2. Hausübung, Statistische Physik

abzugeben am Donnerstag, 27.10.2011

Aufgabe H3 Paramagnetism (6 Punkte)

Consider the spin system considered in class. We will use the Gaussian approximation for the multiplicity function:

$$
g(N, s) \simeq g(N, 0) e^{-2 \frac{s^{2}}{N}}
$$

In the presence of an external magnetic field B, the system's total energy is

$$
U=-2 s m B
$$

where m is a constant.
The fractional magnetization μ is the quantity

$$
\mu=2 s / N
$$

a. Show that the temperature (in natural units) for this system is

$$
\tau=-\frac{m^{2} B^{2} N}{U}
$$

b. What is the most likely value of μ if the system is in thermal equilibrium at temperature τ ? Explain why this answer is certainly invalid when $\tau \leq m B$.
c. In the last class assignment, you computed that, at energy U, the probability of a given spin being up is

$$
p(\uparrow) \simeq \frac{1}{1+e^{\frac{2 U}{N m B}}}
$$

Express this probability as a function of the temperature τ of the whole system instead of the energy U, and show that

$$
p(\downarrow) / p(\uparrow)=e^{-\delta U / \tau}
$$

where δU is the energy increase resulting from flipping the spin from up to down. This ratio is called the Boltzmann factor for that spin which is in thermal contact with the large reservoir composed of all the other spins.
d. We are still interested in our single spin. Compute its average energy contribution \bar{u} as a function of τ, given that spin up contributes $-m B$ and spin down contributes $m B$ to the energy. Show that it is

$$
\bar{u}=-m B \tanh (m B / \tau) .
$$

Aufgabe H4 Quantum uniform states (6 Punkte)

Recall that the von Neumann entropy of a quantum state ρ is

$$
S(\rho)=-\operatorname{Tr}(\rho \log \rho)
$$

Consider a Hamiltonian operator H. Suppose that it has a discrete spectrum and P_{i} projects on the i th eigenspace, with energy (eigenvalue) $U_{i} \in \mathbb{R}$, i.e.

$$
H=\sum_{i} U_{i} P_{i} .
$$

This is the spectral decomposition of H, and P_{i} are spectral projectors. This expression is uniquely determined by the fact that the numbers U_{i} are distinct, and P_{1}, P_{2}, \ldots form a complete set of orthogonal projectors (PVM), i.e. they satisfy $P_{i} P_{j}=0$ when $i \neq j$, and $\sum_{i} P_{i}=1$. The value $\operatorname{Tr} P_{i}$ is the dimension of the i th eigenspace, also called the degeneracy of the eigenvalue U_{i}.
a. What is the state ρ which maximizes the entropy under the constraint that a measurement of the Hamiltonian will yield U_{i} with certainty? What is the value of that entropy? Sketch a proof of your answer.

Hint: first show that we must have $\operatorname{Tr}\left(\rho P_{i}^{\perp}\right)=0$, where P_{i}^{\perp} projects on the subspace orthogonal to that of P_{i}, then express the trace as a sum of positive numbers.
b. Consider N independent copies of that system, with total Hamiltonian H_{N} being the sum of the individual Hamiltonians. Write down the spectral decomposition of H_{N} in terms of that of a single system H.

Hint: express H_{N} first as a linear combination of the total PVM $\left\{P_{i_{1}} \otimes P_{i_{2}} \otimes \ldots\right\}_{i_{1}, i_{2}, \cdots=1}^{\infty}$.

