Lecturer: Olaf Lechtenfeld
Assistant: Nicolas Eicke

Problem 1: Poincaré algebra for the real scalar field

The real Klein-Gordon field $\phi(x)$ is governed by the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2} . \tag{1}
\end{equation*}
$$

We can write $\phi(x)$ and its conjugate momentum $\pi(x)$ in terms of the creation and annihilation operators $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$ as

$$
\begin{align*}
& \phi(\vec{x})=\int \tilde{\mathrm{d}} k\left[a_{\vec{k}} \mathrm{e}^{\mathrm{i} \cdot \vec{x}}+a_{\vec{k}}^{\dagger} \mathrm{e}^{-\mathrm{i} \vec{k} \cdot \vec{x}}\right], \tag{2}\\
& \pi(\vec{x})=-\mathrm{i} \int \tilde{\mathrm{~d}} k \omega_{k}\left[a_{\vec{k}} \mathrm{e}^{\mathrm{i} \vec{k} \cdot \vec{x}}-a_{\vec{k}}^{\dagger} \mathrm{e}^{-\mathrm{i} \vec{k} \cdot \vec{x}}\right], \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{\mathrm{d}} k \equiv \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3} 2 \omega_{k}}, \quad \omega_{k} \equiv \sqrt{\vec{k}^{2}+m^{2}}, \quad \vec{k} \cdot \vec{x} \equiv k^{i} x^{j} \delta_{i j} . \tag{4}
\end{equation*}
$$

In the lecture, you have seen that energy and momentum may be written in terms of $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$ as

$$
\begin{align*}
P^{0} \equiv H \equiv \int \mathrm{~d}^{3} x T^{00} & =\int \mathrm{d}^{3} x \frac{1}{2}\left(\pi^{2}+(\vec{\nabla} \phi)^{2}+m^{2} \phi^{2}\right) \\
& =\int \tilde{\mathrm{d}} k \omega_{k} a_{\vec{k}}^{\dagger} a_{\vec{k}}, \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
P^{i} \equiv \int \mathrm{~d}^{3} x T^{0 i}=\int \mathrm{d}^{3} x \pi(x) \nabla^{i} \phi(x)=\int \tilde{\mathrm{d}} k k^{i} a_{\vec{k}}^{\dagger} a_{\vec{k}} \tag{6}
\end{equation*}
$$

where $T^{\mu \nu}$ is the energy-momentum tensor. The Lorentz generators are given by

$$
\begin{equation*}
M^{\mu \nu} \equiv \int \mathrm{d}^{3} x\left(x^{\mu} T^{0 \nu}-x^{\nu} T^{0 \mu}\right) \tag{7}
\end{equation*}
$$

(a) Use the above expressions to write down the boost and rotation generators $M_{i 0}$ and $M_{i j}$ in terms of $\phi(x)$ and $\pi(x)$.
(b) Use the Fourier expansions of $\phi(x)$ and $\pi(x)$ to express the rotation generators $M_{i j}$ in terms of $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$.
Hint:

$$
\begin{equation*}
\int \mathrm{d}^{3} x x_{i} \mathrm{e}^{\mathrm{i} \vec{k} \cdot \vec{x}}=\int \mathrm{d}^{3} x\left(-\mathrm{i} \frac{\partial}{\partial k_{i}}\right) \mathrm{e}^{\mathrm{i} \overrightarrow{\mathrm{k}} \cdot \vec{x}}=-\mathrm{i}(2 \pi)^{3} \frac{\partial}{\partial k_{i}} \delta^{3}(\vec{k}) . \tag{8}
\end{equation*}
$$

(c) Compute the commutators $\left[P^{i}, \phi(x)\right]$ and $\left[M^{i j}, \phi(x)\right]$ in terms of $\phi(x)$, with the help of the commutator relations for $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$.
(d) Optional. Repeat exercises (b) and (c) for the boost generators $M_{0 i}$ to find

$$
\begin{equation*}
M_{i 0}=-\mathrm{i} \int \tilde{\mathrm{~d}} k \omega_{k} a_{\vec{k}}^{\dagger} \partial_{k_{i}} a_{\vec{k}} \tag{9}
\end{equation*}
$$

and compute the commmutator $\left[M^{i 0}, \phi(x)\right]$. Check that the commutator of $M_{i 0}$ with $M_{j 0}$ satisfies the Lorentz algebra

$$
\begin{equation*}
\left[M^{\sigma \tau}, M^{\alpha \beta}\right]=\mathrm{i}\left(\eta^{\tau \alpha} M^{\sigma \beta}+\eta^{\sigma \beta} M^{\tau \alpha}-\eta^{\sigma \alpha} M^{\tau \beta}-\eta^{\tau \beta} M^{\sigma \alpha}\right) \tag{10}
\end{equation*}
$$

Problem 2: The complex scalar field

The free complex Klein-Gordon scalar field is governed by the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-m^{2} \phi^{\dagger} \phi \tag{11}
\end{equation*}
$$

Since the complex scalar field carries two degrees of freedom, quantizing it gives rise to two independent creation operators. The mode expansion for ϕ is

$$
\begin{equation*}
\phi(\vec{x})=\int \tilde{\mathrm{d}} k\left[a_{\vec{k}} \mathrm{e}^{\mathrm{i} \vec{k} \cdot \vec{x}}+b_{\vec{k}}^{\dagger} \mathrm{e}^{-\mathrm{i} \vec{k} \cdot \vec{x}}\right] \tag{12}
\end{equation*}
$$

where the operators $a_{\vec{k}}$ and $b_{\vec{k}}$ satisfy the commutation relations:

$$
\begin{equation*}
\left[a_{\vec{k}}, a_{\vec{p}}^{\dagger}\right]=\left[b_{\vec{k}}, b_{\vec{p}}^{\dagger}\right]=\tilde{\delta}(\vec{k}-\vec{p}) \tag{13}
\end{equation*}
$$

with all other commutators vanishing. The creation operators $a_{\vec{k}}^{\dagger}$ and $b_{\vec{k}}^{\dagger}$ create two types of particle, both of mass m and spin zero, which are interpreted as particles and anti-particles.

Notice that \mathcal{L} is invariant under the rigid phase transformation $\phi \rightarrow e^{i \alpha} \phi$. Associated to this symmetry, Noether's theorem gives the conserved charge

$$
\begin{equation*}
Q=\mathrm{i} \int \mathrm{~d}^{3} x\left(\partial_{0} \phi^{\dagger} \phi-\phi^{\dagger} \partial_{0} \phi\right) \tag{14}
\end{equation*}
$$

(a) Write down the mode expansion for ϕ^{\dagger} and the conjugate momenta, π, π^{\dagger}.
(b) Express H and Q in terms of the creation and annihilation operators. Show that $[H, Q]=0$ and give the interpretation of Q. Comment also on the implications that the theory is free.

