11. Präsenzübung, Statistische Physik

zu bearbeiten am Donnerstag, 5.1.2012

Aufgabe P25 Bethe-Peierls approximation for the Ising model

An improvement to the mean-field theory for an Ising spin system defined by the Hamiltonian $H_{\text{exact}} = -J \sum_{ij} \sigma_i \sigma_j$ can be obtained as follows: the interaction of a spin σ_0 with its z neighbors is treated exactly. The remaining interactions are taken into account by a mean field h', which acts only on the z neighbors. If the original Hamiltonian is translation invariant, it does not matter which spin we choose as σ_0 . The simplified Hamiltonian is then given by

$$H = -h' \sum_{j=1}^{z} \sigma_j - J \sum_{j=1}^{z} \sigma_0 \sigma_j.$$

The mean field h' is determined self-consistently from the condition $\langle \sigma_0 \rangle = \langle \sigma_j \rangle$.

a. Show that the partition function $Z(h', \tau)$ for H has the form $Z = Z_+ + Z_-$ where

$$Z_{\pm} = \left[2\cosh\left(\frac{h'\pm J}{\tau}\right)\right]^{z}.$$

- b. Express the average values $\langle \sigma_0 \rangle$ and $\langle \sigma_j \rangle$ as functions of h'.
- c. Show that h' = 0 is a solution of the self-consistency equation $\langle \sigma_0 \rangle = \langle \sigma_j \rangle$.
- d. Show that the self-consistency equation is equivalent to

$$\frac{h'}{\tau} = \frac{z-1}{2} \ln \frac{\cosh[h'/\tau + J/\tau]}{\cosh[h'/\tau - J/\tau]}$$

This has a nonzero solution provided that the temperature is smaller than a transition temperature τ_c . Determine approximations to τ_c and h' by expanding the right hand side in powers of h'/τ and truncating to order $(h'/\tau)^3$.