Lecturer: Olaf Lechtenfeld
Assistant: Susha Parameswaran
Problem 1: Lorentz covariant quantization of photon field in the light-cone basis and the physical space of states

We saw in lectures that after fixing to the Lorentz gauge the photon field has the form:

$$
\begin{equation*}
A_{\mu}(x)=\int \tilde{d k} \sum_{\lambda} \epsilon_{\mu}^{(\lambda)}(\vec{k})\left[a_{\lambda}(\vec{k}) e^{-i k \cdot x}+a_{\lambda}^{\dagger}(\vec{k}) e^{i k \cdot x}\right] . \tag{1}
\end{equation*}
$$

We chose a basis for the four polarization vectors $\epsilon_{\mu}^{(\lambda)}(\vec{k})$ corresponding to time-like, longitudinal and transverse polarizations. Another convenient basis is the light-cone basis with (λ takes values $k, \bar{k}, 1,2$):

$$
\begin{equation*}
\epsilon_{\mu}^{(\lambda)}(\vec{k})=\left\{\frac{1}{\sqrt{2}} \frac{k_{\mu}}{|\vec{k}|}, \frac{1}{\sqrt{2}} \frac{\bar{k}_{\mu}}{|\vec{k}|},\binom{0}{\overrightarrow{e_{1}}},\binom{0}{\overrightarrow{e_{2}}}\right\}, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
k^{\mu} \equiv(|\vec{k}|, \vec{k}), \quad \bar{k}^{\mu} \equiv(|\vec{k}|,-\vec{k}), \quad \text { and } \quad \vec{e}_{i} \cdot \vec{e}_{j}=\delta_{i j}, \quad \overrightarrow{e_{i}} \cdot \vec{k}=0 \text { for } i, j=1,2 \tag{3}
\end{equation*}
$$

(a) Compute the commutators $(\lambda, \sigma=k, \bar{k}, 1,2)$

$$
\begin{equation*}
\left[a_{\lambda}(\vec{k}), a_{\sigma}^{\dagger}\left(\overrightarrow{k^{\prime}}\right)\right] \tag{4}
\end{equation*}
$$

using

$$
\begin{equation*}
a_{\mu}(\vec{k})=\sum_{\lambda} \epsilon_{\mu}^{(\lambda)}(\vec{k}) a_{\lambda}(\vec{k}) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[a_{\mu}(\vec{k}), a_{\nu}^{\dagger}\left(\overrightarrow{k^{\prime}}\right)\right]=-\eta_{\mu \nu} \tilde{\delta}\left(\vec{k}-\overrightarrow{k^{\prime}}\right) . \tag{6}
\end{equation*}
$$

Hint: Use the scalar product

$$
\begin{equation*}
g^{\lambda \sigma} \equiv \epsilon_{\mu}^{(\lambda)}(\vec{k}) \eta^{\mu \nu} \epsilon_{\nu}^{(\sigma)}(\vec{k}) . \tag{7}
\end{equation*}
$$

(b) The one-particle Fock space $H^{(1)}$ is the vector space spanned by the states $a_{\lambda}^{\dagger}(\vec{k})|0\rangle$. Determine explicitly the subspace $H_{i n v}^{(1)} \subset H^{(1)}$ of states $|\psi\rangle$ which satisfy the GuptaBleuler condition:

$$
\begin{equation*}
\partial_{\mu} A^{\mu(+)}|\psi\rangle=0, \quad \text { where } \quad A_{\mu}^{(+)} \equiv \int \tilde{d} k a_{\mu}(\vec{k}) e^{-i k \cdot x} \tag{8}
\end{equation*}
$$

(c) Compute the scalar product of the state $a_{\bar{k}}^{\dagger}|0\rangle \in H_{i n v}^{(1)}$ with an arbitrary vector in $H_{i n v}^{(1)}$. How would you define a physically reasonable state space $H_{p h y s}^{(1)}$?

Problem 2: Lorentz covariant quantization of the photon field with a general gauge-fixing term

An action which gives rise to Maxwell's equations in the Lorentz gauge is:

$$
\begin{equation*}
S=\int d^{4} x\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} \alpha(\partial . A)^{2}\right]=\frac{1}{2} \int d^{4} x A_{\mu}\left[\square \eta^{\mu \nu}+(\alpha-1) \partial^{\mu} \partial^{\nu}\right] A_{\nu} \tag{9}
\end{equation*}
$$

In lectures and Problem 1 we used what is called the Feyman gauge, with $\alpha=1$.
(a) Determine the propagator in momentum space. What happens when $\alpha=0$?
(b) Write down the equations of motion for $A_{\mu}(x)$ and hence show that $A_{\mu}(x)$ satisfies the equations:

$$
\begin{equation*}
\square \partial . A=0 \quad \text { and } \quad \square \square A_{\mu}=0 \tag{10}
\end{equation*}
$$

(c) Solve the equations (10) subject to the constraint $A_{\mu}=A_{\mu}^{\dagger}$ and so that the equations of motion hold.
Hint: With the ansatz $A_{\mu}(x)=A_{\mu}(t) e^{i \vec{k} . \vec{x}}$, the general solution to

$$
\begin{equation*}
\left(\frac{d^{2}}{d t^{2}}+p^{2}\right)^{2} A_{\mu}(t)=0 \tag{11}
\end{equation*}
$$

is $A_{\mu}(t)=\left(a_{\mu}^{\dagger}+t b_{\mu}^{\dagger}\right) e^{i p t}+\left(a_{\mu}+t b_{\mu}\right) e^{-i p t}$, for some parameters $a_{\mu}^{\dagger}, a_{\mu}, b_{\mu}^{\dagger}, b_{\mu}$.
(d) Given that $\left[i P_{\mu}, A_{\nu}\right]=\partial_{\mu} A_{\nu}$, compute the commutators $\left[P_{0}, a_{\mu}^{\dagger}(\vec{k})\right]$ and $\left[P_{0}, a_{\lambda}^{\dagger}(\vec{k})\right]$ (where $\lambda=k, \bar{k}, 1,2$). Can the Hermitian operator $P^{0}=H$ be diagonalized on the one-particle Fock space?
(e) The commutation relations for creation and annihilation operators read $(i, j=1,2)$:

$$
\begin{array}{r}
{\left[a_{i}(\vec{k}), a_{j}^{\dagger}\left(\overrightarrow{k^{\prime}}\right)\right]=\delta_{i j} \tilde{\delta}\left(\vec{k}-\overrightarrow{k^{\prime}}\right)} \\
{\left[a_{k}(\vec{k}), a_{\vec{k}}^{\dagger}\left(\overrightarrow{k^{\prime}}\right)\right]=-\frac{\alpha+1}{2 \alpha} \tilde{\delta}\left(\vec{k}-\overrightarrow{k^{\prime}}\right) .} \tag{13}
\end{array}
$$

Determine the physical state space, in the same manner as Problems 1 (b) and (c).

