4. Präsenzübung, Statistische Physik

zu bearbeiten am Donnerstag, 3.11.2011

Aufgabe P10 Differential forms

Consider the manifold $\Omega=\left\{(T, V) \in \mathbb{R}^{2} \mid T, V>0\right\}$ and the function $p: \Omega \rightarrow \mathbb{R}$ defined by

$$
p(T, V)=\alpha T / V
$$

with $\alpha>0$ a constant.
We consider the two coordinate systems (T, V) and (T, p) for Ω. Let $U: \Omega \rightarrow \mathbb{R}$ be a differentiable function, and consider it in both coordinate systems, i.e., $U(T, V)$ and $\tilde{U}(T, p):=U(T, V(T, p))$ and drop the tilde.
a. Express the differential forms $d T$ and $d V$ in the coordinates (T, p) (i.e., in the form $F_{1} d T+F_{2} d p$ where the F_{i} are functions of T and p.)
b. Write the partial derivatives $\left(\frac{\partial U}{\partial T}\right)_{V}$ and $\left(\frac{\partial U}{\partial V}\right)_{T}$ in the coordinates (T, p) (i.e., in terms of $\left(\frac{\partial U}{\partial T}\right)_{p}$ and $\left(\frac{\partial U}{\partial p}\right)_{T}$ and some functions of T and p.)
c. Write the differential form $\delta Q:=d U+p d V$ in both coordinate systems.

Aufgabe P11 Particle creation

Imagine that particles can come into existence or disappear freely. If we assign to each particle a mass M, a (non-relativistic) kinetic energy, and a rest energy $M c^{2}$, where c is the speed of light, then assuming the system is in thermal equilibrium at temperature τ, compute the expected density of particles n.

Aufgabe P12 Two-level fermions

Consider a system of independent indistinguishable particles in diffuse and thermal equilibrium at temperature τ and chemical potential μ, where each particle can be in one of two states. One state has energy 0 and one state has energy ϵ. Also we forbid two particles from occupying the same state.
a. Show that the grand-canonical partition function is

$$
\mathcal{Z}=(1+\lambda)\left(1+\lambda e^{-\epsilon / \tau}\right),
$$

where $\lambda=e^{\mu / \tau}$.
b. Show, by directly summing Gibbs factors, that the expected number of particles is

$$
\langle N\rangle=\frac{\lambda\left[1+e^{-\epsilon / \tau}+2 \lambda e^{-\epsilon / \tau}\right]}{\mathcal{Z}} .
$$

c. In the same manner, show that the expected energy is

$$
U=\frac{\epsilon \lambda}{1+\lambda e^{\epsilon / \tau}}
$$

d. Observe that the partition function \mathcal{Z} has the form $\mathcal{Z}=\mathcal{Z}_{1} \mathcal{Z}_{2}$ where $\mathcal{Z}_{1}=1+\lambda$ and $\mathcal{Z}_{2}=1+\lambda e^{-\epsilon / \tau}$. This suggests that we can identify two independent systems corresponding to the partitions functions \mathcal{Z}_{i}. What are these systems?

