Lecturer: Olaf Lechtenfeld
Assistant: Nicolas Eicke

Perturbation theory for interacting ϕ^{4} scalar field theory

Consider a scalar field theory with quartic self-interaction, described by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} . \tag{1}
\end{equation*}
$$

In quantum field theory, all n-point correlation functions can be encoded in a single object called the generating functional, $Z[J]$, as

$$
\begin{equation*}
G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(-\mathrm{i})^{n}\left[\frac{\delta^{n} Z[J]}{\delta J\left(x_{1}\right) \delta J\left(x_{2}\right) \ldots \delta J\left(x_{n}\right)}\right]_{J=0} \tag{2}
\end{equation*}
$$

For the ϕ^{4} theory, the generating functional is given by

$$
\begin{equation*}
Z[J]=\frac{\exp \left(\frac{-\mathrm{i} \lambda}{4!} \int \mathrm{d}^{4} z\left(-\mathrm{i} \frac{\delta}{\delta J(z)}\right)^{4}\right) Z_{0}[J]}{\left\{\exp \left(\frac{-\mathrm{i} \lambda}{4!} \int \mathrm{d}^{4} z\left(-\mathrm{i} \frac{\delta}{\delta J(z)}\right)^{4}\right) Z_{0}[J]\right\}_{J=0}} \tag{3}
\end{equation*}
$$

where Z_{0} is the free generating functional

$$
\begin{equation*}
Z_{0}[J]=Z_{0}[0] \exp \left(-\frac{1}{2} \int \mathrm{~d}^{4} x \mathrm{~d}^{4} y J(x) D_{\mathrm{F}}(x-y) J(y)\right) \tag{4}
\end{equation*}
$$

Assuming small interaction coupling, $\lambda \ll 1$, we can use perturbation theory. The Feynman rules for the ϕ^{4} theory read:

$$
\begin{aligned}
\stackrel{\bullet}{x} & \stackrel{\rightharpoonup}{y} \\
\stackrel{\rightharpoonup}{x} & D_{\mathrm{F}}(x-y) \\
\stackrel{\times}{z} & =\int \mathrm{d}^{4} z D_{\mathrm{F}}(x-z) \mathrm{i} J(z) \\
\stackrel{\times}{x} & =\int \mathrm{d}^{4} x \int \mathrm{~d}^{4} y \mathrm{i} J(x) D_{\mathrm{F}}(x-y) \mathrm{i} J(y) \\
\times & =\left(\frac{-\mathrm{i} \lambda}{4!}\right) \int \mathrm{d}^{4} z
\end{aligned}
$$

1 (a) Apply the functional derivative $-\mathrm{i} \frac{\delta}{\delta J(z)}$ to $Z_{0}[J]$, and draw the corresponding diagram. What does $-\mathrm{i} \frac{\delta}{\delta J(z)}$ do to a diagram?
 to $\mathcal{O}(\lambda)$

$$
\begin{align*}
& Z[J]=\frac{Z_{0}[J]}{\left[1-\frac{\mathrm{i} \lambda}{4!} \int \mathrm{d}^{4} x\left(3\left(D_{\mathrm{F}}(0)\right)^{2}\right)\right] Z_{0}[0]} \times\left[1-\frac{\mathrm{i} \lambda}{4!} \int \mathrm{d}^{4} x\left(3\left(D_{\mathrm{F}}(0)\right)^{2}\right.\right. \tag{5}\\
& \left.\left.\quad+6 D_{\mathrm{F}}(0)\left(\int \mathrm{d}^{4} y D_{\mathrm{F}}(x-y) J(y)\right)^{2}+\left(\int \mathrm{d}^{4} y D_{\mathrm{F}}(x-y) J(y)\right)^{4}\right)\right]
\end{align*}
$$

You may choose whether to work explicitly or to use the Feyman diagrams.
(c) Show that the vacuum diagrams, which diverge, cancel thanks to the normalization.

2 In terms of Feynman diagrams, the four-point function reads

$$
\begin{aligned}
& G_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left({ }_{3}^{1 \Gamma_{4}^{2}}+\left.\left.\right|_{3} ^{1}\right|_{4} ^{2}+\searrow_{4}^{1}{ }_{4}^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& -i \lambda>_{3}^{1}+\mathcal{O}\left(\lambda^{2}\right) \text {. } \tag{6}
\end{align*}
$$

What diagrams appear in $G_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ at $\mathcal{O}\left(\lambda^{2}\right)$? Take the symmetry factors into account!

3 Only the connected Feynman diagrams in a correlation function contribute to the nontrivial (off-diagonal) part of the S-matrix. Show to $\mathcal{O}(\lambda)$ that the functional $W[J]=$ $-\mathrm{i} \ln Z[J]$ generates only the connected diagrams of $G_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.

