed of the second cart with respect to the table?
(b) Now assume $u=v$. On the second cart there is a third cart moving at speed v with respect to the second, and in the same direction. On the third cart there is a fourth cart moving at speed v relative to the third, in the same direction. And so on, up to an n-th cart.
i. What is the speed v_{n} of the n-th cart with respect to the table?
ii. What is the limit $\lim _{n \rightarrow \infty} v_{n}$?
2. Consider a quasar that ejects gas with speed v at angle θ with respect to the line of sight of an observer on Earth. Projected onto the sky, the gas appears to travel perpendicular to the line of sight, with angular speed $v_{\text {app }} / D$, where D is the distance to the quasar, and $v_{\text {app }}$ is the apparent speed.
(a) Derive an expression for $v_{\text {app }}$ in terms of v and θ.
(b) Show that there are appropriate values of v and θ so that $v_{\text {app }}>1$.
3. Suppose X and Y are rank $(0,3)$ tensors related via

$$
X_{\gamma \alpha \beta}+X_{\beta \alpha \gamma}=Y_{\alpha \beta \gamma}
$$

Suppose further that X is symmetric in its latter two indices (i.e. $X_{\alpha \beta \gamma}=X_{\alpha(\beta \gamma)}$).
(a) Write $X_{\alpha \beta \gamma}$ solely in terms of the tensor Y.
(b) How does your answer to part (a) change if X is antisymmetric in its latter two indices (i.e. $X_{\alpha \beta \gamma}=X_{\alpha[\beta \gamma]}$)?
4. Prove the following about four-vectors v^{μ} and w^{μ} in Minkowski space:
(a) If v^{μ} is timelike and $v^{\mu} w_{\mu}=0$, then w^{μ} is spacelike.
(b) If both v^{μ} and w^{μ} are timelike and $v^{\mu} w_{\mu}<0$, then either both are future-pointing or both are past-pointing.
(c) If v^{μ} and w^{μ} are null and $v^{\mu} w_{\mu}=0$, then v^{μ} is proportional to w^{μ}.
(d) If v^{μ} is null and $v^{\mu} w_{\mu}=0$, then either w^{μ} is proportional to v^{μ}, or w^{μ} is spacelike.

