# 13. Präsenzübung, Statistische Physik 

zu bearbeiten am Donnerstag, 19.1.2012

## Aufgabe P26 Decimation of 2D Ising model

We consider the 2D Ising model on a square lattice with constant nearest neighbour and next-nearest neighbour interactions and external magnetic fields. If $H$ is the Hamiltonian, we have

$$
-H / \tau=K \sum_{n n} \sigma_{i} \sigma_{j}+L \sum_{n n n} \sigma_{i} \sigma_{j}+h \sum_{i} \sigma_{i} .
$$

The first sum is over all the nearest neighbour interactions (edges of the square lattice) and the second one is over all next-nearest neighbour interactions (diagonals).
Assume that $N$ is the number of spins, but do not worry about boundary conditions. Consider the sublattices $A$ and $B$ containing each half the spins and organized as the two colors of a checkerboard. Let $S_{A}$, respectively $S_{B}$, denote all possible configurations of the spins in sublattice $A$, respectively $B$.
Compute the effective Hamiltonian $H^{\prime}$ up to order 2 in $K$, order 1 in $L$ and order 1 in $h$, so that the partition function is

$$
Z=\sum_{S_{A} S_{B}} e^{-H / \tau} \simeq \sum_{S_{B}} e^{-H^{\prime} / \tau}
$$

Observe that $H$ and $H^{\prime}$ have the same form up to a constant term, and write down the renormalization equations for the parameters $K, L$ and $h$.

