1. Hausübung, Statistische Physik

abzugeben am Donnerstag, 20.10.2011

Aufgabe H1 Law of large numbers (6 Punkte)
Suppose one throws an unbiased coin N times. We expect that if N is large, we are likely to obtain roughly as many heads as tails. Let's make this precise.
a. For large N, estimate the probability of obtaining $\frac{1}{2} N$ heads.
b. For large N, show that the probability that the number of head falls between $\frac{1}{2} N-\sqrt{N}$ and $\frac{1}{2} N+\sqrt{N}$ is independant of N.

Note: you can make use of Stirling's approximation, and you are allowed to refer to results obtained in the course.

Aufgabe H2 Ideal gas (6 Punkte)
Consider N distinguishable free particles, each characterized by three integer momentum components $\left(k_{1}, k_{2}, k_{3}\right) \in \mathbb{Z}^{3}$ and kinetic energy proportional to $\sum_{i} k_{i}^{2}$.
a. Show that for large U and large N, the number of states with total energy between U and $U+\epsilon$, for $\epsilon \ll U$, has the form

$$
g(N, U) \simeq \epsilon f(N) U^{3 N / 2}
$$

for some function $f(N)$.
Hint: Consider first the number of states with energy less than U and take its derivative with respect to U. The volume of an n-dimensional sphere of radius r is proportional to r^{n}.
b. Consider two such systems with N_{1} and N_{2} particles respectively in thermal contact: i.e. assuming that all configurations with total energy between U and $U+\epsilon$ are equally likely. What is the most likely value of the energy U_{1} of the system with N_{1} particles?

Hint: the form of the function $f(N)$ is not needed to answer this question.

