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Perturbation theory for interacting φ4 scalar field theory

Consider a scalar field theory with quartic self-interaction, described by
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In quantum field theory, all n-point correlation functions can be encoded in a single object
called the generating functional, Z[J ], as
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For the φ4 theory, the generating functional is given by
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where Z0 is the free generating functional

Z0[J ] = Z0[0] exp
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Assuming small interaction coupling, λ� 1, we can use perturbation theory. The Feyn-
man rules for the φ4 theory read:
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1 (a) Apply the functional derivative −i δ
δJ(z)

to Z0[J ], and draw the corresponding dia-

gram. What does −i δ
δJ(z)

do to a diagram?

(b) By expanding Z[J ] to first order in λ, and applying −i δ
δJ(z)

four times, show that

to O(λ)
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You may choose whether to work explicitly or to use the Feyman diagrams.

(c) Show that the vacuum diagrams, which diverge, cancel thanks to the normalization.

2 In terms of Feynman diagrams, the four-point function reads
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What diagrams appear in G4(x1, x2, x3, x4) at O(λ2)? Take the symmetry factors into
account!

3 Only the connected Feynman diagrams in a correlation function contribute to the non-
trivial (off-diagonal) part of the S-matrix. Show to O(λ) that the functional W [J ] =
−i lnZ[J ] generates only the connected diagrams of G4(x1, x2, x3, x4).
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