Quantum Field Theory: Exercise Session 5
21 December 2012
Lecturer: Olaf Lechtenfeld
Assistant: Nicolas Eicke

Problem 1: Decay of a scalar particle

Consider the following Lagrangian, involving two real scalar fields Φ and φ :

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2} M^{2} \Phi^{2}+\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2}-\mu \Phi \varphi \varphi . \tag{1}
\end{equation*}
$$

The last term is an interaction term, with coupling constant μ, which allows the particle Φ to decay into two φ 's.
(a) Write down the momentum space Feynman rules for this theory, and hence the Feynman diagram for the decay of Φ to lowest order in μ.
(b) Obtain the invariant matrix element \mathcal{M}, defined from the scattering matrix $S=1+\mathrm{i} T$ by

$$
\begin{equation*}
\left\langle k_{\varphi_{1}} k_{\varphi_{2}}\right| \mathrm{i} T\left|k_{\Phi}\right\rangle=(2 \pi)^{4} \delta^{(4)}\left(k_{\Phi}-k_{\varphi_{1}}-k_{\varphi_{2}}\right) \mathrm{i} \mathcal{M}\left(k_{\Phi} \rightarrow k_{\varphi_{1}}, k_{\varphi_{2}}\right) \tag{2}
\end{equation*}
$$

and given diagrammatically by

$$
\begin{equation*}
\mathrm{i} \mathcal{M}=\{\text { the sum of all connected amputated Feynman diagrams }\} \tag{3}
\end{equation*}
$$

(c) Compute the decay rate

$$
\begin{equation*}
\Gamma=\frac{1}{2 M} \prod_{f=\varphi_{1}, \varphi_{2}} \int \tilde{\mathrm{~d}} k_{f}\left|\mathcal{M}\left(k_{\Phi} \rightarrow k_{\varphi_{1}}, k_{\varphi_{2}}\right)\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(k_{\Phi}-k_{\varphi_{1}}-k_{\varphi_{2}}\right) \tag{4}
\end{equation*}
$$

and the life time $\tau=\Gamma^{-1}$ of the Φ particles in their rest frame to lowest order in μ. Hint: A change of variables $\delta(f(x)) \mathrm{d} x=\frac{\mathrm{d} x}{\mathrm{~d} y} \delta(y) \mathrm{d} y$ with $y=f(x)$ shows that

$$
\begin{equation*}
\frac{\delta\left(\sqrt{|\vec{k}|^{2}+m_{1}^{2}}+\sqrt{|\vec{k}|^{2}+m_{2}^{2}}-M\right)}{\sqrt{|\vec{k}|^{2}+m_{1}^{2}} \sqrt{|\vec{k}|^{2}+m_{2}^{2}}}|\vec{k}|^{2} \mathrm{~d}|\vec{k}|=\frac{|\vec{k}|}{M} \delta(y) \mathrm{d} y \tag{5}
\end{equation*}
$$

with $y=\sqrt{|\vec{k}|^{2}+m_{1}^{2}}+\sqrt{|\vec{k}|^{2}+m_{2}^{2}}-M$.
(d) What is the lower bound on M for a decay to be possible?

Problem 2: Decay of the charged pion

The negatively charged pion can be represented by a complex scalar field φ, the muon by a Dirac field ψ and the muon neutrino by a helicity-projected left-handed Dirac field $\frac{1}{2}\left(1-\gamma^{5}\right) \chi$. The pion decays almost exclusively into a muon and muon antineutrino, and this process can be described by the Lagrangian density

$$
\begin{align*}
\mathcal{L}= & \partial_{\nu} \varphi^{*} \partial^{\nu} \varphi-m_{\pi}^{2}|\varphi|^{2}+\bar{\psi}\left(i \not \partial-m_{\mu}\right) \psi+\bar{\chi} i \not \partial \chi \\
& +\lambda\left[\partial_{\nu} \varphi \bar{\psi} \gamma^{\nu}\left(1-\gamma^{5}\right) \chi+\text { h.c. }\right] \tag{6}
\end{align*}
$$

where λ is a coupling constant. The momentum space Fenyman rules for this theory read:

$$
\begin{align*}
&\langle\vec{p}, s| \bar{\psi}=\underbrace{s}_{\vec{p}}=\bar{u}^{s}(p) \quad \text { fermion } \tag{7}\\
&\langle\vec{p}, r| \chi={ }_{-\vec{p}}^{-\vec{p}}=v^{r}(p) \quad \text { antifermion } \tag{8}\\
& \varphi|\vec{p}\rangle=--\vec{p}=1 \tag{9}\\
&=\lambda p_{\nu} \gamma^{\nu}\left(1-\gamma^{5}\right) . \tag{10}
\end{align*}
$$

(a) Compute the lifetime of the pions.

Hint: When computing the modulus squared of the invariant matrix element, $|\mathcal{M}|^{2}$, you should sum over all possible final spin states using the completeness relations

$$
\begin{align*}
& \sum_{s= \pm} u_{a}^{s}(p) \bar{u}_{b}^{s}(p)=\left(\not p+m_{\mu}\right)_{a b} \quad \text { where } \quad\left(\not p-m_{\mu}\right) u^{s}(p)=0 \tag{11}\\
& \sum_{r= \pm} v_{a}^{r}(p) \bar{v}_{b}^{r}(p)=\not p_{a b} \quad \text { where } \quad \not p v^{r}(p)=0, \tag{12}
\end{align*}
$$

and the gamma-trace identities

$$
\begin{align*}
& \operatorname{Tr}\left(\text { any odd number of } \gamma^{\prime} \mathrm{s}\right)=0 \tag{13}\\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu} \tag{14}\\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{5}\right)=0 \tag{15}\\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right) \tag{16}\\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right)=4 \mathrm{if}^{\mu \nu \rho \sigma} . \tag{17}
\end{align*}
$$

(b) Why is the process $\pi^{-} \rightarrow e^{-}+\bar{\nu}_{e}$ suppressed?

