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Notation and Conventions

Throughout this thesis the Einstein summation convention is used. In some places
the summation is written in complete form for the sake of introducing new summation
indices. Calligraphically written symbols always describe quantities in de Sitter space
and will never occur with arrows denoting a vector valued quantity. In the shown visu-
alizations of the field lines for different solutions, the electric field lines will always be
colored in green and the magnetic ones in red. Groups are being displayed in capital
letters unlike their corresponding algebras that are written in small letters (e.g SU(2)
and su(2)). Below a legend of frequently used symbols and quantities is listed:

F,F : Electromagnetic field strength tensor

A,A: Electromagnetic gauge potential

FD,FD, AD,AD: Dual field strength tensor and gauge potential

~E, E , ~B,B: Electric and magnetic fields

~F,F: Riemann-Silberstein vector

?: Hodge star operator

X[aYb]: commutation of indices XaYb −XbYa

[z1 : z2 : · · · : zn]: projective coordinates

Ẋ(τ, ω), Ẍ(τ, ω): The notation of dots as symbols for total time derivatives are ex-
panded to partial derivatives with respect to the cylinder time variable ∂τ and ∂2

τ on
de Sitter space
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Abstract

In this master thesis, a new way of constructing electromagnetic knot solutions based
on [1] is reviewed and expanded on the formalism of working with general superpositions
of electromagnetic field configurations for fixed spin. From this formalism, a general
relation between energy and helicity is derived and a detailed analysis of such general
field configurations satisfying the null field condition is given. It turns out, that these
conditions can be brought into connection to a set of geometric interesting equations in
CP3. In addition to that, some field line configurations for numerous solutions arising
from this construction method are being visualized and their behaviour during time
evolution is shown, if possible in terms of numerical accuracy.
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1 Introduction

In this introductory chapter, brief insights into the research area of electromagnetic
knots will be given and some important formalism and quantities that are necessary
for this thesis will be defined. Furthermore, the conformal equivalence of 4-dimensional
de Sitter space to a real finite cylinder over a 3-sphere and half of Minkowski space
is described which constitutes the foundation for the method of constructing electro-
magnetic knot solutions in Minkowski space. Basic knowledge about electrodynamics,
differential geometry and Lie groups is assumed.

1.1 Electromagnetic knots

Throughout this whole thesis, we will work with source-free electromagnetic fields that
are solutions of the vacuum Maxwell‘s equations

dF = d ? F = 0. (1.1)

The main focus lies on some special kinds of electromagnetic fields with a non-trivial
topology in their electric- and magnetic field line configuration. Such fields with linked
field lines are referred to as electromagnetic knots. Publications about electromagnetic
knots go back as far as the late 1980‘s [2] and this topic is still an active field of re-
search [3], [4], [5], [6]. In a great scientific review providing a detailed overview about
electromagnetic knots [7], amongst treating some further perspectives about quantized
fields and experimental realization, the authors present four known ways of generating
electromagnetic knot solutions and discuss them in detail. Those are the so called
Rañada formalism and Batemans construction as well as one method based on twistor
formalism and another method based on conformal inversions. Mathematically, they
are very different from each other and were developed independently but they are of
course closely related in terms of their physical meaning. A new construction method
that again mathematically highly differs from the previous ones, was recently published
in [1] and leaves much room to rediscover known solutions and to possibly obtain com-
pletely new insights in this area of research, what motivated the work done in this thesis.

To describe how knotted or linked a field is, one commonly uses an average measure
for its electric and magnetic field lines

hm = 1
2

∫
R3

(A ∧ F ) and he = 1
2

∫
R3

(AD ∧ FD), (1.2)

called the magnetic helicity hm and electric helicity he. This concept is used for a variety
of phenomena, for example in astro- and solar physics to describe solar eruptivity [8] [9]
or in fluid dynamics (a short overview about several phenomena can be seen in [10]).
In general, hm and he are not constant during time evolution, due to (cf. [7] p.19)

ḣe ∝
∫
R3
~E · ~B d3x, (1.3)

ḣm ∝ −
∫
R3
~E · ~B d3x. (1.4)
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One often uses the combined electromagnetic helicity hem = he + hm as an average
measure for the fields topology and as can clearly be seen from (1.3) and (1.4), hem is
constant at all times. The following explanations are based on [11].

Conservation of electric and magnetic helicity can be interpreted as conservation of
the topological structure of the field lines on average without giving information about
the topology of each individual field line. A special case, where the evolution of each
individual field line can be expressed in a remarkably simple way is given for so called
null fields, satisfying

FabF
ab = Fab(?F )ab = 0, (1.5)

what corresponds to

~E · ~B = 0 and ~E · ~E − ~B · ~B = 0. (1.6)

It is common to express electromagnetic fields as Riemann-Silberstein vectors

~F = ~E + i ~B, (1.7)

so the null condition can be compactly written as

~F · ~F = 0. (1.8)

These fields evolve by smooth deformation of their field lines that can be described as
a transportation via a velocity field

~ν =
~E × ~B

~B · ~B
. (1.9)

For this to be true, the so called frozen field condition

[ ~B, ~ν]− ~̇B = 0 or equivalently ∇× (~ν × ~B)− ~̇B = 0 (1.10)

has to be satisfied. Substituting (1.9) into (1.10) and using the vector formulation of
Maxwell‘s equations, it follows that

∇× (
~E × ~B

~B · ~B
× ~B)− ~̇B = ∇× (−( ~E · (

~B · ~B
~B · ~B

)− ~B · (
~E · ~B
~B · ~B

)))− ~̇B

= ∇× ( ~B · (
~E · ~B
~B · ~B

)) = 0. (1.11)

Hence the frozen field condition is only satisfied for ~E · ~B = 0, which generally holds
for null fields. It is possible for some non-null electromagnetic field to satisfy ~E · ~B = 0
at a specific time though. From (1.3) and (1.4) the special property that he and hm are
constant individually at any time for null fields can be observed. Because the helicities
are closely related to the Gauss‘ linking number of the field lines [cf. [7] Appendix A],
this results in an invariant linking number of electric and magnetic field lines during

2



time evolution.

One famous solution of this kind is the so called Hopf-Rañada knot that can be repre-
sented via the following Riemann-Silberstein vector

~FHR = 1
((t− i)2 − r2)3

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

 . (1.12)

Its field lines at t = 0 reflect the preimage of a Hopf fibration from S3 7→ S2, so it consists
of pairwise linked closed circles lying on nested tori. As can be seen in (Figure 1), these
circles get deformed during time evolution correspondingly to (1.9). Looking at (Figure
2), it can clearly be observed that the electric field lines (green) are perpendicular to
the magnetic field lines (red) at all displayed times and one can grasp a more general
impression about the deformation of the individual field lines during time evolution.

(a) t = 0 (b) t = 0.5 (c) t = 1 (d) t = 2

Figure 1: A pair of electric (green) and magnetic (red) field lines for the Hopf-Rañada knot
at 4 different times

(a) t = 0 (b) t = 0.5 (c) t = 1 (d) t = 2

Figure 2: A collection of electric (green) and magnetic (red) field lines for the Hopf-Rañada
knot at 4 different times
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It turns out, that this particular knot is one of the simplest examples that can be
generated with the construction method studied in this thesis. Nonetheless, it is still
an interesting object of research to gain further knowledge about null solutions (for
example [12]) due to their simplicity and well described structure. Geometrically, null
electromagnetic fields are connected to shear-free geodesic congruences in Minkowski
space, commonly known as the Robinson theorem and are therefore also interesting
objects in the field of differential geometry (for example [13]). Hence it is no surprise,
that the results in chapter 4 will be of geometrically and topologically interesting nature.

1.2 Conformal equivalence of dS4 to I × S3 and half of R1,3

De Sitter space is widely known in general relativity as a solution of vacuum Ein-
stein equations with positive cosmological constant and defines a maximally symmetric
spacetime of constant positive curvature. It approximates the universe at extremely
early times where it rapidly expanded. A brief introduction about the geometry of
de Sitter space can be found in [14]. In this thesis, the focus is not on any kind of
cosmology but 4-dimensional de Sitter space dS4 is used as a tool to generate electro-
magnetic knot solutions in Minkowski space R1,3. Note that this whole construction
method described in this chapter, as well as chapter 2 is completely based on [1]. We
begin with the main ingredient of this method, that is the conformal equivalence of dS4
to a real finite cylinder over a 3-sphere I × S3 and half of Minkowski space R1,3

± .

dS4 can be realized as a one-sheeted hyperboloid embedded in 5-dimensional Minkowski
space R1,4. If we consider the standard Minkowskian metric

ds2 = −X2
0 +

4∑
A=1

dX2
A, (1.13)

then dS4 can be parametrized via

−X2
0 +

4∑
A=1

X2
A = l2, (1.14)

where l denotes a non-zero constant with the unit of length. The metric on dS4 can
therefore be described by the induced metric from R1,4. It will be useful to look at
equal-time slices of dS4, that result in 3-spheres of varying radius for each slice. Those
slices will be constant X0-slices depending on a cylinder time coordinate τ ∈ I = (0, π).
Also, it is useful to introduce four orthogonal coordinates ωA (ωAωA = 1) embedding
the unit 3-sphere into R4 with one such embedding could be given for χ, θ ∈ [0, π] and
φ ∈ [0, 2π] by

ω1 = sin(χ) sin(θ) sin(φ) ,
ω3 = sin(χ) cos(θ) ,

ω2 = sin(χ) sin(θ) cos(φ) ,
ω4 = cos(χ) . (1.15)

If we then choose the parametrization

X0 = −l cot(τ) and XA = l

sin (τ)ωA for A = 1, . . . , 4 , (1.16)
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we obtain the metric

ds2 = l2

sin(τ)2 (−dτ + dΩ2
3). (1.17)

This is a sum of the metric of a real cylinder I and the metric of S3 scaled by a con-
formal factor l2

sin(τ)2 , meaning dS4 is conformally equivalent to the product I × S3.

This real finite cylinder over a 3-sphere can be further parametrized in such a way,
that it is conformally equivalent to the future half R1,3

+ or respectively the past half
R1,3
− of Minkowski space. Introducing Minkowski coordinates xµ = {t, x, y, z} and

r =
√
x2 + y2 + z2, we consider the following parametrization

X0 = t2 − r2 − l2

2t , X1 = l
x

t
, X2 = l

y

t
, X3 = l

z

t
, X4 = r2 − t2 − l2

2t . (1.18)

We can observe, that for positive time t ∈ R+, it follows that X0 + X4 < 0, while
t = 0 is not allowed due to singularity issues. This covers only half of dS4 and the
corresponding metric in Minkowski space then reads

ds2 = l2

t2
(−dt2 + dx2 + dy2 + dz2). (1.19)

We thus obtained the standard metric of 3-dimensional Minkowski space restricted on
the future half. Allowing t ∈ R−, we can map another half of dS4 with X0 + X4 > 0
to the past half of Minkowski space. Via gluing both halfs at t = τ = 0, the whole
Minkowski space can be covered so that t = (−∞, 0,∞) corresponds to τ = (−π, 0, π).
This coverage is thus given by two copies of conformally equivalent cylinders over a
3-sphere 2I × S3 with 2I = (−π, π).

A direct relation between cylinder and Minkowski coordinates is obtained by comparing
(1.16) and (1.18)

cot τ = r2 − t2 + l2

2lt , ω1 = γ
x

l
, ω2 = γ

y

l
, ω3 = γ

z

l
, ω4 = γ

r2 − t2 − l2

2l2 , (1.20)

where the formulae were simplified by abbreviation of the frequent occurring terms

γ = 2l2√
4l2t2 + (r2 − t2 + l2)2

. (1.21)

Whole Minkowski space is only covered by the area bounded by

τ ≤ cosω4, (1.22)

what effectively is half of 2I × S3. The cylinder time is obtained as a function of
Minkowski coordinates by performing the inverse

τ = arccot(r
2 − t2 + l2

2lt ). (1.23)
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From (1.23), we can straightforwardly obtain the relation

eiτ = (l + it)2 + r2√
4l2t2 + (r2 − t2 + l2)2

, (1.24)

that will be very helpful later in this thesis. Due to conformal invariance of Yang-Mills
theory in 4 dimensions, Maxwell‘s equations can be solved on 2I × S3 rather than on
R1,3 and afterwards the obtained solutions can be transformed via a change of coordi-
nates to Minkowski space in order to properly evaluate them. This has the benefits,
that finding solutions on de Sitter space turns out to be relatively simple, but the
obtained Minkowski solutions are of high complexity, as well as properties concerning
finiteness of the action and energy are being conserved. Before starting to study actual
electrodynamics on dS4, the following remark about a generalized approach of solving
Yang-Mills equations for arbitrary dimensions that was published in [15] will be made.
This is in fact a different field of research but the foundation of the method described
in [1] can be regarded as a special case based on this general idea.

Solving Yang-Mills equations on de Sitter spaces dSn+1 is a useful tool, because analo-
gously to the special 4-dimensional case described above, a choice of equal-time slices
result in a metric describing a real cylinder over a n-sphere I × Sn. These unit spheres
own interesting structures when considering the maximal compact symmetry subgroup
G of the spacetime for solving the Yang-Mills equations. Explicitly, these spheres can
be expressed as coset spaces G \H with H ⊂ G of the following kinds

Sn = SO(n+ 1)
SO(n) , S2m+1 = SU(m+ 1)

SU(m) , S4l+3 = Sp(l + 1)
Sp(l) . (1.25)

It is therefore natural to solve Yang-Mills equations considering the gauge groups
SO(n + 1), SU(m + 1) and Sp(l + 1) on dSn+1, dS2m+2 and dS4l+4 respectively. Such
solutions are derived in [15] but due to the non-existing conformal invariance of Yang-
Mills theory in arbitrary dimensions, they cannot be simply transformed to Minkowski
space. Going back to the space dS4 where this can be done easily, it is thus natural
to work with the group structures of SO(4) and SU(2). Indeed, the focus will be on
Maxwell‘s equations with U(1) ⊂ SU(2) as gauge group written in a SO(4)-covariant
formalism reflecting two su(2) algebras on S3 as can be seen in the next chapter.
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2 Generating electromagnetic knot solutions

In this chapter, the correspondence between 2I × S3 and R1,3 is used to generate
rational electromagnetic knots in Minkowski space. The first step is to derive Maxwell‘s
equations on 2I × S3. It turns out that there are two types of solutions that result
in a class of infinitely many electromagnetic knot solutions after being transformed to
Minkowski space. Some important properties of the solutions will be discussed in detail
as well as numerous examples are being visualized at the end of this chapter.

2.1 The formalism

A general ansatz for a gauge potential on 2I × S3 can be imposed via

A = X0(τ, ω)dτ +
3∑

a=1
Xa(τ, ω)ea. (2.1)

Xa(τ, ω) are elements in some associated Lie-algebra g for a suitable gauge group G,
depending on ωA and τ and expanded in an orthonormal basis ea of three left-invariant
1-forms on S3, satisfying the Maurer-Cartan structure equations

dea + εabce
b ∧ ec = 0. (2.2)

Given an embedding with coordinates ωA, these 1-forms can be constructed via

ea = −ηaBCωBdωC with ηaBC =


εaBC for B,C = 1, 2, 3
+δaC for C = 4
−δaC for B = 4
0 for B = C = 4

. (2.3)

The metric of S3 is then just given by

dΩ2
3 = (e1)2 + (e2)2 + (e3)2. (2.4)

From now on, the notational convention e0 = dτ will be fixed, resulting in a cleaned
up and more structured notation. We also need Minkowski expressions for (2.3), that
can be directly computed whilst substituting (1.20). In a compact notation with xµ =
(t, xi) = (t, x, y, z) and i, j, k = {1, 2, 3}, these expressions read

e0(x) = γ2

l3
(1
2(t2 + r2 + l2)dt− txidxi), (2.5)

ea(x) = γ2

l3
(txadt− (1

2(t2 − r2 + l2)δak + xaxk + lεajkx
j)dxk). (2.6)

In order to work in a gauge theory with G = U(1) and g = R on 2I × S3, a formalism
that captures the dependence of the functions Xa(τ, ω) on the spherical coordinates
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while being SO(4)-covariant is constructed in terms of the following representations of
two su(2)-algebras

Ra = −ηaBCωB
∂

∂ωc
with [Ra, Rb] = 2εabcRc , (2.7)

La = −η̃aBCωB
∂

∂ωc
with [La, Lb] = 2εabcLc . (2.8)

Here, Ra define three left-invariant vector fields generating right translations and La
define three right-invariant vector fields generating left translations that mutually com-
mute

[Ra, Lb] = 0. (2.9)

It can also be observed that

Lae
a = 0 and eaRb = δab , (2.10)

hence (2.7) defines a basis dual to ea. The space of functions on S3 is given by irreducible
representations of the sum

su(2)L ⊕ su(2)R (2.11)

generating left and right translations on S3 with the restriction that they have to be
labeled by a common spin j = 0, 1

2 , 1,
3
2 , . . . . Per definition (2.3) and (2.7), the exterior

derivative of an arbitrary function Φ(ωA) on S3 can be expressed as

dΦ = eaRaΦ(ωA). (2.12)

A basis of functions on S3 is given by hyperspherical harmonics Yj;m,n in an analogue
fashion to S2 with its basis of spherical harmonics. They depend on two labels m,n =
−j,−j + 1, . . . ,+j arising from (2.11) and a common labeled spin j. This formalism
reminds of the language commonly used in quantum mechanics and hence it is natural
to formally introduce hermitian angular-momentum operators

Ia := i
2La and Ja := i

2Ra, (2.13)

so the basis of hyperspherical harmonics is specified by the following eigenvalue relations

I2Yj;m,n = J2Yj;m,n = j(j + 1)Yj;m,n , (2.14)

I3Yj;m,n = mYj;m,n and J3Yj;m,n = nYj;m,n. (2.15)

It will be convenient to employ the notation of ascending and descending operators
acting on m and n respectively

I± = 1√
2

(I1 ± iI2) and J± = 1√
2

(J1 ± iJ2) (2.16)
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so that they act on the basis of hyperspherical harmonics as

J±Yj;m,n =
√
j(j + 1)− n(n± 1)Yj;m,n±1, (2.17)

I±Yj;m,n =
√
j(j + 1)−m(m± 1)Yj;m±1,n. (2.18)

We can define angles {α, ᾱ, β, β̄} on S3 satisfying ᾱα + β̄β = 1 via

α = ω1 + iω2 ,

ᾱ = ω1 − iω2 ,

β = ω3 + iω4 ,

β̄ = ω3 − iω4 .
(2.19)

If we then use (2.13) and (2.16) together with (2.19), we obtain

I+ = 1√
2

(β̄∂ᾱ − α∂β) ,

I3 = 1
2(α∂α + β̄∂β̄ − ᾱ∂ᾱ − β∂β) ,

I− = 1√
2

(ᾱ∂β̄ − β∂α) ,

J+ = 1√
2

(β∂ᾱ − α∂β̄) ,

J3 = 1
2(α∂α + β∂β − ᾱ∂ᾱ − β̄∂β̄) ,

J− = 1√
2

(ᾱ∂β − β̄∂α) .

(2.20)

An explicit expression for the normalized hyperspherical harmonics is given by

Yj;m,n =
√

2j + 1
2π2

√√√√2j−m(j +m)!
(2j)!(j −m)!

2j−n(j + n)!
(2j)!(j − n)!(I−)j−m(J−)j−nα2j, (2.21)

where the terms under the square root are normalization constants and the following
descending operators acting on α2j result in homogeneous polynomials of degree 2j in
α, ᾱ, β, β̄. In order to compute (2.21), it is effectively needed to first compute

(J−)j−nα2j = (−β̄√
2

)j−n∂j−nα α2j =: g(α, β̄) (2.22)

followed by corresponding derivatives depending on the order j −m, for example

I−g(α, β̄) = 1√
2

(ᾱ∂β̄ − β∂α)g(α, β̄), (2.23)

I−(I−g(α, β̄)) = 1
2(ᾱ2∂2

β̄ + β2∂2
α − 2ᾱβ∂β̄∂α)g(α, β̄), (2.24)

I−((I−)2g(α, β̄)) = 1
2
√

2
(ᾱ3∂3

β̄ − β
3∂3
α + 3ᾱβ2∂β̄∂

2
α − 3ᾱ2β∂2

β̄∂α)g(α, β̄). (2.25)

Those orders of (I−)j−m are needed in order to compute solutions for j = 1
2 , 1,

3
2 . Note

that depending on the quantum numbers, one has to deal with factorials of negative
numbers. The hyperspherical harmonics will later serve as an orthonormal basis for
the Maxwell solutions due to their orthonormality property given by∫

S3
Y ∗j;m,nYj′;m′,n′d3Ω3 = δjj′δmm′δnn′ with Y ∗j;m,n = (−1)m+nYj;−m,−n. (2.26)
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2.2 Maxwell‘s equations on 2I × S3

The gauge for (2.1) will be fixed with the temporal gauge and Coulomb gauge conditions
on 2I × S3 given by

X0(τ, ω) = 0 and JaXa(τ, ω) = 0, (2.27)

resulting in Aτ=0. Using (2.12) and a rewritten form of (2.2)

dea = −εabceb ∧ ec, (2.28)

the curvature F can be computed as follows

F = dA = dXae
a +Xadea

= Ẋae
0 ∧ ea +RaXbe

a ∧ eb − εabcXae
b ∧ ec

= −Ẋae
a ∧ e0 + 1

2(R[aXb] − 2εabcXc)ea ∧ eb . (2.29)

We can observe, that (2.29) resembles the familiar structure of the field strength tensor
in Minkowski space and indeed it is the analogue quantity of this tensor in 2I × S3.
Denoting Fa0 = Ea and 1

2εabcFbc = Ba, we can directly read the analogue quantities of
electric and magnetic fields in de Sitter space

Ea = −Ẋa and Ba = εabcRbXc − 2Xa. (2.30)

The vacuum Maxwell‘s equations are given by

dF = d ? F = 0, (2.31)

so we first need to compute the Hodge dual

?F = 1
2Ẋaεabce

b ∧ ec − εabcRaXbe
0 ∧ ec + εabcεbcdXae

0 ∧ ed

= 1
2Ẋaεabce

b ∧ ec − εabcRaXbe
0 ∧ ec + 2Xae

0 ∧ ea (2.32)

followed by the exterior derivative

d ? F =1
2(Ẍaεabce

0 ∧ eb ∧ ec +RdẊaεabce
d ∧ eb ∧ ec) + εabcRdRaXbe

0 ∧ ed ∧ ec (2.33)

− εabcε0deRaXbe
0 ∧ ed ∧ ee + 2(Xaεabce

0 ∧ eb ∧ ec +RaXbe
0 ∧ eb ∧ ea).

The Gauss law on 2I × S3 can be found as
1
2RaẊa = 0 (2.34)

and substituting (2.34) into (2.33) leads after some index rearranging to a compact
expression for (2.31) reading

−1
4Ẍa = −1

4R
2Xa +Xa −

1
2εabcRbXc + 1

4RaRbXb (2.35)

= (J2 + 1)Xa + iεabcJbXc − JaJbXb.

10



With the fixed gauge (2.27), the last term vanishes and this simplifies to the final form
of Maxwell‘s equations on 2I × S3

−1
4Ẍa = (J2 + 1)Xa + iεabcJbXc, (2.36)

what corresponds to the three equations

−1
4Ẍ1 = (J2 + 1)X1 + i(J2X3 − J3X2), (2.37)

−1
4Ẍ2 = (J2 + 1)X2 + i(J3X1 − J1X3), (2.38)

−1
4Ẍ3 = (J2 + 1)X3 + i(J1X2 − J2X1). (2.39)

At this point, we are now interested in finding explicit solutions for (2.36), that will be
the field configurations creating all kinds of interesting knotted electromagnetic fields.
Following this task, we first define

X± = 1√
2

(X1 ± iX2) , (2.40)

staying in the same language as (2.16) and rewrite the equations of motion in terms of
X± and X3. This yields the following system of equations (Appendix 6.1.1)

−1
4Ẍ+ = (J2 − J3 + 1)X+ + J+X3,

−1
4Ẍ− = (J2 + J3 + 1)X− − J−X3, (2.41)

−1
4Ẍ3 = (J2 + 1)X3 − J+X− + J−X+,

together with a rewritten form of the initial gauge condition

0 = J3X3 + J+X− + J−X+. (2.42)

The first step of solving these equations can be done with a seperation ansatz

Xa(τ, ω) =
∑
j,m,n

Xj;m,n
a (τ)Yj;m,n(α, ᾱ, β, β̄), (2.43)

where the field configurations are expanded as τ -dependent parts in the orthonormal
basis of hyperspherical harmonics. From (2.41) and (2.42), it then can be observed that

X3 ∝ Yj;m,n ⇒ X± ∝ J±X3. (2.44)

Thus, Maxwell‘s equations are coupled equations for {Xj,m,n+1
+ , Xj;m,n−1

− , Xj;m,n
3 }. This

means also that j and m can be fixed, what is not surprising for a formalism build
around solely on the action of Ra and Ja correspondingly. In order to decouple (2.41),
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we additionally impose an exponential ansatz for the cylinder parts of Xa(τ, ω) given
by

Xa(τ) = eiΩj;n
a τcj;na . (2.45)

Using (2.41)-(2.45) together with (2.14),(2.15) and (2.17), we are left with a linear sys-
tem of ordinary differential equations for the frequencies Ωj;n

a and amplitudes cj;na that
can be solved with the standard method.

We obtain two families of solutions distinguished by their value of the integral fre-
quency that only depends on j

Ωj = ±2(j + 1) or Ωj = ±2j, (2.46)

which will be called basis solutions of type I and type II. They each individually have
different amplitudes cj;na and obey different ranges for m and n, but as can be seen in a
moment, they are both connected by a remarkably simple transformation. Below one
can see the explicit solutions for (2.41) of both types.

Type I: j ≥ 0, m = −j, . . . ,+j, n = −j − 1, . . . , j + 1, Ωj = ±2(j + 1)

X+ =
√

1
2(j − n)(j − n+ 1)e±2(j+1)iτYj;m,n+1 ,

X− = −
√

1
2(j + n)(j + n+ 1)e±2(j+1)iτYj;m,n−1 , (2.47)

X3 =
√

(j + 1)2 − n2e±2(j+1)iτYj;m,n .

Type II: j ≥ 1, m = −j, . . . ,+j, n = −j + 1, . . . , j − 1, Ωj = ±2j

X+ = −
√

1
2(j + n)(j + n+ 1)e±2jiτYj;m,n+1 ,

X− =
√

1
2(j − n)(j − n+ 1)e±2jiτYj;m,n−1 , (2.48)

X3 =
√
j2 − n2e±2jiτYj;m,n .

Counting out all possible solutions for fixed j of type I, there are (2j+1) possible values
for m and (2j + 3) values for n. Because the basis solutions are complex and real and
imaginary parts solve Maxwell‘s equations independently, there are 2(2j + 1)(2j + 3)
real linearly independent type I solutions in total. With the same way of counting, we
see that there are 2(2j + 1)(2j − 1) real linearly independent type II solutions. Note
that due to linearity of Maxwell‘s equations, sums of individual solutions again solve
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them, so in general we are also interested in all the superpositions of solutions for fixed
j. A formalism that resembles such general superpositions as well as the nature that
real and imaginary parts solve Maxwell‘s equations separately is given by

Xa = cae
+iΩjτ + c∗ae

−iΩjτ with ca =
∑
m,n

cmnZ
mn
a . (2.49)

Here, Zmn
a denote the hyperspherical harmonics together with the amplitudes for every

solution Xa in the basis of a = {+,−, 3} or {1, 2, 3}, whereas cmn are some complex
coefficients chosen for every combination of m and n corresponding to a solution with
fixed j. The change of basis for Xa is simply realized via

X1 = 1√
2

(X+ +X−) and X2 = 1√
2i

(X+ −X−) (2.50)

and will be the preferred basis from now on. The complex conjugated Z̄mn
a are obtained

through swapping α↔ ᾱ , β ↔ β̄ and keeping into account all sign changes that come
from every factor of i, resulting in (2.26). The corresponding gauge potential to (2.49)
is then given by

A = (cmnZmn
a eiΩjτ + c∗mnZ̄

mn
a e−iΩjτ )ea. (2.51)

There are two major ways transforming the de Sitter solutions to electromagnetic fields
in Minkowski space, as one can see in the chart below:

Aaea
Xa(τ(x),ω(x))eaµ(x)dxµ
−−−−−−−−−−−−−→ AµdxµydA

ydA

1
2Fabe

a ∧ eb
1
2Fab(τ(x),ω(x))eabµν(x)dxµ∧dxν
−−−−−−−−−−−−−−−−−−→ 1

2Fµνdx
µ ∧ dxν

. (2.52)

The first way would be to go right and begin by transforming A to Minkowski space
via the coordinate transformation

A = Xa(τ, ω)ea = Xa(τ(x), ω(x))eaµ(x)dxµ = Aµdxµ, (2.53)

where the Minkowski expressions τ(x) for the τ -dependent parts are given by (1.24)
and the Minkowski expressions ω(x) for the spherical parts are given by substituting
(2.19) together with (1.20) into (2.21). The resulting terms then have to be sorted to
determine the components Aµ. Afterwards we can compute the field strength tensor

F = dA = 1
2Fµνdx

µ ∧ dxν (2.54)

and directly read the field expressions Fi0 and Fij or we can compute its components
from the gauge potential via

Fµν = ∂µAν − ∂νAµ. (2.55)
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We can also go down at first in the chart and then perform the coordinate transforma-
tion

1
2Fabe

a ∧ eb = 1
2Fab(τ(x), ω(x))eabµν(x)dxµ ∧ dxν . (2.56)

After doing that, again the resulting terms have to be sorted in order to read the com-
ponents Fµν .

The solutions will always result in rational functions in Minkowski space, even for
odd powers of eiΩjτ . This justifies why these solutions are called rational electromag-
netic knots. Even though the computation of the change of coordinates for a simple
solution can be done straightforwardly per hand, it is recommended doing this work
with a programmed routine, as most of the solutions will result in long and complicated
expressions, that are hard being computed manually in a reasonable time frame. In
(Appendix 6.2.1), a routine written in Mathematica is presented, that was used for all
such computations occurring in this thesis.

Before getting more involved with the further discussion of these electromagnetic solu-
tions, some general structural properties that can be directly derived from (2.47) and
(2.48) are being listed in the next section.

2.3 Properties of the solutions

We can observe, that spin j type I solutions are linked to spin j + 1 type II solutions
via a parity transformation m ↔ n exchanging left- and right algebras on S3. Also
producing dual solutions of type I (type II)

BD = E and ED = −B (2.57)

just works by shifting the frequency |Ωj|τ by π
2 (−π

2 ), what effectively results in

XD
a = ±icaeiΩjτ ∓ ic∗ae−iΩjτ . (2.58)

Here the upper sign belongs to the type I solutions and the lower sign to the type II
solutions. This notation will be used for all computations involving type I and type
II solutions. The dual solutions (2.57) and (2.58) will be useful for computing the
magnetic helicity in chapter 3, revealing a linear dependency between energy and elec-
tromagnetic helicity. Naturally, null solutions are contained in (2.47) and (2.48), so
with this method, a large number of knots with fascinating geometric properties as
described in the introduction were found.

As was mentioned at the beginning of this thesis, this construction guarantees finite ac-
tion and energy. One simple way to enlighten that the latter is indeed true in Minkowski
space, is by observing that the obtained electromagnetic fields in Minkowski space have
a power law decay. For this we need to check the asymptotic behaviour of F .

Considering r →∞ for a fixed time, this corresponds to approaching the point ω4 = 1
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on S3, therefore the hyperspherical harmonics and as a consequence the solutions Xa

tend to some constant value. As in this limit

{e0, ea} ∝ 1
r2 ⇒ e0 ∧ ea ∝ 1

r4 and eb ∧ ec ∝ 1
r4 , (2.59)

we obtain a power law decay for the electric and magnetic fields

Ei ∝
1
r4 and Bi ∝

1
r4 . (2.60)

Analogously, considering fields on the whole light cone (r = t→∞ for the future half
or r = −t→∞ for the past half) leads to a decay law given by

Ei ∝
1
r

and Bi ∝
1
r
. (2.61)

The basis of hyperspherical harmonics therefore yields sufficiently fast temporally and
spatially decaying fields.

Another benefit is, that only finite time dynamics are needed on 2I ×S3 for generating
knots with infinite time dynamics on Minkowski space. This opens up the possibility
to first transform a solution that is known in Minkowski space for t = 0 to de Sitter
space at τ = 0 and then evaluate the time dynamics there. Afterwards, the solution
can be transformed back to Minkowski space, yielding infinite time dynamics there.

2.4 SO(4)-invariant solutions

The simplest kinds of solutions are given for j = 0 type I and j = 1 type II correspond-
ingly. In those cases, the hyperspherical harmonics are real Zmn

a = Z̄mn
a and thus the

configurations for type I solutions result in

Xj=0
a = cmne

2iτ + c∗mne
−2iτ , (2.62)

yielding general superpositions of configurations from cos(2τ) and sin(2τ). Those are
completely independent of the spherical coordinates, hence they are SO(4)-invariant.
These solutions could likewise be obtained in a limited framework by initially imposing
Xa(τ, ω) = Xa(τ) before deriving the equations of motion for Xa. In this case, the
curvature computes to

F = Ẋa(τ)e0 ∧ ea − εabcXa(τ)eb ∧ ec

and the analogue quantities of electric and magnetic fields in de Sitter space follow as

Ea = −Ẋa(τ) and Ba = −2Xa(τ). (2.63)

As can be seen in [16], the general Yang-Mills equations on 2I × S3 read

−Ẍa = −4Xa + 3εabc[Xb, Xc]− [Xb, [Xa, Xb]] and [Ẋa, Xa] = 0, (2.64)
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what reduces in the abelian case with [Xb, Xc] = [Xb, [Xa, Xb]] = 0 and g = R to the
differential equations

−Ẍa(τ) = −4Xa(τ). (2.65)

A general solution of (2.65) is then given by oscillations depending on 6 integration
constants ca and τa

Xa(τ) = ca cos(2(τ − τa)). (2.66)

These oscillating solutions can be rewritten as

Xa(τ) = ca
1
2(e2i(τ−τa) + e−2i(τ−τa))

= ca
1
2(e2iττa− + e−2iττa+) (2.67)

where τa− = e−2iτa and τa+ = e2iτa . Obviously they are all contained in (2.62). As a
simple example setting l = 1, we can generate the Hopf-Rañada knot mentioned in the
introduction before with the configurations

X1(τ) = −1
8 sin(2τ), X2(τ) = −1

8 cos(2τ), X3(τ) = 0. (2.68)

An evident advantage of generating the Hopf-Rañada knot with this method, is that
the gauge potential in Minkowski space

A0 = 1
4 it

(
−x + iy

((l + it)2 + r2)2 + x + iy

((l − it)2 + r2)2

)
,

A1 = 1
8

(
2(−t + x(y + ix) + z + i)
((1 + it)2 + x2 + y2 + z2)2 −

i

(1 + it)2 + r2 + 2(−t + x(y − ix) + z − i)
(−(t + i)2 + r2)2 + i

−(t + i)2 + r2

)
,

A2 = 1
8

(
2(i(t− z) + y(y + ix) + 1)

((1 + it)2 + r2)2 − 1
−(t + i)2 + r2 −

2i(t + y(x + iy)− z + i)
(−t(t + 2i) + r2 + 1)2 − 1

(1 + it)2 + r2

)
,

A3 = 1
4

(
(z − i)(y − ix)

(−t(t + 2i) + r2 + 1)2 + (z + i)(y + ix)
(−t(t− 2i) + r2 + 1)2

)

is readily computed. This holds for every solution that can be generated with this
method and gives direct access to information, previous methods are lacking.

The more interesting cases are given with a non-trivial dependence on the S3 coor-
dinates and will start at j = 1

2 type I and j = 3
2 type II correspondingly.
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2.5 Examples and visualizations

In this section, there will be given some non-trivial examples of type I solutions with
corresponding visualizations of their electric and magnetic field lines in Minkowski
space, to gain a better understanding of what kinds of solutions can actually be found
using this formalism. Up to this point, there was only shown a single SO(4)-symmetric
solution. Note that this is only a qualitative overview about some of the solutions. For
each solution there are infinitely many field lines and here are only shown some specific
configurations of those lines for a fixed time. Nonetheless, these images reveal some
particular information about the structure of the knots as well as how drastically those
structures change when evolving through time.

At first the solutions are computed in the basis of hyperspherical harmonics, then trans-
formed to Minkowski space and after explicit expressions for the electric and magnetic
fields are obtained, we can solve

d~r(s)
ds = α~E(~r(s))

∣∣∣
t=t0

and d~r(s)
ds = α~B(~r(s))

∣∣∣
t=t0

. (2.69)

Here ~r(s) is a vector curve corresponding to the field lines of ~E and ~B evaluated at a
fixed time t0 and α denotes a normalization constant. To obtain a useful collection of
field lines, we need to fix a suitable set of initial conditions {x0, y0, z0} and find a suit-
able range for varying the curve parameter s. The Mathematica code for this process
is shown in (Appendix 6.2.2) together with an online source, where the implementation
of (2.69) written by Jens Nöckel can be found. All solutions given in this section were
computed for a de Sitter scale of l = 1.

The first example will be another one of the six j = 0 solutions given by

{0, 0, 0} = 1
2π{0, 0, cos 2τ}. (2.70)

(a) t = 0.01 (b) t = 1 (c) t = 2.5

Figure 3: Some electric and magnetic field line configurations for a {0, 0, 0} solution at 3
different times
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From (Figure 3), we can observe, that the magnetic field lines at t ≈ 0 form closed
circles on a torus as we have seen from the Hopf-Rañada knot and that the electric
field lines wind up on a smaller torus sharing the same boundary of the torus hole.
Considering the evolution in time, the structure changes quite a bit and a detail worth
mentioning there, is that inner and outer position of the electric and magnetic fields
interchange here. This is truly an example on how different such a field evolves when
compared to the time evolution of a null field.

The following solution will be the first one with a non-trivial dependence on the S3

coordinates and additionally satisfies the null condition.

{1
2 ,

1
2 ,

3
2} : 1

2i(

−
√

3
2α

π
,−

i
√

3
2α

π
, 0

 e3iτ −

−
√

3
2 ᾱ

π
,
i
√

3
2 ᾱ

π
, 0

 e−3iτ ). (2.71)

(a) t = 0 (b) t = 0.75 (c) t = 1.25

(d) t = 0 (e) t = 0.75 (f) t = 1.25

Figure 4: Electric ((a)-(c)) and magnetic ((d)-(f)) field line configurations for a {1
2 , 1

2 , 3
2} so-

lution at 3 different times
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From the corresponding Riemann-Silberstein vector

~F = 12
√

6l3

π ((l − it)2 + r2)4

 −(x+ iy)(l − i(t+ x+ iy − z))(l − it+ ix− y + iz)
(y − ix)(l − i(t− ix+ y − z))(l − it+ x+ i(y + z))

2(x+ iy)2(il + t− z)

,
it can clearly be seen that (2.71) is indeed a null field. This time the electric and
magnetic field lines were split up, otherwise the visualizations would look too chaotic.
Also for those solutions a view from the top was chosen to better grasp the knotted
structure and symmetry. From (Figure 4), we can observe that the evolution in time for
both electric and magnetic field lines happens via smooth deformations as was shown
in the introduction for the Hopf-Rañada knot. However, the perpendicularity of the
electric and magnetic field lines is not obvious from those pictures, so maybe one need
to find a suitable set of initial conditions in order to better illustrate this.
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The next example shows a different characteristic that can be found in the set of j = 1
2

solutions. Let us consider

{1
2 ,

1
2 ,−

1
2} :

{
α√
2π
,− iα√

2π
,−
√

2β̄
π

}
e3iτ +

{
ᾱ√
2π
,
iᾱ√
2π
,−
√

2β
π

}
e−3iτ (2.72)

(a) t = 0 (b) t = 0 (c) t = 0

(d) t = 0.5 (e) t = 0.5 (f) t = 0.5

(g) t = 0.75 (h) t = 0.75 (i) t = 0.75

Figure 5: Electric ((a),(d),(g)), magnetic ((b),(e),(h)) and electromagnetic ((c),(f),(i)) field
line configurations for a {1

2 , 1
2 ,−1

2} solution at 3 different times

These solutions seem to mainly consist of disjoint torus knots forming interesting struc-
tures when viewed as an electromagnetic field. The magnetic field lines in (Figure 5
(h)) own similar structures as the Hopf fibration. Again the evolution of the field lines
in time differs far from a smooth conformal deformation as it was the case in the last
example.
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As a final example that differs highly from a simple torus knot structure, we consider
a solution with j = 3

2 given by

{3
2 ,−

1
2 ,−

3
2} : 1

2i(
{√

6ᾱ(ᾱα− 2β̄β)
π

,− i
√

6ᾱ(ᾱα− 2β̄β)
π

,−2
√

6ᾱ2β̄

π

}
e5iτ (2.73)

−
{√

6α(ᾱα− 2β̄β)
π

,
i
√

6α(ᾱα− 2β̄β)
π

,−2
√

6α2β

π

}
e−5iτ )

(a) t = 0 (b) t = 0 (c) t = 0

(d) t = 1 (e) t = 1 (f) t = 1

Figure 6: Electric ((a),(d)), magnetic ((b),(e)) and electromagnetic ((c),(f)) field line config-
urations for a {3

2 ,−1
2 ,−3

2} solution at two different times
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3 Energy and helicity

Two important quantities missing in the description of electromagnetic knot solutions
on 2I × S3 till now are the total energy and the electromagnetic helicity, usually given
in Minkowski space by the expressions

E = 1
2

∫
R3

d3x( ~E2 + ~B2) and h = 1
2

∫
R3

(A ∧ F + AD ∧ FD), (3.1)

where AD and FD denote the dual gauge potential and dual field strength tensor. As
was mentioned before, they can be obtained for the analogue de Sitter quantities via
a phase shift of |Ωj|τ by π

2 for type I or −π
2 for type II solutions respectively. Both

quantities are conserved under conformal transformations for massless fields, thats why
we can likewise compute them on de Sitter space. Moreover, they are conserved in
time, therefore a neat trick for this manner works by restricting to the τ = t = 0 slice.
Thus we are left with an integral over S3, which simplifies things due to orthogonality
properties of the basis of hyperspherical harmonics. By comparing the sphere-framed
fields

F = Eae0 ∧ ea + 1
2εabcBae

b ∧ ec (3.2)

with the Minkowskian fields

F = Eidx0 ∧ dxi + 1
2εijkBidxj ∧ dxk (3.3)

on this specific slice, the following expression for the energy on S3 can be derived
(Appendix 6.1.2)

E =
∫
R3

d3x( ~E2 + ~B2) = 1
l

∫
S3

d3Ω3(1− ω4)(EaEa + BaBa). (3.4)

This defines a quite simple way to compute energies of individual solutions. Note that
the ω4-term drops out of the integration due to orthogonality properties of the basis of
hyperspherical harmonics.

For the helicity, we may directly insert A, AD, F , FD into the formula because the
metric does not enter. Therefore we obtain

A ∧ F = Xαe
α ∧ (F0ae

0 ∧ ea + Fbceb ∧ ec)
= XaFbcea ∧ eb ∧ ec (3.5)
= Xaε

α
bcBαea ∧ eb ∧ ec

= 2XaBad3Ω3

and can integrate freely over a given spatial slice of 2I × S3. For the dual term, note
that FDbc contains the electric fields Ea. It yields

AD ∧ FD = XD
a FDbcea ∧ eb ∧ ec

= XD
a ε

α
bcEαea ∧ eb ∧ ec (3.6)

= 2XD
a Ead3Ω3.
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The electromagnetic helicity is then given on S3 via the expression

h =
∫
S3

d3Ω3(XaBa +XD
a Ea). (3.7)

In general the energy of a superposition of solutions does not correspond to the sum
of their individual energies. Imagine, having two solutions SI and SII with individual
energies E(SI) and E(SII). If we note that the total energy can also be expressed in
terms of the norm of the Riemann-Silberstein vector as

E = ||~F ||2 = 1
2

∫
R3

d3x(~F ∗ · ~F ), (3.8)

then the energy of a superposition of both solutions would read

E(SI + SII) = 1
2

∫
R3

d3x(( ~FI + ~FII)∗ · ( ~FI + ~FII)) (3.9)

= 1
2

∫
R3

d3x( ~FI
∗ ~FI + ~FII

∗ ~FII + ~FI
∗ ~FII + ~FII

∗ ~FI) (3.10)

6= E(SI) + E(SII), (3.11)

introducing additional mixed terms. Luckily, it turns out, that the energy for general
superpositions of solutions restricted to the t = τ = 0-slice , will result in quite simple
expressions.

3.1 General relation between energy and helicity

Energy and helicity are related, as was mentioned in [1] for type I solutions with fixed
j and m = n = 0. There, a linear relation between both quantities given by

E
(j,0,0)
I = 2(j + 1)

l
h

(j,0,0)
I (3.12)

was observed for such solutions. In this chapter, a relation between energy and helicity
will be formulated for all possible solutions. For this task, it is very useful to work with
the general formalism (2.49), that was introduced earlier instead of working with the
complex basis solutions. At first the time dependence will still be shown and later the
solutions will be evaluated on the t = τ = 0 slice. It will be enough to compare the
corresponding energy and helicity densities

lρE = EaEa + BaBa, (3.13)
ρh = XD

a Ea +XaBa. (3.14)

Every electric field (2.30), for any kind of type I and type II solutions with fixed j is
given by

Ea = −Ẋa = −iΩjcae
iΩjτ + iΩjc

∗
ae
−iΩjτ . (3.15)

We then obtain

XD
a Ea = ±Ωjcacae

2iΩjτ ∓ 2Ωjcac
∗
a ± Ωjc

∗
ac
∗
ae
−2iΩjτ , (3.16)

EaEa = −Ω2
jcacae

2iΩjτ + 2Ω2
jcac

∗
a − Ω2

jc
∗
ac
∗
ae
−2iΩjτ . (3.17)
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The equations of motion (2.36) for Xa can be rewritten such that

εabcRbXc = 1
2Ẍa + 2(J2 + 1)Xa. (3.18)

For all magnetic fields for type I and type II solutions it hence yields

Ba = εabcRbXc − 2Xa = 1
2Ẍa + 2J2Xa, (3.19)

allowing for a much more convenient computation of the sphere-framed magnetic fields
with the formalism being used. It then follows that

Ba = 1
2(−Ω2

jcae
iΩjτ − Ω2

jc
∗
ae
−iΩjτ ) + 2j(j + 1)(caeiΩjτ + c∗ae

−iΩjτ )

= ∓Ωjcae
iΩjτ ∓ Ωjc

∗
ae
−iΩjτ (3.20)

and we thus obtain the expressions

XaBa = ∓Ωjcacae
2iΩjτ ∓ 2Ωjcac

∗
a ∓ Ωjc

∗
ac
∗
ae
−2iΩjτ , (3.21)

BaBa = Ω2
jcacae

2iΩjτ + 2Ω2
jcac

∗
a + Ω2

jc
∗
ac
∗
ae
−2iΩjτ . (3.22)

Finally the energy and helicity densities follow as

lρE = 4Ω2
jcac

∗
a|t=0, (3.23)

ρh = ∓4Ωjcac
∗
a|t=0. (3.24)

This leads to a general relation between energy and helicity given by

E = ∓Ωj

l
h =


2(j+1)

l
h type I

−2j
l
h type II.

(3.25)

The relation between energy and helicity was thus proven for every possible solution.
The computation for each quantity is fairly simple, hence it shows that these quantities
are easily accessible for every kind of solution, which counts as another benefit of this
construction method.

As an aside,

ḣm =
∫
S3

2(∓iΩ2
jcacae

2iΩjτ ± iΩ2
jc
∗
ac
∗
ae
−2iΩjτ )

∣∣∣
t=τ=0

dΩ3 =
∫
S3
−2(EaBa)d3Ω3, (3.26)

ḣe =
∫
S3

2(±iΩ2
jcacae

2iΩjτ ∓ iΩ2
jc
∗
ac
∗
ae
−2iΩjτ )

∣∣∣
t=τ=0

dΩ3 =
∫
S3

2(EaBa)d3Ω3 (3.27)

shows that (1.3) and (1.4) are recovered on 2I × S3 and that both individual helicities
are constant in time for EaBa = 0. This familiar condition leads us over to the next
chapter, where all null fields that are contained in this theory are classified.
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4 Null fields

In this chapter, null fields on 2I × S3 are studied for general superpositions of type I
and type II solutions. After obtaining a suitable null condition, the interesting question
arises, what structure these fields define. It turns out, that they are deeply related to
conics and quadric cones in CP3, so in order to answer this question, we will need to
briefly introduce some formalism from algebraic geometry.

Let gR1,3(·, ·) denote the metric on Minkowski space and gI×S3(·, ·) the metric on de
Sitter space. The known null condition in Minkowski space can directly be translated
to de Sitter space, because their metrics only differ by some conformal factor λ and in
chapter 2, we derived a direct correspondence between F and F so that

gR1,3(F, F ) = λgI×S3(F ,F) = gR1,3(F, ?F ) = λgI×S3(F , ?F) = 0. (4.1)

Following that, the null condition on de Sitter space can be compactly written in terms
of the Riemann-Silberstein vector as

F · F = 0. (4.2)

At first, we compute the Riemann-Silberstein vector on de Sitter space for both type I
and type II solutions

F = Ea + iBa = −iΩjcae
iΩjτ + iΩjc

∗
ae
−iΩjτ ∓ iΩjcae

iΩjτ ∓ iΩjc
∗
ae
−iΩjτ

=

−2iΩjcae
iΩjτ , type I

2iΩjc
∗
ae
−iΩjτ , type II

. (4.3)

Substituting this into (4.2), we obtain

F · F =

−4Ω2
jcacae

2iΩjτ , type I
−4Ω2

jc
∗
ac
∗
ae
−2iΩjτ , type II

(4.4)

what results in two compact null conditions on 2I × S3 given by

F · F = 0⇔


∑
a caca = 0, type I∑
a c
∗
ac
∗
a = 0, type II

(4.5)

Every de Sitter field that satisfies (4.5) is classified as a null field and due to (4.1) the
null property still holds when transformed to Minkowski space. The following discus-
sion is done for type I solutions, while type II solutions will be discussed later.

Compactly written, the space of null fields is defined as

Nj := {Xa = cae
iΩjτ + c∗ae

−iΩjτ |
∑
a

caca = 0 with ca =
∑
m,n

cmnZ
mn
a }. (4.6)
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We can observe that for

caca =
∑

m,n,m′,n′
cmncm′n′Z

mn
a Zm′n′

a , (4.7)

there is a summand for every combination of

αkᾱlβmβ̄n with k + l +m+ n = 4j, (4.8)

what results in a sum of

(4j + 3)!
3!(4j)! = 1

6(4j + 1)(4j + 2)(4j + 3)

terms. These terms are all linearly independent, so they can be formed into a system
of linear equations solely depending on the complex coefficients. The main task will
be to find solutions to this system of equations. It can also be observed that cmn ∈
C(2j+1)(2j+3) for fixed j, so the null condition will generally result in a overdetermined
system of equations, but as we will see on the following examples, these systems of
equations can be reduced to a smaller number of geometric interesting equations in
CP3. A routine written in Mathematica, that was used for computing and solving
those equations for more complex cases is shown in (Appendix 6.2.3).
It will be necessary to give a brief introduction into the terminology of complex algebraic
varieties that define conic sections. As a reference for this, [17] was used and contains
many further information about this topic.
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4.1 Conics and quadric cones

The n-dimensional complex projective space CPn is defined as the set of lines through
the origin of Cn+1

CPn := Cn+1 \ {0}
∼

, (4.9)

where ∼ is an equivalence relation of complex points in the same line that passes
through the origin given by

(x0, . . . , xn) ∼ (x′0, . . . , x′n)⇔ (x0, . . . , xn) = λ(x′0, . . . , x′n) for λ ∈ C \ {0}. (4.10)

CPn is equipped with homogeneous coordinates denoted as [x0 : x1 : · · · : xn] that lie
on the same line.

A complex projective variety is defined as a subset in CPn that is given by finitely
many homogeneous polynomial equations

F1(x0, . . . , xn) = F2(x0, . . . , xn) = · · · = Fm(x0, . . . , xn) = 0. (4.11)

A subset of a projective variety S is called closed projective subvariety, if it is cut out
from S by finitely many homogeneous polynomial equations with complex coefficients
and is called irreducible if it is not a union of two different projective closed subvarieties .

Given an irreducible projective variety S in CP2

Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2 = 0 (4.12)
with (A,B,C,D,E, F ) 6= (0, 0, 0, 0, 0, 0)

together with projective coordinates [x : y : z], S is (up to projective transformations)
given by y2 = xz. Those curves are usually called conics and their higher dimensional
analogues are called quadric surfaces.

Given an irreducible projective variety S in CP3

Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2 +Gxw +Hyw + Izw +Kw2 = 0 (4.13)
with (A,B,C,D,E, F,G,H, I,K) 6= (0, 0, 0, 0, 0, 0, 0, 0)

together with projective coordinates [x : y : z : w], S is (up to projective translations)
either given by a conic xy = zw or by a quadric cone x2 = yz.

Cn can be identified with [x0 : · · · : xn] ∈ CPn via the injective map

(z1, . . . , zn) 7→ [1 : z1 : · · · : zn] ∈ CPn. (4.14)
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4.2 Null condition for j = 0 solutions

The goal is to derive general solutions for (4.5) and in order to do this, let us first study
three examples given by j = 0, j = 1

2 and j = 1 with increasing complexity and then
try to generalize the results for arbitrary spin. The simplest examples are again the
j = 0 solutions. In this case, the hyperspherical harmonics have the really simple form

Z0n
a={+,3,−} = 1√

2π

+ 3 - 1 0 0 n=-1
0 1 0 n=0
0 0 −1 n=1

, (4.15)

Z0n
a={1,2,3} = 1

2π

1 2 3 1 −i 0 n=-1
0 0

√
2 n=0

−1 −i 0 n=1
. (4.16)

The null field condition then readsc2
0,−1 + c2

0,0 + c2
0,1 = 0 a = {+, 3,−}

c2
0,0 = 2c0,−1c0,1 a = {1, 2, 3}

. (4.17)

With the freedom of scaling the complex coefficients, we can define coordinates

[c0,−1 : c0,0 : c0,1]

and both equations define topological equivalent conics in CP2 or quadric cones when
extended to CP3. From now on, we will only work on solutions in the {1, 2, 3} basis.

One could think of doing this analysis likewise in Minkowski space. As an example, that
the null condition in this form can be recovered in Minkowski space, a superposition of
j = 0 type I solutions

X1 = 1
2π ((c0,−1 − c0,1)e2iτ + (c∗0,−1 − c∗0,1)e−2iτ ),

X2 = − i√
2π

((c0,−1 + c0,1)e2iτ − (c∗0,−1 + c∗0,1)e−2iτ ), (4.18)

X3 = 1√
2π

(c0,0e
2iτ + c∗0,0e

−2iτ )

can be transformed to Minkowski space in order to compute ~F · ~F = 0. With the
routine that is shown in (Appendix 6.2.1), it follows that

Out[ ]=

l c[0, 0]2 - 2 c[0, -1] × c[0, 1]

(l - ⅈ t)2 + x2 + y2 + z2
⩵ 0

,

what exactly yields (4.17). For more complex solutions, this method is not very useful
because it demands more computational power as deriving solutions on de Sitter space.

28



4.3 Null condition for j = 1
2 solutions

We will repeat this procedure for the second simplest case of j = 1
2 solutions. The

hyperspherical harmonics in both basis read

Zmn
+ = 1

π

(
−
√

3ᾱ −β 0 0
−
√

3β̄ α 0 0

)
, (4.19)

Zmn
− = 1

π

(
0 0 ᾱ

√
3β

0 0 β̄ −
√

3α

)
, (4.20)

Zmn
1 = 1√

2π

(
−
√

3ᾱ −β ᾱ
√

3β
−
√

3β̄ α β̄ −
√

3α

)
, (4.21)

Zmn
2 = 1√

2iπ

(
−
√

3ᾱ −β −ᾱ −
√

3β
−
√

3β̄ α −β̄
√

3α

)
, (4.22)

Zmn
3 = 1

π

(
0 −

√
2ᾱ −

√
2β 0

0 −
√

2β̄
√

2α 0

)
. (4.23)

Employing the notation m = {−,+} and n = {−−,−,+,++} from now on, we obtain
the following coefficients

c1 = 1√
2π

(α(c+,− −
√

3c+,++) + ᾱ(c−,+ −
√

3c−,−−) (4.24)

+ β(−c−,− +
√

3c−,++) + β̄(c+,+ −
√

3c+,−−),

c2 = i√
2π

(α(−c+,− −
√

3c+,++) + ᾱ(c−,+ +
√

3c−,−−) (4.25)

+ β(c−,− +
√

3c−,++) + β̄(c+,+ +
√

3c+,−−),

c3 =
√

2
π

(αc+,+ − ᾱc−,− − βc−,+ − β̄c+,−). (4.26)

It can be observed, that caca = 0 contains 10 linearly independent terms which can be
treated separately. Thus we are left with the following system of equations

α2(c2
+,+ −

√
3c+,−c+,++) = 0,

ᾱ2(c2
−,− −

√
3c−,+c−,−−) = 0,

β2(c2
−,+ −

√
3c−,−c−,++) = 0,

β̄2(c2
+,− −

√
3c+,+c+,−−) = 0,

αβ(−2c−,+c+,+ +
√

3(c−,−c+,++ + c+,−c−,++)) = 0, (4.27)
ᾱβ̄(2c−,−c+,− −

√
3(c−,+c+,−− + c+,+c−,−−)) = 0,

ᾱβ(c−,−c−,+ − 3c−,−−c−,++) = 0,
αβ̄(−c+,−c+,+ + 3c+,−−c+,++) = 0,
αᾱ(c−,+c+,− + 3c−,−−c+,++ − 2c−,−c+,+) = 0,
ββ̄(−c−,−c+,+ − 3c−,++c+,−− + 2c−,+c+,−) = 0.

29



These are 10 equations for 8 complex variables, so at first this system of equations
is overdetermined. Fortunately, we can reduce these equations to a condition solely
depending on the complex coefficients and are able to find the following quadric cone
equations

c2
+,+ =

√
3c+,−c+,++ ,

c2
−,− =

√
3c−,−−c−,+ ,

c2
−,+ =

√
3c−,−c−,++ ,

c2
+,− =

√
3c+,−−c+,+ ,

(4.28)

together with a conic in CP3

3c−,++c+,−− = c−,+c+,−. (4.29)

There are many more possible solutions (cf. Appendix 6.2.3), but (4.28) and (4.29) de-
scribe the only solutions, where no coefficient vanishes and therefore can be considered
as the most general ones. As the j = 0 null condition can be broken down to a single
quadric cone in CP3, the null condition for j = 1

2 can be seen as an intersection of 4
quadric cones and one conic each contained in CP3.

4.4 Null condition for j = 1 solutions

A final example that is still manageable to compute in a reasonable amount of time is
given by j = 1 solutions. We will use the routine that can be seen in (Appendix 6.2.3)
to compute the 35 linear independent terms for 15 complex variables. Displaying all
of them will be quite confusing, but for the purpose of gaining a better understanding
about the structure of those equations, the first few ones are displayed below

α4
(
3c2

1,1 − 2
√

6c1,0c1,2
)

= 0,

ᾱ4
(
3c2
−1,−1 − 2

√
6c−1,−2c−1,0

)
= 0,

β4
(
3c2
−1,1 − 2

√
6c−1,0c−1,2

)
= 0,

β̄4
(
3c2

1,−1 − 2
√

6c1,−2c1,0
)

= 0,

ᾱ3β̄
(
−4
√

3c−1,0c0,−2 + 6
√

2c−1,−1c0,−1 − 4
√

3c−1,−2c0,0
)

= 0,

β3ᾱ
(√

6c−1,0c−1,1 − 6c−1,−1c−1,2
)

= 0,

β3β̄
(
3
√

2c−1,2c0,−1 +
√

3(c−1,0c0,1 − 2c−1,1c0,0)
)

= 0,

ᾱ2β̄2
(
3c2

0,−1 − 2
√

6c0,−2c0,0 −
√

6c−1,0c1,−2 + 3c−1,−1c1,−1 −
√

6c−1,−2c1,0
)

= 0,

ᾱβ̄3
(
−2
√

3c0,0c1,−2 + 3
√

2c0,−1c1,−1 − 2
√

3c0,−2c1,0
)

= 0.

Due to their linear independency, all equations again need to simultaneously vanish to
satisfy the null condition. Therefore we are left with many possible solutions to this
system, but as in the last example, the focus lies on the most general solution where
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no coefficients vanish. This set of solutions consists of 9 quadric cones

c2
1,1 = 2

√
3
2c1,0c1,2 , c2

0,−1 = 2
√

3
2c0,0c0,−2 ,

c2
−1,1 = 2

√
3
2c−1,0c−1,2 , c2

0,0 = 3
2c0,−1c0,1 , (4.30)

c2
0,1 = 2

√
3
2c0,0c0,2 , c2

1,−1 = 2
√

3
2c1,0c1,−2 ,

c2
1,0 = 3

2c1,−1c1,1 , c2
−1,−1 = 2

√
3
2c−1,0c−1,−2 ,

c2
−1,0 = 3

2c−1,−1c−1,1,

and 2 conics in CP3

c0,1c1,−1 = 4c0,2c1,−2 , (4.31)
c−1,1c0,−1 = 4c−1,2c0,−2.

4.5 General solutions

In the previous examples, we have found that the null condition leads to several equa-
tions that can be topologically identified with quadric cones and conics in CP3. Now
the task is to describe the structure of these equations and generalize the results for
arbitrary j. The former can be done by first analyzing which coefficients are connected
in the conic and quadric cone equations. For this, let us take a look at the following
tableaux, listing all complex coefficients for the previous examples.

n = −1 n = 0 n = 1
m = 0 c0,−1 c0,0 c0,1

Tableau for j = 0 solutions

n = −− n = − n = + n = ++
m = − c−,−− c−,− c−,+ c−,++
m = + c+,−− c+,− c+,+ c+,++

Tableau for j = 1
2 solutions

n = −2 n = −1 n = 0 n = 1 n = 2
m = −1 c−1,−2 c−1,−1 c−1,0 c−1,1 c−1,2
m = 0 c0,−2 c0,−1 c0,0 c0,1 c0,2
m = 1 c1,−2 c1,−1 c1,0 c1,1 c1,2

Tableau for j = 1 solutions
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In can be observed, that there is indeed a reoccurring structure. Based on the results,
there are (2j + 1)2 equations describing a quadric cone

c2
m,ñ = ζ|ñ|cm,ñ−1cm,ñ+1 for ñ = −j, . . . , j (4.32)

that always connect 3 horizontally neighboured coefficients with a proportionality factor
depending on the absolute value of ñ, while the central one is the coefficient being
squared. All these central coefficients fill out the blue cells in the tableaux. Also there
are 2j equations defining a conic

cm,jcm+1,−j = ηcm+1,−j−1cm,j+1 , (4.33)

sharing the same proportionality factor η. The corresponding coefficients are displayed
boldly in the tableaux. As a consequence, the null condition can be thought of some
kind foliation of C(2j+2)(2j+3) into an intersection of (2j + 1)2 conics and 2j quadric
cones in CP3. We can also deduce, that in the four cases

k = 4j ∨ l = 4j ∨m = 4j ∨ n = 4j, (4.34)

the corresponding equations for the complex coefficients readily define four quadric
cones given by

c2
±j,±j ∝ c±j,±j−1c±j,±j+1, (4.35)
c2
±j,∓j ∝ c±j,∓j−1c±j,∓j+1, (4.36)

without needing to be reduced by using the remaining equations.

Right now, these results are only based on the 3 examples and solving the system
of equations for higher spins gets more and more computationally demanding due to
the fast growing number of linearly independent equations needed to be solved. Luck-
ily, just computing these equations is a far more easy task, so the results above can be
verified by testing if (4.32) and (4.33) solve the associated system of equations. Before
doing that, we can still make some major simplifications.

In general, all the coefficients in the blue cells can be eliminated via expressing them
in terms of the 2(j + 1) outer coefficients cm,±(j+1) in the orange cells so that

c2j+2
m,ñ = λ|ñ|c

j+1−ñ
m,j−1 c

j+1+ñ
m,j+1 ⇔ cm,ñ = λ

1
2(j+1)
|ñ| c

j+1−ñ
2(j+1)
m,j−1c

j+1+ñ
2(j+1)
m,j+1 (4.37)

holds, while the outer coefficients can be chosen freely. The conic equations then tell
us that

cm,−j−1

cm,j+1
= cm+1,−j−1

cm+1,j+1
(4.38)

always holds, so there is a linear dependency between the columns and we may choose

cm,−j−1 = κcm,j+1 with κ ∈ C. (4.39)
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Because the outer coefficients can be chosen freely, we employ the following notation

cm,j+1 = dm, (4.40)
cm,−j−1 = κdm with dm ∈ C. (4.41)

For j = 1
2 , we thus obtain the compact expressions

c+,− =
√

3d
1
3
+κ

2
3d

2
3
+ =
√

3κ 2
3d+,

c+,+ =
√

3d
2
3
+κ

1
3d

1
3
+ =
√

3κ 1
3d+, (4.42)

c−,+ =
√

3d
1
3
−κ

2
3d

2
3
− =
√

3κ 2
3d−,

c−,− =
√

3d
2
3
−κ

1
3d

1
3
− =
√

3κ 1
3d−

and for j = 1 correspondingly

c−1,1 = 2κ 1
4d−1, c0,1 = 2κ 1

4d0, c1,1 = 2κ 1
4d1,

c−1,0 =
√

6κ 2
4d−1, c0,0 =

√
6κ 2

4d0, c1,0 =
√

6κ 2
4d1, (4.43)

c0,−1 = 2κ 3
4d0, c−1,−1 = 2κ 3

4d−1, c1,−1 = 2κ 3
4d1.

It is therefore reasonable to make the assumption, that the solutions can be written in
a general form of

cm,n =

√√√√( 2(j + 1)
j + 1− n

)
κ
j+1−n
2(j+1) dm. (4.44)

Indeed, this solves the 84 equations for j = 3
2 and the 165 equations for j = 2 as was

tested with the routine in (Appendix 6.2.3). Note, that this is not a general proof, but
it is very likely that (4.44) should solve the null equations for arbitrary spin.

There are still some things to mention here. (4.44) yields two extreme solutions

κ = 0⇒ only cm,j+1 6= 0, (4.45)
κ→∞⇒ only cm,−j−1 6= 0, (4.46)

leading to a solution space C2j+1. The latter can be explained as follows. If cm,−j−1
grows infinitely large, then relative to that, cm,j+1 approaches 0 which then accordingly
affects the remaining coefficients. Also choosing only cm,±(j+1) 6= 0 still solves the null
equations. The factors κ can freely be scaled by the phase

κ 7→ e2iπkmκ for km = 0, 1, . . . , 2(j + 1), (4.47)

where a specific value of km can be chosen for each individual row in the tableaux.
Hence we can find (2j + 2)2j disjoint copies of spaces of solutions corresponding to the
possible choices of km with the same structure.
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The results hold for all type I solutions but can be expanded intuitively to type II
solutions via their correspondence through a parity transformation. To give a simple
example, let us look at j = 3

2 type II solutions. The null condition results in

c∗+,+
2 =
√

3c∗−,+c∗++,+ ,

c∗−,−
2 =
√

3c∗+,−c∗−−,− ,
c∗−,+

2 =
√

3c∗+,+c∗−−.+ ,

c∗+,−
2 =
√

3c∗−,−c∗++,− ,
(4.48)

and

c∗+,−c
∗
++,+ = c∗+,+c

∗
++,−. (4.49)

That resembles exactly the conic and quadric cone equations obtained for j = 1
2 type

I solutions with an exchanged role of the magnetic quantum numbers m and n. In
fact, that is the case for all solutions, hence all null fields for type II solutions are
found through linking the general spin j type I solutions for cm,n (4.44) via a parity
transformation to spin j + 1 type II solutions for c∗m,n.

Altogether, all possible null fields arising of this construction method for electromag-
netic knots were found together with some interesting topological structure linked to
those fields. Because all admissible complex coefficients for the null condition are
known, it is now a rather simple task to compute the energy and helicity for all null
fields based on the results from last chapter.
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5 Conclusion

In this thesis, an introduction to the field of electromagnetic knots was given as well as a
recent method to generate such knots in Minkowski space was reviewed and explained.
The power of this method was demonstrated through several qualitative visualizations
for some generated solutions that gave some impressions about the structure of the
knots and how drastically it can change in time. Moreover, a general relation between
energy and helicity for all solutions including general superpositions was derived. The
main result was a classification of all null solutions contained in the set of solutions
that can be generated with the shown method. It turned out, that the coefficients that
identify a field as a null field are linked to a set of conics and quadric cones each con-
tained in CP3. The space of solutions for those coefficients satisfying the null condition
allows also for some freedom to choose different phases, resulting in the existence of
disjoint copies of such spaces with an identical structure.

Following the ideas from [4] and [12], further research about solutions that can be
generated with this method could include symmetry transformations of such knots.
Here, the classified null solutions could play an important role. They are well suited for
a deeper analysis of their transformation behaviour due to their comprehensive evolu-
tion in time and well described linked structure. It makes sense to consider symmetry
transformations from the de Sitter group SO(4, 1) together with conformal transforma-
tions, resulting in all symmetries contained in SO(4, 2) for this task. It is generally not
obvious, what happens if we carry over transformed solutions like these to Minkowski
space and they just may yield some interesting results, such as new knotted solutions
or a connection between known solutions via specific transformations. An interesting
questions arising here, is for which transformations the null property is preserved and
when it breaks.
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6 Appendix

6.1 Notes on computations

6.1.1 Compact rewriting of Maxwell‘s equations on 2I × S3

In this appendix, a compact rewriting of

−1
4Ẍa = (J2 + 1)Xa + iεabcJbXc (6.1)

in terms of X± and X3 is shown. We will need the relations

X± = 1√
2

(X1 ± iX2) and J± = 1√
2

(J1 ± iJ2). (6.2)

The first equation is obtained by the following computation

−1
4Ẍ+ = 1√

2
((J2 + 1)X1 + i(J2 + 1)X2 + i(J2X3 − J3X2)− (J3X1 − J1X3))

= 1√
2

((J2 + 1)(X1 + iX2) + (J1 + iJ2)X3 − J3(X1 + iX2))

= (J2 + 1)X+ + J+X3 − J3X+

= (J2 − J3 + 1)X+ + J+X3. (6.3)

Completely analogue to this, it follows that

−1
4Ẍ− = 1√

2
((J2 + 1)X1 − i(J2 + 1)X2 + i(J2X3 − J3X2) + (J3X1 − J1X3))

= 1√
2

((J2 + 1)(X1 − iX2) + J3(X1 − iX2)− (J1 − iJ2)X3)

= (J2 + 1)X− + J3X− − J−X3

= (J2 + J3 + 1)X− − J−X3. (6.4)

The equation of motion for X3 can be obtained as follows

−1
4Ẍ3 = (J2 + 1)X3 + i(J1X2 − J2X1)

= (J2 + 1)X3 + 1
2((J+ + J−)(X+ −X−)− (J+ − J−)(X+ +X−))

= (J2 + 1)X3 − J+X− + J−X+. (6.5)

Finally a rewriting of the gauge condition (2.27) is given by

0 = J1X1 + J2X2 + J3X3

= 1
2((J+ + J−)(X+ +X−)− (J+ − J−)(X+ −X−)) + J3X3

= J+X− + J−X+ + J3X3. (6.6)
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6.1.2 Computing the energy in spherical coordinates

In this appendix, a derivation of the following formula on the t = τ = 0 -slice is given∫
R3

d3x~E2 = 1
l

∫
S3

d3Ω3(1− ω4)EaEa (6.7)∫
R3

d3x ~B2 = 1
l

∫
S3

d3Ω3(1− ω4)BaBa. (6.8)

The basis of 1-forms on S3 evaluated on the given slice read

e0
∣∣∣
τ=t=0

= 2l
r2 + l2

dt (6.9)

ea
∣∣∣
τ=t=0

= 4l
(r2 + l2)2 (1

2(l2 − r2)δak + xaxk + lεajkx
j)dxk. (6.10)

Thus, e0 depends only on dt and ea depends on dxk. Let us first consider the electric
fields. The field strength tensor in Minkowski space is given by

F = Eidt ∧ dxi + 1
2εijkBidxj ∧ dxk (6.11)

and the analogue quantity in de Sitter space reads

F = Eae0 ∧ ea + 1
2εabcBae

b ∧ ec. (6.12)

By comparison of coefficients for (6.11) and (6.12)

Eidt ∧ dxi = Eae0 ∧ ea, (6.13)

it can be observed that the Minkowskian electric fields can be expressed via

Ei = Eae0
t e
a
i , (6.14)

with coefficients

e0
t = 2l

r2 + l2
(6.15)

eai = 4l
(r2 + l2)2 (1

2(l2 − r2)δai + xaxi + lεajix
j). (6.16)

Then, computing the square of the electric fields yields

EiEi = EaEa′(e0
t )2eai e

a′

i = 16l4
(l2 + r2)4EaEa. (6.17)

We need to transform the spherical volume element

d3Ω3 = e1 ∧ e2 ∧ e3 (6.18)
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to Minkowski space. Performing the wedge product (6.18) yields

e1 ∧ e2 ∧ e3 = 8l3
l2 + r2 dx1 ∧ dx2 ∧ dx3

= 8l3
l2 + r2 d3x. (6.19)

Therefore, we arrive at the relation

EiEid3x = l2 + r2

8l3
16l4

(l2 + r2)4EaEad
3Ω3

= 2l
(l2 + r2)3EaEad

3Ω3. (6.20)

Considering

w4

∣∣∣
t=0

= r2 − l2

r2 + l2
, (6.21)

it then follows that
1
l

2l2
r2 + l2

= 1
l
(1− ω4) (6.22)

and we are thus able to find the formula∫
R3

d3x~E2 = 1
l

∫
S3

d3Ω3(1− ω4)EaEa.

Going over to the magnetic fields, the whole computation works completely analogue
but is a bit more technical demanding. Again, via comparison of coefficients for

1
2εabcBae

b ∧ ec = 1
2Biεijkdx

j ∧ dxk, (6.23)

we can observe that the Minkowskian magnetic fields are given by

Bi = 1
2εabcεijke

b
je
c
kBa. (6.24)

It then follows that

BiBi = 1
4εabcεa

′b′c′BaBa′εijkεij′m′ebjeckeb
′

j′e
c′

k′

= 1
2εabcεa

′b′c′BaBa′ebjeb
′

j e
c
ke
c′

k . (6.25)

Computing (6.25) yields a similar expression as for the square of the electric fields

BiBi = 16l4
(l2 + r2)4BaBa. (6.26)

Hence analogously to the previous case, the formula∫
R3

d3x ~B2 = 1
l

∫
S3

d3Ω3(1− ω4)BaBa, (6.27)

holds.
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6.2 Mathematica Code

In the last appendix, some important code that was used for numerous computations
in this thesis is presented. For an implementation of exterior differential calculus,
the scalarEDCcode.nb1 from Sotirios Bonanos was used. Nearly all functions were
defined locally in the routines but of course depending on what one wants to work on
in a single notebook, it could come in handy to define some of the functions needed for
different computations globally.

6.2.1 Routine for computing the Riemann-Silberstein vector

The routine for computing the Riemann-Silberstein vector for de Sitter configurations
Xa is shown below. Because all necessary quantities like A, A as well as the components
of ~E and ~B are defined locally in this routine, accessing them can be easily done via
Print[ ]. It turned out that simplifying each step in the computation works best. For
expressions that are not too complicated RS[ ]//FullSimplify can be used, to further
simplify the output. In general, it makes sense to first try the computations without
further simplifications.
δ[i_, j_] := If[i == j, 1, 0]

ϵ[a _, i_, j_] := If[{a, i, j} ⩵ {1, 2, 3} ∨ {a, i, j} ⩵ {3, 1, 2} ∨ {a, i, j} ⩵ {2, 3, 1}, 1,

If[{a, i, j} ⩵ {3, 2, 1} ∨ {a, i, j} ⩵ {1, 3, 2} ∨ {a, i, j} ⩵ {2, 1, 3}, -1, 0], 0]

γ := (2 l^2) / (Sqrt[4 l^2 * t^2 + (r^2 - t^2 + l^2)^2])

RS[X1 _, X2 _, X3 _] :=

{X[1] := X1;

X[2] := X2;

X[3] := X3;

B[0] := t;

B[1] := x;

B[2] := y;

B[3] := z;

e[a _] := Simplify[(γ ^2 / l^3) * t * B[a] ×d[t] - Sum[(γ ^2 / l^3) * (1 / 2) * (t^2 - r^2 + l^2) δ[a, k] ×d[B[k]], {k, 1, 3}] -

Sum[(γ ^2 / l^3) B[a] ×B[k] ×d[B[k]], {k, 1, 3}] - (γ ^2 / l^3) * Sum[l * ϵ[a, j, k] ×B[j] ×d[B[k]], {j, 1, 3}, {k, 1, 3}]];

[a _] := Simplify[X[a] * e[a]];

FullGauge := reWrite[Sum[[a], {a, 1, 3}]];

A[0] := FullGauge /. {d[t] → 1, d[x] → 0, d[y] → 0, d[z] → 0};

A[1] := FullGauge /. {d[t] → 0, d[x] → 1, d[y] → 0, d[z] → 0};

A[2] := FullGauge /. {d[t] → 0, d[x] → 0, d[y] → 1, d[z] → 0};

A[3] := FullGauge /. {d[t] → 0, d[x] → 0, d[y] → 0, d[z] → 1};

F[u_, v _] := D[A[u], B[v]] - D[A[v], B[u]];

E1 := F[0, 1] // Simplify;

E2 := F[0, 2] // Simplify;

E3 := F[0, 3] // Simplify;

B1 := F[2, 3] // Simplify;

B2 := F[3, 1] // Simplify;

B3 := F[1, 2] // Simplify;

{E1, E2, E3} + I * {B1, B2, B3} // Simplify}

1URL: https://library.wolfram.com/infocenter/MathSource/683 (accessed January 22, 2020)
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6.2.2 Visualization of field lines

Before being able to visualize field lines for a specific field in Minkowski space, we first
need to compute Zmn

a in the a = {1, 2, 3} basis. The code below works for a maximum
value of j −m = 3 what corresponds to type I solutions with j = 0, 1

2 , 1,
3
2 . In order to

compute solutions for higher values of j, one just need to add the corresponding higher
order partial derivatives occurring in Yj;m,n.

Z123[J_, M_, N_] := {

f[α_] := α^(2 φ);

g[α_, b_] := (-b /Sqrt[2])^(φ - ν)*D[f[α], {α, (φ - ν)}];

Y[j_, m_, n_] :=

If[j - m == 0, Sqrt[(2 j + 1)/(2 Pi^2)]*Sqrt[((2^(j - m))*(j + m)!)/((2 j)!*(j - m)!)]*

Sqrt[((2^(j - n))*(j + n)!)/((2 j)!*(j - n)!)]*(g[α, b]),

If[j - m == 1, Sqrt[(2 j + 1)/(2 Pi^2)]*Sqrt[((2^(j - m))*(j + m)!)/((2 j)!*(j - m)!)]*

Sqrt[((2^(j - n))*(j + n)!)/((2 j)!*(j - n)!)]*

(((a/(Sqrt[2]))) D[g[α, b], {b, 1}] + (-β/Sqrt[2]) D[g[α, b], {α, 1}]),

If[j - m == 2, Sqrt[(2 j + 1)/(2 Pi^2)]*Sqrt[((2^(j - m))*(j + m)!)/((2 j)!*(j - m)!)]*

Sqrt[((2^(j - n))*(j + n)!)/((2 j)!*(j - n)!)]*

(((a/(Sqrt[2])))^2 D[g[α, b], {b, 2}] + (-β/Sqrt[2])^2 D[g[α, b], {α, 2}] -

2 (a/(Sqrt[2]))*(β/Sqrt[2]) D[D[g[α, b], α], b]),

If[j - m == 3, Sqrt[(2 j + 1)/(2 Pi^2)]*Sqrt[((2^(j - m))*(j + m)!)/((2 j)!*(j - m)!)]*

Sqrt[((2^(j - n))*(j + n)!)/((2 j)!*(j - n)!)]*

(((a/(Sqrt[2])))^3 D[g[α, b], {b, 3}] + (-β/Sqrt[2])^3 D[g[α, b], {α, 3}] +

3 (a/(Sqrt[2]))*(β/Sqrt[2])^2 D[D[g[α, b], b], {α, 2}] -

3*(β/Sqrt[2])*(a/(Sqrt[2]))^2 D[D[g[α, b], α], {b, 2}]), 0]]]];

XPlusI[j_, m_, n_] := Sqrt[((j - n)*(j - n + 1))/2]*(Y[j, m, (n + 1)]);

X3I[j_, m_, n_] := Sqrt[(j + 1)^2 - n^2] Y[j, m, n];

XMinusI [j_, m_, n_] := -Sqrt[((j + n) (j + n + 1))/2] Y[j, m, (n - 1)];

Z[m_, n_] :=

FullSimplify[{XPlusI[J, m, n] /. {φ → J, ν → (n + 1)}, XMinusI[J, m, n] /. {φ → J, ν → (n - 1)},

X3I[J, m, n] /. {φ → J, ν → n}}];

1/Sqrt[2] (Z[M, N][[1]] + Z[M, N][[2]]), 1/(Sqrt[2]*I) (Z[M, N][[1]] - Z[M, N][[2]]),

Z[M, N][[3]]}
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Below an example for computing a particular {1
2 ,

1
2 ,−

1
2} solution is given.

In[]:= γ := (2 l^2)/(Sqrt[4 l^2*t^2 + (r^2 - t^2 + l^2)^2])

ω[1] := γ*x/l

ω[2] := γ*y/l

ω[3] := γ*z/l

ω[4] := γ*(r^2 - t^2 - l^2)/(2 l^2)

eiτ[k_] := (((l + I*t)^2 + r^2)/Sqrt[4 l^2*t^2 + (r^2 - t^2 + l^2)^2])^k

In[]:= Z123[1/2, 1/2, -1/2]

Out[]=  α
2 π , -

ⅈ α
2 π , -

2 b
π 

FullSimplify[(1/2 (Z123[1/2, 1/2, -1/2] eiτ[3] + Z123[1/2, -1/2, 1/2] eiτ[-3])) /.

{α → ω[1] + I*ω[2], β → ω[3] + I*ω[4], a → ω[1] - I*ω[2], b → ω[3] - I*ω[4]}]

Out[]=  2 l

l6 x - 6 l5 t y + 3 l4 x -5 t2 + x2 + y2 + z2 + 3 l2 x -5 t2 + x2 + y2 + z2 -t2 + x2 + y2 + z2 -

6 l t y -t2 + x2 + y2 + z22 + x -t2 + x2 + y2 + z23 + 4 l3 t y 5 t2 - 3 x2 + y2 + z2
π (l - ⅈ t)2 + x2 + y2 + z22 (l + ⅈ t)2 + x2 + y2 + z22,  2 l

6 l5 t x + l6 y + 3 l4 y -5 t2 + x2 + y2 + z2 + 3 l2 y -5 t2 + x2 + y2 + z2 -t2 + x2 + y2 + z2 +

6 l t x -t2 + x2 + y2 + z22 + y -t2 + x2 + y2 + z23 + 4 l3 t x -5 t2 + 3 x2 + y2 + z2
π (l - ⅈ t)2 + x2 + y2 + z22 (l + ⅈ t)2 + x2 + y2 + z22,

-(l + ⅈ t)2 + x2 + y2 + z26 2 l z + ⅈ l2 + t2 - x2 - y2 - z2 -

2 l z - ⅈ l2 + t2 - x2 - y2 - z2 4 l2 t2 + l2 - t2 + x2 + y2 + z223
 2 π (l + ⅈ t)2 + x2 + y2 + z23 4 l2 t2 + l2 - t2 + x2 + y2 + z222
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Afterwards, we can use RS[ ] to compute the electric and magnetic fields in Minkowski
space.
In[]:= RS

 2 l l6 x - 6 l5 t y + 3 l4 x -5 t2 + x2 + y2 + z2 + 3 l2 x -5 t2 + x2 + y2 + z2 -t2 + x2 + y2 + z2 -

6 l t y -t2 + x2 + y2 + z22 + x -t2 + x2 + y2 + z23 + 4 l3 t y 5 t2 - 3 x2 + y2 + z2 
π (l - ⅈ t)2 + x2 + y2 + z22 (l + ⅈ t)2 + x2 + y2 + z22,

 2 l 6 l5 t x + l6 y + 3 l4 y -5 t2 + x2 + y2 + z2 + 3 l2 y -5 t2 + x2 + y2 + z2 -t2 + x2 + y2 + z2 +

6 l t x -t2 + x2 + y2 + z22 + y -t2 + x2 + y2 + z23 + 4 l3 t x -5 t2 + 3 x2 + y2 + z2 
π (l - ⅈ t)2 + x2 + y2 + z22 (l + ⅈ t)2 + x2 + y2 + z22,

-(l + ⅈ t)2 + x2 + y2 + z26 2 l z + ⅈ l2 + t2 - x2 - y2 - z2 -

2 l z - ⅈ l2 + t2 - x2 - y2 - z2 4 l2 t2 + l2 - t2 + x2 + y2 + z223 
 2 π (l + ⅈ t)2 + x2 + y2 + z23 4 l2 t2 + l2 - t2 + x2 + y2 + z222

Out[]=  1

π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24

12 2 l2 ⅈ l3 (x + 3 ⅈ y) + 2 ⅈ t3 y + 2 t2 x z + 2 l2 (t x + 2 ⅈ t y + 2 x z + 3 ⅈ y z) - 2 ⅈ t y x2 + y2 + z2 - 2 x z x2 + y2 + z2 +

l ⅈ x3 + t2 (-ⅈ x - y) + 3 x2 y + t (-2 ⅈ x z + 6 y z) + ⅈ x y2 - 5 z2 + 3 y y2 + z2, 1

π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24

12 2 l2 -2 ⅈ t3 x + l3 (3 x + ⅈ y) + 2 t2 y z + 2 l2 (-2 ⅈ t x + t y - 3 ⅈ x z + 2 y z) + 2 ⅈ t x x2 + y2 + z2 -

2 y z x2 + y2 + z2 + l -3 x3 + t2 (x - ⅈ y) + ⅈ x2 y - 2 t (3 x + ⅈ y) z - 3 x y2 + z2 + ⅈ y3 - 5 y z2,
12 2 l2 l4 - t4 + x4 + 2 x2 y2 + y4 + 2 t2 z2 - z4 - 2 ⅈ l3 (t + z) - 4 l2 x2 + y2 + t z -

2 ⅈ l (t + z) t2 - 2 x2 - 2 y2 - 2 t z + z2  π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24

EE[l_, t_] :=

Re

 1

π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24
12 2 l2

ⅈ l3 (x + 3 ⅈ y) + 2 ⅈ t3 y + 2 t2 x z + 2 l2 (t x + 2 ⅈ t y + 2 x z + 3 ⅈ y z) - 2 ⅈ t y x2 + y2 + z2 -

2 x z x2 + y2 + z2 + l ⅈ x3 + t2 (-ⅈ x - y) + 3 x2 y + t (-2 ⅈ x z + 6 y z) + ⅈ x y2 - 5 z2 + 3 y y2 + z2,
1

π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24
12 2 l2

-2 ⅈ t3 x + l3 (3 x + ⅈ y) + 2 t2 y z + 2 l2 (-2 ⅈ t x + t y - 3 ⅈ x z + 2 y z) + 2 ⅈ t x x2 + y2 + z2 -

2 y z x2 + y2 + z2 + l -3 x3 + t2 (x - ⅈ y) + ⅈ x2 y - 2 t (3 x + ⅈ y) z - 3 x y2 + z2 + ⅈ y3 - 5 y z2,
12 2 l2 l4 - t4 + x4 + 2 x2 y2 + y4 + 2 t2 z2 - z4 - 2 ⅈ l3 (t + z) - 4 l2 x2 + y2 + t z -

2 ⅈ l (t + z) t2 - 2 x2 - 2 y2 - 2 t z + z2  π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24
BB[l_, t_] :=

Im

 1

π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24
12 2 l2

ⅈ l3 (x + 3 ⅈ y) + 2 ⅈ t3 y + 2 t2 x z + 2 l2 (t x + 2 ⅈ t y + 2 x z + 3 ⅈ y z) - 2 ⅈ t y x2 + y2 + z2 -

2 x z x2 + y2 + z2 + l ⅈ x3 + t2 (-ⅈ x - y) + 3 x2 y + t (-2 ⅈ x z + 6 y z) + ⅈ x y2 - 5 z2 + 3 y y2 + z2,
1

π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24
12 2 l2

-2 ⅈ t3 x + l3 (3 x + ⅈ y) + 2 t2 y z + 2 l2 (-2 ⅈ t x + t y - 3 ⅈ x z + 2 y z) + 2 ⅈ t x x2 + y2 + z2 -

2 y z x2 + y2 + z2 + l -3 x3 + t2 (x - ⅈ y) + ⅈ x2 y - 2 t (3 x + ⅈ y) z - 3 x y2 + z2 + ⅈ y3 - 5 y z2,
12 2 l2 l4 - t4 + x4 + 2 x2 y2 + y4 + 2 t2 z2 - z4 - 2 ⅈ l3 (t + z) - 4 l2 x2 + y2 + t z -

2 ⅈ l (t + z) t2 - 2 x2 - 2 y2 - 2 t z + z2  π l2 - 2 ⅈ l t - t2 + x2 + y2 + z24
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A fast working routine for computing field lines for the obtained solutions written by
Jens Nöckel2 was used with his consent for the visualizations in this thesis. It is needed
to find a suitable value for the Working Precision within NDSolve[ ] in order to achieve
high numerical precision together with a reasonable computation time.

fieldSolve[field_, varlist_, xi0_, tmax_, debug_: False] :=

Module[{xiVec, equationSet, t},

If[Length[varlist] ≠ Length[xi0],

Print["Number of variables must equal number of initial conditions\nUSAGE:\n" <> fieldSolve::usage];

Abort[]];

xiVec = Through[varlist[t]];

(*Below,Simplify[equationSet] would cost extra time and doesn't help with the numerical solution,

so don't try to simplify.*)

equationSet = Join[Thread[Map[D[#, t] &, xiVec] ⩵ Normalize[field /. Thread[varlist → xiVec]]],

Thread[(xiVec /. t → 0) ⩵ xi0]];

If[debug,

Print[Row[{"Numerically solving the system of equations\n\n",

TraditionalForm[(Simplify[equationSet] /. t → "t") // TableForm]}]]];

(*This is where the differential equation is solved.The Quiet[] command suppresses warning

messages because numerical precision isn't crucial for our plotting purposes:*)

Map[Head, First[xiVec /. Quiet[NDSolve[equationSet, xiVec, {t, 0, tmax}, WorkingPrecision → 30]]], 2]]

fieldLinePlot[field_, varList_, seedList_, opts : OptionsPattern[]] :=

Module[{sols, localVars, var, localField, plotOptions, tubeFunction, tubePlotStyle, postProcess = {}},

plotOptions = FilterRules[{opts}, Options[ParametricPlot3D]];

tubeFunction = OptionValue["TubeFunction"];

If[tubeFunction =!= None, tubePlotStyle = Cases[OptionValue[PlotStyle], Except[_Tube]];

plotOptions = FilterRules[plotOptions, Except[{PlotStyle, ColorFunction, ColorFunctionScaling}]];

postProcess = Line[x_] ⧴ Join[tubePlotStyle, {CapForm["Butt"], Tube[x, tubeFunction @@@ x]}]];

If[Length[seedList[[1, 1]]] ≠ Length[varList],

Print["Number of variables must equal number of initial conditions\nUSAGE:\n" <> fieldLinePlot::usage];

Abort[]];

localVars = Array[var, Length[varList]];

localField = ReleaseHold[Hold[field] /. Thread[Map[HoldPattern, Unevaluated[varList]] → localVars]];

(*Assume that each element of seedList specifies a point AND the length of the field line:*)

Show[

ParallelTable[

ParametricPlot3D[Evaluate[Through[#[t]]], {t, #[[1, 1, 1, 1]], #[[1, 1, 1, 2]]},

Evaluate@Apply[Sequence, plotOptions]] &[

fieldSolve[localField, localVars, seedList[[i, 1]], seedList[[i, 2]]]] /. postProcess,

{i, Length[seedList]}]]];

Options[fieldLinePlot] = Append[Options[ParametricPlot3D], "TubeFunction" → None];

SyntaxInformation[fieldLinePlot] =

{"LocalVariables" → {"Solve", {2, 2}}, "ArgumentsPattern" → {_, _, _, OptionsPattern[]}};

SetAttributes[fieldSolve, HoldAll];

2URL:https://mathematica.stackexchange.com/questions/687/id-like-to-display-field-lines-for-a-point-
charge-in-3-dimensions (accessed January 22, 2020)
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As an example on how to use this code, let us look at a particular image for a {1
2 ,

1
2 ,−

1
2}

solution that was not shown in (Figure 5)
In[]:= seedList =

Flatten[Table[{{x, y, z}, 35 Pi}, {x, -1, 1, 2}, {y, -1, 1, 2}, {z, -1, 1, 2}], 2]

Out[]= {{{-1, -1, -1}, 35 π}, {{-1, -1, 1}, 35 π}, {{-1, 1, -1}, 35 π}, {{-1, 1, 1}, 35 π},

{{1, -1, -1}, 35 π}, {{1, -1, 1}, 35 π}, {{1, 1, -1}, 35 π}, {{1, 1, 1}, 35 π}}

In[]:= Show[fieldLinePlot[EE[1, 0.25], {x, y, z}, seedList,

PlotStyle → {Green, Specularity[White, 16], Tube[.03]}, PlotRange → All,

Boxed → False, Axes → None],

fieldLinePlot[BB[1, 0.25], {x, y, z}, seedList,

PlotStyle → {Red, Specularity[White, 16], Tube[.03]}, PlotRange → All,

Boxed → False, Axes → None]]

Out[]=
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6.2.3 Routine for computing the null field condition
In[  ]:= Unprotect[Factorial];

Factorial[-1] := -1;

Factorial[-2] := 2;

Protect[Factorial]

Null123[J _] :=

f[α _] := α^ (2φ);

g[α _, b _] := -b  Sqrt[2]^ (φ - ν) * D[f[α], {α, (φ - ν)}];

Y[ j_, m _, n _] :=

If[ j - m == 0, Sqrt[(2 j + 1) / (2 Pi^2)] * Sqrt[((2^ (j - m)) * (j + m) !) / ((2 j) ! * (j - m) !)] * Sqrt[((2^ (j - n)) * (j + n) !) / ((2 j) ! * (j - n) !)] * (g[α, b]),

If[ j - m == 1, Sqrt[(2 j + 1) / (2 Pi^2)] * Sqrt[((2^ (j - m)) * (j + m) !) / ((2 j) ! * (j - m) !)] * Sqrt[((2^ (j - n)) * (j + n) !) / ((2 j) ! * (j - n) !)] *

a  (Sqrt[2]) D[g[α, b], {b, 1}] + - β  Sqrt[2] D[g[α, b], {α, 1}],

If[ j - m == 2, Sqrt[(2 j + 1) / (2 Pi^2)] * Sqrt[((2^ (j - m)) * (j + m) !) / ((2 j) ! * (j - m) !)] * Sqrt[((2^ (j - n)) * (j + n) !) / ((2 j) ! * (j - n) !)] *

a  (Sqrt[2])^2 D[g[α, b], {b, 2}] + - β  Sqrt[2]^2 D[g[α, b], {α, 2}] - 2 a  (Sqrt[2]) * β  Sqrt[2] D[D[g[α, b], α], b],

If[ j - m == 3, Sqrt[(2 j + 1) / (2 Pi^2)] * Sqrt[((2^ (j - m)) * (j + m) !) / ((2 j) ! * (j - m) !)] * Sqrt[((2^ (j - n)) * (j + n) !) / ((2 j) ! * (j - n) !)] *

a  (Sqrt[2])^3 D[g[α, b], {b, 3}] + - β  Sqrt[2]^3 D[g[α, b], {α, 3}] + 3 a  (Sqrt[2]) * β  Sqrt[2]^2 D[D[g[α, b], b], {α, 2}] -

3 * β  Sqrt[2] * a  (Sqrt[2])^2 D[D[g[α, b], α], {b, 2}],

If[ j - m⩵ 4, Sqrt[(2 j + 1) / (2 Pi^2)] * Sqrt[((2^ (j - m)) * (j + m) !) / ((2 j) ! * (j - m) !)] * Sqrt[((2^ (j - n)) * (j + n) !) / ((2 j) ! * (j - n) !)] *

a  (Sqrt[2])^4 D[g[α, b], {b, 4}] + - β  Sqrt[2]^4 D[g[α, b], {α, 4}] - 4 a  (Sqrt[2]) * β  Sqrt[2]^3 D[D[g[α, b], b], {α, 3}] -

4 * β  Sqrt[2] * a  (Sqrt[2])^3 D[D[g[α, b], α], {b, 3}], 0]]]]];

XPlusI[ j_, m _, n _] := Sqrt[((j - n) * (j - n + 1)) / 2] * (Y[ j, m, (n + 1)]);

X3I[ j_, m _, n _] := Sqrt[(j + 1)^2 - n ^2] Y[ j, m, n];

XMinusI [ j_, m _, n _] := -Sqrt[((j + n) (j + n + 1)) / 2] Y[ j, m, (n - 1)];

Z[m _, n _] := FullSimplify[{XPlusI[J, m, n] /. {φ → J, ν → (n + 1)}, XMinusI[J, m, n] /. {φ → J, ν → (n - 1)}, X3I[J, m, n] /. {φ → J, ν → n}}];

Z123[m _, n _] := 1  Sqrt[2] (Z[m, n][[1]] + Z[m, n][[2]]), 1  (Sqrt[2] * I) (Z[m, n][[1]] - Z[m, n][[2]]), Z[m, n][[3]];

c1 := Collect[Sum[c[m, n] * Z123[m, n][[1]], {m, -J, J}, {n, -J - 1, J + 1}], {α, β, a, b}];

c2 := Collect[Sum[c[m, n] * Z123[m, n][[2]], {m, -J, J}, {n, -J - 1, J + 1}], {α, β, a, b}];

c3 := Collect[Sum[c[m, n] * Z123[m, n][[3]], {m, -J, J}, {n, -J - 1, J + 1}], {α, β, a, b}];

G := c1 * c1 + c2 * c2 + c3 * c3;

FullSimplify[Collect[G, {α, a, β, b, ab, αβ, aβ, αb}]]

After obtaining the linearly independent terms from the null condition, one need to
manually use them as arguments in the Reduce[ ] command while setting all terms
individually equal to zero in order to obtain a list of possible solutions. As was men-
tioned before, the solution where no complex coefficient vanishes - so in a way the most
general solution - then yields the quadric cone and conic equations that were discussed
in chapter 4. For example, Null123[1/2] yields the output
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This sum contains the 10 equations expected arising from the null condition for j = 1
2 .

The method of solving them is shown below
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For the general solutions (4.44), we can define a function that generates the correspond-
ing coefficients for a value of j.

In[  ]:= Sol[J _] :=

Flatten[Table[c[m, n] → Sqrt[Binomial[2 (J + 1), J + 1 - n]] * κ ^ ((J + 1 - n) / (2 (J + 1))) *d[m],

{m, -J, J}, {n, -J - 1, J + 1}]]

To test those solutions, it is simply needed to evaluate the output of Null123[J] at the
values given by Sol[J]. Unfortunately, the outputs for j = 3

2 and j = 2 are too large
to be displayed in a clear form, but as the compact computation below shows, (4.44)
indeed solves the null condition for those cases.
In[ ]:= FullSimplify[Null123[1 / 2] /. Sol[1 / 2]]

FullSimplify[Null123[1] /. Sol[1]]

FullSimplify[Null123[3 / 2] /. Sol[3 / 2]]

FullSimplify[Null123[2] /. Sol[2]]

Out[ ]= {0}

Out[ ]= {0}

Out[ ]= {0}

Out[ ]= {0}

46



In order to compute the null equations for type II solutions, one has to change the
definitions for X+, X− and X3 in Null123[J] to

XPlusII[j_, m_, n_] := -Sqrt[((j + n)*(j + n + 1))/2]*(Y[j, m, (n + 1)]);

X3II[j_, m_, n_] := Sqrt[j^2 - n^2] Y[j, m, n];

XMinusII [j_, m_, n_] := Sqrt[((j - n) (j - n + 1))/2] Y[j, m, (n - 1)];
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