[P7] Zweizustandssystem

Gegeben sei ein System mit zwei Zuständen. Einer der Zustände habe Energie 0, der andere Energie ϵ . Das System befinde sich in thermischem Kontakt mit einem großen Reservoir der Temperatur τ . Drücken Sie die freie Energie F, den Erwartungswert der Energie U und die Entropie σ des Systems als Funktion von τ aus.

[P8] Energiefluktuation

Betrachten Sie ein System, dass sich in thermischem Kontakt mit einem großen Reservoir der Temperatur τ befindet. Sei ϵ der Energieeigenwert des Systems, und sei $U = \langle \epsilon \rangle$ der Mittelwert der Energie. Zeigen Sie, dass

$$\langle (\epsilon - \langle \epsilon \rangle)^2 \rangle = \tau^2 C, \tag{1}$$

wobei

$$C = \frac{\mathrm{d}U}{\mathrm{d}\tau} \tag{2}$$

die Wärmekapazität des Systems ist.

[P9] Zustandssumme für unabhängige Systeme

(a) Zeigen Sie für $x,y\in\mathbb{R}$, dass $\mathrm{e}^{x+y}=\mathrm{e}^x\mathrm{e}^y$ gilt. Benutzen Sie dazu die Reihenentwicklung

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \,. \tag{3}$$

Hinweis: Benutzen Sie die Relation

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k, \quad \text{mit} \quad \binom{n}{k} = \frac{n!}{k!(n-k!)}.$$
 (4)

(b) Seien A und B Matrizen. Zeigen Sie, dass gilt

$$\operatorname{tr}(A \otimes B) = \operatorname{tr} A \operatorname{tr} B. \tag{5}$$

(c) Für ein Quantensystem mit Hamiltonoperator H bei Temperatur τ ist die Zustandssumme $Z = \operatorname{tr} e^{-H/\tau}$. Betrachten Sie zwei unabhängige Quantensysteme mit Hamiltonoperatoren H_1 und H_2 , so dass der Hamiltonoperator des Gesamtsystems $H = H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2$ ist. Die Zustandssummen der Einzelsysteme seien Z_1 und Z_2 . Zeigen Sie, dass für die Zustandssumme Z des Gesamtsystems gilt

$$Z = Z_1 Z_2. (6)$$

Hinweis: Verallgemeinern Sie (a) auf geeignete Weise und verwenden Sie (b).