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Aufgabe H12 Photon gas (6 Punkte)

a. Consider an ideal gas of relativistic bosons of mass m in a cube of side L at equi-
librium at temperature 7 and chemical potential . Assuming that the momenta
are quantized in the same way as for a non-relativistic particle, and knowing that
the energy of a relativistic particle of mass m and momentum p is

E = +/p?c® + m2ct,

where c is the speed of light, write down the expected number (s). of particles
with a given discrete momentum state p(ii) as a function of 7 and pu.

b. Consider the quantum electromagnetic field in a cube of side L at thermal equilib-
rium at temperature 7. Suppose that instead of treating the electromagnetic field
as a collection of harmonic oscillators, we want to view it as an ideal gas of rela-
tivistic particles called photons, as above. Find a consistent choice for the mass m
of the photon and the chemical potential x so as to make this interpretation hold.

c. Suppose that p has the value found above, but that the particles are massive
and non-relativistic, i.e. p < mec. Compute the heat capacity as a function of
temperature (ignoring any constant proportionality factor). Observe that it is
smooth, hence indicating the absence of a phase transition. In particular, there
is no Bose-Einstein condensation. Explain what we have done differently that
prevents the Bose-Einstein condensation. Note that for the same reason there is
no Bose-Einstein condensation either for a photon gas (i.e. with m = 0).

Aufgabe H13 Metropolis-Hastings algorithm (6 Punkte)

The Metropolis-Hastings algorithm is an efficient way of sampling from a given proba-
bility distribution with a computer.

Suppose that the possible energy eigenstates of the system that we want to model are
labelled by an integer i, and that ¢; is the energy of state i. We want to generate state
i with a probability proportional to the Boltzmann factor e #% where 8 := 1/7. The
main problem in doing so is that we cannot in general compute the actual probabilities,
because that would entail computing the partition function

Z = Ze‘ﬁg".

But this is rarely possible, and in doing so we would have solved the problem anyway.
The Metropolis-Hastings algorithm starts from an arbitrary state of the system, and
successively modify it stochastically until, after a sufficient number of step, the prob-
ability of reaching any given state of the system is effectively given by Boltzmann’s
distribution.



a. Suppose that we take a certain state ¢ and transition to state j with probability
mi;. The matrix m with elements ;; is called a transition matrix. It must satisfy
5 > 0 and Zj Tij = 1.

We say that 7 together with a probability distribution p = {p1, ps, ...} satisfy the
detailed balance equation if

DiTij = P for all Z,j

Show that this conditions implies that, if the system is initially described by the
probability distribution p then, after performing a random transition according to
the matrix 7, the state is still given by the same distribution p. We say that p is
a fixed point of 7.

b. In general, if a transition matrix has a fixed point p, then a recursive application of
the transition matrix will make the probability distribution ultimately converge to
that fixed point independently of the state we started from, provided certain con-
ditions of ergodicity hold. This is how the Metropolis-Hastings algorithm works.

The detailed balance condition provides an easy way to build a transition matrix
whose fixed point is the Boltzmann distribution, without having to compute Z.
Indeed, we just need to ensure that, for all pairs of states 4, j, either p;m;; = 0 =
DT O
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Use this to prove that one step of the algorithm you applied in the computer
exercise C2 implements a transition matrix 7 which has the correct Boltzmann
distribution as a fixed point.



