Lecturer: Olaf Lechtenfeld
Assistant: Nicolas Eicke

Regularization, renormalization and the one-loop structure of ϕ^{4} theory

The Feynman rules in renormalized perturbation theory for the ϕ^{4} theory are

$$
\begin{gathered}
\vec{p}=\frac{\mathrm{i}}{p^{2}-m^{2}} \\
-\otimes-\mathrm{i}\left(p^{2} \delta_{z}-\delta_{m}\right),
\end{gathered}
$$

(a) Write down the two-particle scattering amplitude i \mathcal{M} in terms of Feynman diagrams to one loop order.
(b) Use the Feynman rules to write down explicitly the integral in momentum space corresponding to the diagram

(c) Now regularize the integral $V\left(p^{2}\right)$ using dimensional regularization as follows:
(i) Generalize the action for ϕ^{4} theory to d spacetime dimensions, introducing an arbitrary mass parameter μ to allow the coupling λ to keep mass dimension 0 . Thus, write down the corresponding momentum integral $V\left(p^{2}\right)$ in d dimensions.
(ii) Introduce a Feynman parameter z to combine the factors in the demominator using

$$
\begin{equation*}
\frac{1}{a b}=\int_{0}^{1} \frac{\mathrm{~d} z}{[a z+b(1-z)]^{2}} \tag{1}
\end{equation*}
$$

(iii) Make the change of variables $k^{\prime}=k+p(1-z)$ in order to perform the momentum integral by applying the relation

$$
\begin{equation*}
\int \frac{\mathrm{d}^{d} q}{\left(q^{2}+2 q r-\Omega^{2}\right)^{\alpha}}=(-1)^{d / 2} \pi^{d / 2} \frac{\Gamma\left(\alpha-\frac{d}{2}\right)}{\Gamma(\alpha)} \frac{1}{\left(-r^{2}-\Omega^{2}\right)^{\alpha-\frac{d}{2}}} . \tag{2}
\end{equation*}
$$

(iv) Take the limit $d \rightarrow 4$ using

$$
\begin{equation*}
\Gamma(\epsilon)=\left[\frac{1}{\epsilon}-\gamma+\mathcal{O}(\epsilon)\right] \tag{3}
\end{equation*}
$$

with γ the Euler-Mascheroni constant, and $\Gamma(n+1)=n!$ for n a natural number. Be careful with dimensionful quantities when making your expansions. Thus, express $V\left(p^{2}\right)$ as the sum of a divergent term $\sim 1 / \epsilon$ (where $\epsilon \equiv 4-d$) and finite terms.
(d) For a two-particle to two-particle process

the Mandelstam variables are given by $s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}, t=\left(p_{3}-p_{1}\right)^{2}=$ $\left(p_{4}-p_{2}\right)^{2}, u=\left(p_{4}-p_{1}\right)^{2}=\left(p_{3}-p_{2}\right)^{2}$. Write down the entire amplitude i \mathcal{M} in terms of the physical mass m and coupling λ, the Mandelstam variables as $V(s), V(t), V(u)$, and the counterterms, $\delta_{\lambda}, \delta_{m}, \delta_{Z}$.
(e) By applying the renormalization conditions on the two-particle scattering amplitude, compute the shift δ_{λ} from the bare coupling constant to the physical coupling constant in the limit $d \rightarrow 4$.
(f) Combine your results to write down a finite expression for the two-particle scattering amplitude in terms of physically observable quantities.
(g) Compute the propagator to determine the remaining counterterms, δ_{Z} and δ_{m}, working to one-loop order.

