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AbstratIn this thesis we onstrut a lass of nonommutative quantum �eld theories on Minkowski spaetime viaan analytial ontinuation of the Eulidean Grosse-Wulkenhaar and LSZ models, whih are de�ned by aperturbative setting based on modi�ed Feynman diagrams. Charatersti of these theories is the preseneof a onstant, external eletromagneti �eld, whih renders their ultraviolet and infrared regimes indistin-guishable. This feature is known as LS-duality and is believed to be responsible for their renormalizabilityand the vanishing of their β-funtions in the Eulidean ase.We introdue an alternative to the i ǫ-presription of these Minkowskian models, whih will be shownto lead to ausal propagators. This regularization allows us to map the LS-ovariant theories onto matrixmodels via a generalization of the Landau basis, and to impose a simultaneous UV- and IR-regularizationof the Feynman diagrams, while keeping the LS-duality manifestly. A new quality on Minkowski spaetimeis the instability of the vauum with respet to pair prodution, whih is due to the lak of translationinvariane aused by the eletromagneti �eld. We disuss its impliation on the perturbative expansion andthe unitarity of the sattering matrix. As a �rst step towards a renormalization of these theories, we derivethe orresponding propagators in Minkowski spaetime in position and matrix representation and disusstheir asymptotis.
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KurzbeshreibungIn dieser Arbeit konstruieren wir eine Klasse nihtkommutativer Quantenfeldtheorien auf Minkowski Raumzeitüber analytishe Fortsetzungen der euklidishen Grosse-Wulkenhaar und LSZ Modelle, welhe über einenperturbativen Ansatz mit Hilfe von modi�zierten Feynman Diagrammen de�niert sind. Charakteristishfür diese Theorien ist die Anwesenheit eines konstanten, äuÿeren elektromagnetishen Feldes, welhes ihreinfrarot und ultraviolet Bereihe ununtersheidbar maht. Diese Symmetrie ist bekannt als LS-Dualität,und sheint verantwortlih zu sein für ihre Renormierbarkeit und das Vershwinden ihrer β-Funktion imEuklidishen Fall.Wir führen eine Alternative zur i ǫ-Vorshrift für diese Modelle auf Minkowski Raumzeit ein, die, wie wirzeigen werden, ebenfalls zu kausalen Propagatoren führt. Diese Regularisierung erlaubt uns mit Hilfe einerVerallgemeinerung der Landau Basis die LS-kovarianten Modelle auf Matrix Modelle abzubilden, und einegleihzeitige UV- und IR-Regularisierung der Feynman Diagramme durhzuführen, welhe die LS-Dualitätmanifest erhält. Eine neue Qualität auf Minkowski-Raumzeit ist die Instabilität des Vakuums bezüglihPaar-Produktion, welhe aus einem von dem elektromagnetishen Feld verursahten Fehlen der Translation-sinvarianz folgt. Wir diskutieren deren Auswirkungen auf die Störungsentwiklung und die Unitarität derStreumatrix. Als einen ersten Shritt in Rihtung Renormierung dieser Theorien leiten wir die zugehörigenPropagatoren in Minkowski-Raumzeit in Orts- und Matrix-Darstellung her und diskutieren ihr asymptotis-hes Verhalten.
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1 Introdution1.1 MotivationQuantum �eld theory is a powerful framework for the desription of physial phenomena, providing anastonishing agreement of theory and experiment. But despite its suess, the reoniliation of quantumtheory and gravity remains an open issue. A long-held belief is that an underlying theory of quantumgravity should manifest itself in a modi�ation of the fundamental geometry at very short distanes and maybe aompanied by a quantization of spaetime itself.The idea to onsider theories on quantum spaetime goes bak to the early days of quantum �eld theory.The need for a regularization at high energies led people to doubt the ordinary onept of spaetime at smallsales. Inspired by quantum mehanis, where single points in phase spae loose their meaning, unertaintyrelations for spaetime oordinates indued by the ommutation relations
[xµ, xν ] = i Θµν(x) , (1.1)should prevent the resolution of arbitrary small sales and e�etively regularize the high energy divergenes.However, the papers by Snyder [Sny47a, Sny47b℄, who published the �rst systemati analysis on this subjet,were largely ignored, due to the enormous suess of the renormalization program.The mathematial foundation of nonommutative spaetimes has been developed by Alain Connes in formof his nonommutative geometry. As a surprise, the standard model �ts quite naturally into the frame ofnonommutative geometry. Using the notion of a spetral ation priniple, Connes et al. were able to deduethe standard model of partiles inluding the Higgs mehanism (with a predition for the Higgs mass around

170 ± 10 GeV [Sh07℄) and gravitation from �rst priniples (see e.g. [Con94, GB02, CC10℄). Though itstill su�ers from several shortomings, as it is (up to now) only a lassial but not a quantum theory, theseinvestigations �nally direted peoples attention to nonommutative quantum �eld theory. A �rst appliationwas found in ondensed matter systems, as it seems to be the right framework to desribe the frationalquantum Hall e�et (see e.g. [HVR01℄). After it was realized that NCQFT arises in string and M -theory[CDS98, DH98, CH99, Sh99, SW99℄ it gained huge popularity. It was shown that ertain low-energy limitslead to an e�etive nonommutative Yang-Mills theory
SYM =

∫
d4x

(
1

4g2
Fµν ⋆ F

µν

) (1.2)with
Fµν = ∂µAν − ∂νAµ − i (Aµ ⋆ Aν −Aν ⋆ Aµ) . (1.3)The produt denoted by ⋆ is the Groenewold-Moyal produt, realizing the ommutation relation (1.1) withonstant deformation matrix Θµν and nonommuting spae oordinates. Reently it has been shown thatnonommutative quantum �eld theory also appears as a low-energy limit in another popular approah toquantum gravity, namely loop quantum gravity [FL06, JMN09℄. NCQFT might thus well be seen as a �rststep towards a full theory of quantum gravity.Inspired by the nonommutative YM ation, several nonommutative versions of quantum �eld theorieshave been proposed by taking the usual lassial ation de�ned on some ommutative spaetime and repla-ing the ordinary produt by the star-produt with onstant deformation matrix. The quantum theory isde�ned perturbatively via modi�ed Feynman rules, whih in momentum spae amounts to using the ordinaryFeynman propagator but with modi�ed interation verties, whih arry momentum depending phase fators[Fil96℄. The original hope of Snyder and ontemporaries, that the fuzziness of spaetime would regulate allUV divergenes, soon turned out to be too optimisti. Filk showed that Feynman diagrams for the nonom-mutative φ4-theory an be lassi�ed into planar and non-planar diagrams [Fil96℄. The planar diagrams turn1



1 Introdutionout to be idential to their ommutative ounterpart and have to be renormalized aordingly. The non-planar diagrams, on the other side, su�er from what is alled UV/IR mixing [MVRS00℄, whih ultimatelyleads to in�nitely many non-renormalizable diagrams.Soon the lak of unitarity of the orresponding S-matrix was disovered [GM00℄, whih manifests itself ina violation of the utting rules. It was traed bak to the nonommutativity of spae and time Θ0i 6= 0 andhas found to be absent for pure spae/spae nonommutativity Θ0i = 0. This seemed to be in onordanewith the fat that theories with nonommuting time and spae oordinates should arise from open stringsmoving in an external eletri bakground whih, however, have no low energy e�etive �eld theory limit.As has been shown in [BDFP02℄, the violation of unitarity is not present in a perturbative setting usingthe Dyson series, involving time ordered produts of the interation Hamiltonian in the ontext of anonialquantization, or the Yang-Feldman formalism. The transition from the Dyson series to Feynman diagramsis usually performed with help of Wik's theorem, whih neessitates reversing the order of time orderingand �eld multipliation. These two operation, however, do not ommute if Θ0i 6= 0, whih shows that inthis ase path integral quantization and anonial quantization are simply not equivalent.Despite its apparent drawbaks, the �traditional� NCQFT on Eulidean spae based on the path integralquantization has reeived an inreased attention sine the advent of the Grosse-Wulkenhaar (GW) model.The GW model was the �rst nonommutative model whih proved to be renormalizable to all orders inperturbation theory in two [GW03℄ and four dimensions [GW05b℄. Grosse and Wulkenhaar realized thatthe UV/IR mixing problem, whih is the reason for the non-renormalizability of the usual nonommutative
φ⋆4 model, is due to a missing term in the ation. By adding an harmoni osillator term and treating itnon-perturbatively, the asymptoti behavior of the propagator improved suh as to overome the UV/IRmixing problem and even rendered the GW model renormalizable.A partiular surprising feature of this model is the vanishing of the β-funtion [GW04, DR07, DGMR07℄.In four dimensions, both, the bare and the renormalized oupling onstant remain bounded and non-zeroafter removing the UV uto�. Thus the model has no Landau ghost (or triviality problem) and is notasymptotially free but asymptotially safe. This is ontrary to the ommutative ase, where the onlymodels without Landau ghost are non-Abelian gauge theories. Roughly, the problem is that even aftersuessful renormalization some oupling parameters still may diverge at small but �nite sales. Simplerenormalizable theories in ommutative QFT, like QED or φ4 theory in 4 dimensions, are a�eted by thisproblem. It beame lear that QED had to be inorporated into a larger theory where this problem nolonger persist. Up to now the only ommutative theories whih do not su�er from the Landau problem arenon-abelian gauge theories [GW73, Pol73℄. The GW model is the �rst rigorous four dimensional �eld theorywithout unnatural uto�, whih is expeted to exist non-perturbatively [Riv07a℄ and is not asymptotiallyfree.The GW breakthrough paved the way for a onstrution of various renormalizable NCQFT de�ned onEulidean spae. The ruial ingredient turned out to be the invariane under Fourier transformation plusa resaling of the �elds, known as LS-duality [LS02a℄. It was inorporated into the GW model through theenhanement of the ation by the extra harmoni osillator term. The proedure of making a theory LS-ovariant is now known as vulanization1 and has suessfully been applied to other models, rendering themrenormalizable. Among these are the φ⋆3-model [GS06b, GS06a, GS08℄, the Gross-Neveu model [VT07a℄and the LSZ model [LSZ03, LSZ04℄.The vulanization of the Eulidean models had the onvenient side-e�et that the orresponding free partsof the ation get diagonalized by a ountable in�nite set of funtions, known as Landau funtions. Withhelp of this basis the LS-duality ovariant models are mapped onto matrix models. The matrix approahpermits an easy way of regularizing the model while keeping the LS-duality manifestly at quantum level.In this way, Grosse and Wulkenhaar were able to show the renormalizability of their model to all order inperturbation theory. In addition, it has been used to solve the LSZ model exatly and prove the vanishingof the β-funtion.In this thesis we wish to answer the question: do the LS-duality ovariant models have a ounterparton nonommutative Minkowski spaetime, and if yes, are they renormalizable? Up to now there exist onlypartial results in this diretion. In [WW07℄ a omplex model in three dimensions, i.e. with degenerateddeformation matrix and thus with one ommuting oordinate, based on a omplex version of the Grosse1Vulanization alludes to a tehnologial operation with the same name, whih adds sulphur to rubber to improve its mehanialproperties and its resistane to temperature hange [Riv07b℄.2



1.2 NotationWulkenhaar model with a (φ†φ)⋆3-potential has been onsidered and proven to be renormalizable. A real φ⋆4model in 4 dimensions with two ommuting oordinates has been proven to be renormalizable in [GVT08℄.A renormalizable NCQFT on Minkowski spaetime might thus be onstruted by using renormalizableEulidean theories equipped with a ommutative time dimension, in whih ase the modi�ed Feynman rulesapply. We will go one step further and onsider the full nonommutative Minkowski spaetime. Irrespetiveof the fat that the path integral quantization has been spotted to be responsible for the violation ofunitarity, we will work in the usual perturbation theory. The purpose is to sound the possibility to onstruta renormalizable and non-trivial four-dimensional quantum �eld theory in Minkowski spaetime with thehelp of the nonommutative deformation.We de�ne bosoni LS-duality ovariant models in Minkowski spaetime, the LSZ and GW model, based onthe work [FS09, FS10℄. While for all frequently investigated Eulidean models the vulanization proedureprodues disrete �harmoni osillator like� spetra for the wave operators whih are involved, the Minkowskisignature turns them to be ontinuous and unbounded from below. The disrete spetrum is the mainingredient for a reasonable appliation of the matrix basis. In the ourse of this thesis we will demonstratehow to overome this barrier by a proper regularization of the model, whih will be alled ϑ-regularizationand is a replaement for Feynman's i ǫ-presription. As will turn out, this regularization is also onnetedto ausality and leads to the Feynman propagator. The Feynman graphs are analytially ontinuations ofthe Eulidean ones. Comparing to reent results on the Minkowskian Grosse-Wulkenhaar model [Zah10℄,based on the usual i ǫ-regularization, we �nd that the strange divergenes found in [Zah10℄ are absent in thematrix approah. The ϑ-regularization thus seems to be neessary to de�ne LS-duality ovariant models inMinkowski spaetime. We will also disuss the problem of unitarity of these models, whih require a moreareful analysis due to the lak of translation invariane and the ourrene of pair reation. The propagatorsof these models will be alulated and their asymptotis disussed. The ϑ-regularization turns out to improvetheir asymptoti behaviour and may thus turn out to be ruial for the renormalization program.The thesis is strutured as follows: In hapter 2 we give a brief introdution to path integral quantizationof nonommutative �eld theories in Eulidean and Minkowski spaetime. We derive its modi�ed Feynmanrules and illustrate the appearane UV/IR mixing problem. Chapter 3 is devoted to the origin of the UV/IRmixing and the question how to tame it. We introdue Eulidean versions of the LS-ovariant models and thetranslation-invariant model as examples of NCQFT without UV/IR mixing problem. In hapter 4 we givea brief aount on the matrix basis, whih has been an invaluable tool in the investigation of LS-ovariantmodels on Eulidean spae. A proof for LS-ovariane at quantum level will be given. In hapter 5 weintrodue the Minkowskian versions of bosoni LS-ovariant models, the LSZ and GW model. We investigateits spetral struture and sound the possibility of a matrix representation. We point out the di�erenesto the Eulidean models and �nd a representation in terms of a ontinuous set of eigenfuntions and amatrix representation in terms of resonanes. Both approahes are related to di�erent ways to establish theorresponding quantum �eld theory. In hapter 6 we give an aount on the new matrix basis and derive thematrix model representation of the LS-ovariant models on Minkowski spaetime. Chapter 7 is devoted to theappliation of the methods introdued before. We show that the matrix approah leads to ausal propagatorsand is a natural representation to implement LS-ovariane at quantum level. The unitarity problem for LS-ovariant theories is touhed afterwards. Finally we investigate their renormalization properties in hapter8 by alulating the orresponding propagators and srutinizing their asymptoti behavior.1.2 NotationWe will shortly omment on the notation and onventions we will use in the forthoming hapters. We willwork in D-dimensional Eulidean or Minkowskian spae with D = 2n and n ∈ N, with signatures (1, . . . , 1)and (1,−1, . . . ,−1), respetively. Eulidean vetors are denoted as
a = (ai) = (a1, . . . , aD) (1.4)and are indiated by Latin indies i, j, . . . running from 1 to D. Minkowskian vetors are denoted by
a = (aµ) = (a0, . . . , ad) , (1.5)indiated by Greek indies µ, ν, . . . whih take values in {0, 1, . . . , d = D − 1}. The D = 2n-dimensionaloordinate vetor x will oasionally be split up into two-dimensional subvetors

x = (x1, . . . ,xn) , (1.6)3



1 Introdutionwith xk = (x2k−1, x2k) in Eulidean spae and xk = (x2k−2, x2k−1) in Minkowskian spaetime. In twodimensional Eulidean spae the oordinates are often denoted as x = (x, y), whereas in two-dimensionalMinkowski spaetime we write x = (t, x).The usual Einstein onvention is used to desribe the salar produts with aib
i and aµb

µ denoting theproduts in the respetive ases. If the spei� signature is irrelevant or follows from the ontext we willsimply write a · b. In order to avoid notational lutter, we will introdue a speial notation for the square ofa vetor a with respet to the di�erent signatures. Performed with respet to Eulidean signature it reads
a2

i := aia
i = a2

1 + . . . a2
D . (1.7)This allows us to distinguish it easily from its Minkowskian ounterpart denoted as

a2
µ := aµa

µ = a2
0 − a2

1 − . . .− a2
d . (1.8)Integrations will partly be abbreviated as

∫

x

:=

∫

RD

dx and ∫

k

:=

∫

RD

dk . (1.9)We will often swith between funtions f(x) de�ned on some spae and abstrat �kets� |f〉, where aordingto Dira's bra-ket notation we de�ne
〈x|f〉 = f(x) , (1.10)where the spei� representation will be lear in the given ontext. The L2-salar produt of two funtions

f, g ∈ L2(RD) is then de�ned by
〈f |g〉 =

∫

RD

dDx f(x)∗ g(x) , (1.11)where f(x)∗ is the omplex onjugated funtion of f(x), sometimes also denote as f(x). As is ommonpratie in the physial literature, this de�nition will freely be extended to objets like tempered distributionset, whenever it is lear what is meant by the pairing (1.11).The hermitian onjugation of a matrix M is designated by a dagger with M † = (Mmn)† = (Mnm)∗.We will also use the notation
x ·E · x′ = xµEµνx

′ν

x ·B · x′ = xiBijx
′j ,

(1.12)for x,x′ ∈ R
2 and Eµν and Bij are the two-dimensional eletri and magneti �eld strengths, respetively,de�ned as

E = (Eµν) =

(
0 E
−E 0

)
, B = (Bij) =

(
0 B
−B 0

) (1.13)with E,B > 0.The Fourier transformation of a funtion f is de�ned as
f̂(k) =

1

(2π)D/2

∫

RD

dDx e− i k·xf(x) , (1.14)where the signature within the salar produt will be lear from the ontext. It will sometimes also bedenoted as F [f ].Furthermore we de�ne
R+ = {x ∈ R | x ≥ 0}
R

n
+ = {x = (x1, . . . , xn) ∈ R

n | xi ≥ 0 ∀ i}
C+ = {z ∈ C | Re(z) ≥ 0} .

(1.15)We de�ne the map (·, ·)ϑ : R2 × R2 → C for ϑ ∈ [−π/2, π/2] by
(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M , (1.16)4



1.2 Notationwhere (·, ·)M is the two dimensional Minkowskian and (·, ·)E the two dimensional Eulidean salar produt.In addition we de�ne the map ‖ · ‖ : R2 → C by
‖x‖2ϑ = (x,x)ϑ

= cos(ϑ)‖x‖2E + i sin(ϑ)‖x‖2M (1.17)with ‖ · ‖E the two dimensional Eulidean and ‖ · ‖M the two dimensional Minkowskian norm.
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2 Nonommutative Quantum Field TheoriesThis hapter is intended as a brief introdution to �ordinary�, i.e. non-LS-ovariant, nonommutative quan-tum �eld theories in the path integral framework and their shortomings. The de�nition of NCQFTs onsistsof two independent steps, the introdution of a nonommutative spaetime and the quantization of physial�elds. These two steps do not ommute, so there are initially two di�erent ways to proeed. The standardproedure amounts to �rst de�ne funtions on a deformed spaetime whih in our ase will be the Moyalspae. The way we do this is known as Weyl �quantization� illustrated in the next setion. Path integralquantization of the lassial nonommutative �eld theory will be de�ned in setion 2.2. We will disuss theproblems of ordinary theories in the path integral framework using the example of the bosoni φ⋆4-theory. Wederive the related modi�ed Feynman rules in Eulidean and Minkowskian ase, explain the UV/IR mixingproblem and the unitarity problem in Minkowski spaetime.2.1 Moyal Spae and Weyl QuantizationThe following disussion is valid for both Minkowskian and Eulidean signature. For onveniene we willstik to D-dimensional Minkowski spaetime with D even. The Eulidean version may be obtained by usingEulidean instead of Minkowskian salar produts.We are searhing for a realization of a lassial �eld theory de�ned a nonommutative spae where thenonommuting oordinates obey the ommutation relations
[xµ, xν ] = i Θµν . (2.1)In the following Θµν will be �xed to a onstant, real-valued and antisymmetri and non-degenerate D ×Dmatrix, known as Moyal deformation.1 Its entries have the dimension of (length)2. A onstant deformationmatrix distinguishes several diretions in spaetime and thus implies the breaking of Lorentz invariane(or SO(D)-invariane in ase of Eulidean metri).2 Similar to the eletromagneti �eld tensor in Maxwelltheory the deformation parameter in the Minkowski ase has a �magneti part� given by Θij for i, j =

1, . . . , d measuring spae/spae nonommutativity and an �eletri part� Θ0i for i = 1, . . . , d responsible fortime/spae nonommutativity. New phenomena like the loss of unitarity and the inequivalene of di�erentquantization methods an be traed bak to the latter.A natural way of implementing a nonommutative spae is to replae spaetime oordinates xµ in RD byHermitian operators x̂µ de�ned on some Hilbert spae H. The x̂µ generate a Banah ∗-algebra whih isisomorphi to RD
Θ , whih is the ring of formal power series C[[x1, . . . , xD]] modulo the ideal generated by

xµxν − xνxµ − Θµν . In order to de�ne �eld theories on RD
Θ we need funtions on this spae. The Shwartzspae S(RD) is de�ned as the set of all smooth and omplex-valued funtions f : RD → C obeying

sup
x

(1 + |x|)k+n0+···+nd |∂n0
0 · · · ∂nd

d f(x)|2 <∞ (2.2)for every set of integers k, ni ∈ N. The transition from ordinary Shwartz funtions to funtions on RD
Θdemands an ordering presription for produts of operators. The so alled Weyl ordering is imposed byFourier expanding the funtion and replaing the ourring plane waves by its operator ounterpart U(k) =1In general Θ might be any funtion depending on the oordinates with Θµν = −Θνµ, satisfying the Jaobi identity. The�Lie-algebra ase� Θµν = λ

µν
σ xσ with omplex struture onstant λ

µν
σ leads to fuzzy and κ-deformed spaes. A third popularhoie is the �quadrati ase� with Θµν = − i

“

1
q
R

µν
ρσ − δ

µ
σδν

ρ

”

xρxσ whih leads to the de�nition of quantum groups.2There are approahes to nonommutative �eld theories whih avoid the breaking of Lorentz invariane at this level by hoosing
Θµν to be a entral operator enompassed by a whole spetrum of matries onneted by Lorentz transformations. In thesemodels, known as DFR models [DFR95, Bah04, Pia10℄, however, Lorentz invariane gets broken by the de�nition of theinterations. 7



2 Nonommutative Quantum Field Theories
e i kµx̂µ . This proedure is alled Weyl quantization [Wey50℄. At the heart of this quantization lies therelation

e i kµx̂µ

e i pµx̂µ

= e i (kµ+pµ) x̂µ

e− i
2 kµΘµνpν , (2.3)whih an easily be obtained from the Campbell-Baker-Hausdor�-formula and equation (2.1). The Weyl-Heisenberg group is generated by the elements U(k) = e i kµx̂µ and the exponential e− i kµΘµνpν is referredto as twisting.Given a Shwartz funtion f its Weyl symbol is thus given by

Ŵ [f ] =
1

(2π)D

∫

RD

dDk f̂(k) e i kµ x̂µ

. (2.4)where f̂ denotes the Fourier transformed �eld de�ned as in (1.14). The mapping (2.4) depends on thedeformation matrix Θ through the relation (2.3). One an write (2.4) as
Ŵ [f ] =

∫
dDx f(x) ∆̂(x) , (2.5)where we introdued the Hermitian operator ∆̂(x)

∆̂(x) =

∫
dDk

(2π)D
e i kµ·(x̂µ−xµ) . (2.6)The ∆̂(x) serve as a mixed basis for operators and �elds on spaetime. In the ommutative ase, i.e. Θµν = 0,the exponential fatorizes leading to the simple relation ∆̂(x) = δD(x̂µ−xµ). The usual integral is replaedby the trae on the Hilbert spae H. Normalized asTr Ŵ [f ] =

∫
dDx f(x) , (2.7)the ∆̂(x) form an orthonormal set with respet to this traeTr[∆̂(x)∆̂(y)] = δD(x− y) . (2.8)The Weyl-Heisenberg algebra has a faithful representation on the spae of Weyl symbols. However, we willalso need a representation in terms of the original Shwartz funtions. Due to (2.8) the transformation

f 7→ Ŵ [f ] is invertible with inverse given by
f(x) = Tr [ Ŵ [f ] ∆̂(x) ] =: W[Ŵ [f ]](x) , (2.9)dubbed asWigner distribution funtion of the operator Ŵ [f ] [Wig32℄. We will espeially need the the expliitform of Wigner transformation in 1+1 dimensions orresponding to the deformation parameter Θ01 = θ,whih for an operator ρ̂ is given by

W [ρ̂] =

∫
dk e i kx1/θ〈x0 + k/2|ρ̂|x0 − k/2〉 . (2.10)One an show that [Sza03℄

∆̂(x)∆̂(y) =
1

πD detΘ

∫
dDz ∆̂(z) e−2 i (x−z)·Θ−1·(y−z) . (2.11)from whih we immediately onlude

Ŵ [f ] Ŵ [g] =

∫
dDz (f ⋆Θ g)(z)∆̂(z) = Ŵ [f ⋆Θ g] . (2.12)with

(f ⋆Θ g)(x) :=
1

πD| detΘ|

∫

RD

dDy dDz f(x + y) g(x + z) e−2 i y·Θ−1z . (2.13)8



2.1 Moyal Spae and Weyl QuantizationThe produt ⋆Θ of arbitrary Shwartz funtions f(x), g(x) is known as Groenewold-Moyal produt [Gro46,Moy49℄. We will simply all it star-produt and often suppress the dependene on Θ by using ⋆ instead of ⋆Θ.We thus have a one-to-one orrespondene between the spae of Wigner distributions and its Weyl symbolssuh that the operator produt of Weyl symbols is equivalent to the star produt of their orrespondingWigner distributions:̂
W [f ] Ŵ [g] = Ŵ [f ⋆Θ g] and W[̂f ] ⋆Θ W [ĝ] = W[̂f ĝ] (2.14)for arbitrary Weyl symbols f̂ , ĝ. One an show that it is assoiative, but not ommutative

(f ⋆Θ (g ⋆Θ h)) = ((f ⋆Θ g) ⋆Θ h)

f ⋆Θ g 6= g ⋆Θ f .
(2.15)As an be seen by (2.13), the produt depends on the funtions in a non-loal manner, whih has far-reahingphysial onsequenes. Very important is the trae property of the integral given by

∫
dDx (f ⋆Θ g)(x) =

∫
dDx f(x) g(x) =

∫
dDx (g ⋆Θ f)(x) . (2.16)For analyti funtions, the star produt an be written in a perturbative way, alled Moyal expansion

(f ⋆Θ g)(x) = exp

(
i

2
Θµν∂µ∂

′
ν

)
f(x)g(x′)

∣∣∣∣
x=x′

, (2.17)with ∂µ = ∂/∂xµ and ∂′µ = ∂/∂x′µ. It should be noted that for arbitrary funtions the produt (2.17) isgenerally not equivalent to (2.13). For a thorough investigation on the equivalene of both de�nitions see[EGBV89℄.The spae S(RD) equipped with the star-produt is denoted by AΘ. With the involution f 7→ f∗ this isan assoiative ∗-algebra. By duality we an extend the star produt to the spae of tempered distributions
S′(RD), whih is the dual spae of S(RD), onsisting of all ontinuous funtionals on S(RD). For T ∈ S′(RD)and f ∈ S(RD) we set

〈T, f〉 = T (f) . (2.18)Then for any g ∈ S(RD) we de�ne the produts T ⋆ f and f ⋆ T through
〈T ⋆ f, g〉 = 〈T, f ⋆ g〉
〈f ⋆ T, g〉 = 〈T, g ⋆ f〉 (2.19)In this way we an deal with distributions, whih naturally appear in quantum �eld theory.Appliations to quantum �eld theory neessitates a relaxation of the restrition to Shwartz funtions.The multiplier algebra M =ML ∩MR withML andMR de�ned by

ML = {T ∈ S′(RD) : ∀ f ∈ S(RD) , T ⋆ f ∈ S(RD)}
MR = {T ∈ S′(RD) : ∀ f ∈ S(RD) , f ⋆ T ∈ S(RD)} .

(2.20)is a natural enhanement of AΘ. One an show thatM is an assoiative ∗-algebra, ontaining the identity,polynomials, the delta-funtion and its derivatives suh as plane waves [GBV88℄. Sine the oordinates xµare not elements of AΘ the ommutator relation
xµ ⋆Θ x

ν − xν ⋆Θ x
µ = i Θµν . (2.21)does not hold in AΘ but in M. It should be noted that an axiomati onstrution of nonommutativequantum �eld theories analogously to the ase of ordinary quantum �eld theory in terms of Wightmanaxioms is not available yet. There are hints that the framework of tempered distributions is too restritivefor the non-perturbative study of NCQFT [AGVM03℄. In [Sol07b, CMTV08℄ the Gel'fand-Shilov spaes

Sβ
α(RD) have been proposed for a enlarged framework (see appendix C.1 for a brief introdution). Theorresponding multiplier algebra has been investigated in [Sol10℄. In the following we will not be onernedabout the right domain for a mathematial rigorous de�nition of NCQFTs. Nevertheless we will disuss9



2 Nonommutative Quantum Field Theoriesthese spaes in the ontext of expansion theorems for the generalized matrix basis whih will be onstrutedin hapter 6.In order to de�ne physial quantities like an ation we need to de�ne integral and di�erentiation operationsonM and the spae of Weyl operators. The usual integral an be de�ned onM whih has the trae (2.7)on H as its ounterpart on the Weyl side. Conerning the derivatives we have at least two di�erent naturalpossibilities. The ordinary derivatives de�ned on usual di�erentiable funtions also de�ne derivatives onM
∂µ(f ⋆Θ g) = (∂µf) ⋆Θ g + f ⋆Θ (∂µg) . (2.22)Note that they have the representation3

∂µf = [− i (Θ−1)µνx
ν , f ]⋆ . (2.23)This gives us a derivative on the Weyl side through ∂̂µ := Ŵ

[
− i (Θ−1)µνx

ν
] whih is an anti-Hermitianlinear derivation with

[∂̂µ, x̂
ν ] = δ ν

µ , [∂̂µ, ∂̂ν ] = 0 . (2.24)One an then show that
[∂̂µ, ∆̂(x)] = −∂µ∆̂(x) (2.25)and hene by partial integration

[∂̂µ, Ŵ [f ]] =

∫
dDx ∂µf(x) ∆̂(x) = Ŵ [∂µf ] , (2.26)whih proves the ompatibility of both derivatives.An interesting and in retrospetive very important alternative to the usual di�erentiation was proposedby Filk in [Fil90℄. The Weyl-Heisenberg group de�ned by (2.3) is a entral extension of the D-dimensionalgroup of translations:

U(k)U(p) = e− i
2 kµΘµνpνU(k + p) , (2.27)with U(k) = e i kµx̂µ . Filk now proposes to onsider the U 's as translation operators on the deformed spaeand mimi the de�nition of a derivative in terms of the U 's. The deformed translation operation on thesymbol ∆̂(x) de�ned by (2.6) is given by

U(k)∆̂(x) =

∫
dDp′

(2π)D
e i p′

µ(x̂µ−xµ+ 1
2Θµνkν)+ i kµxµ

= e i kµxµ

∆̂(x− 1

2
Θ · k) . (2.28)and gives rise to a �ovariant derivative� of ∆̂(x) into the diretion µ̄

D̂µ̄∆̂(x) = lim
ε→0

U(ε eµ̄)− U(−ε eµ̄)

2ε
∆̂(x)

= lim
ε→0

e i ε xµ̄∆̂(x− ε 1
2Θ · eµ̄)− e− i ε xµ̄∆̂(x + ε 1

2Θ · eµ̄)

2ε

= lim
ε→0

∆̂(x− ε 1
2Θ · eµ̄)− ∆̂(x + ε 1

2Θ · eµ̄)

2ε
− ixµ̄∆̂(x) , (2.29)with eµ̄ being the unit vetor in this diretion. In terms of Wigner distributions and in Fourier spae thisonstrution yields a ovariant derivative ∂/∂kµ̄ − 2 i (Θ−1)µ̄νk

ν . This may not be surprising, as one anthink of the operators U as the parallel transport operators ating on the line bundle of �elds φ over theplane with onnetion form 2(Θ−1)µνk
ν .We thus have two di�erent possibilities to de�ne a lassial ation on a nonommutative spae, usingthe star-produt instead of the usual pointwise produt but leaving the derivatives unaltered, or using thestar-produt and the ovariant derivatives. The former approah has been the �rst hoie, but led to severedi�ulties as UV/IR mixing and nonrenormalizability, as will be explained in the next setion. The seondapproah is a speial ase of a variety of renormalizable, nonommutative Eulidean quantum �eld theories,in the following alled LS-ovariant models and introdued in hapter 3.3In�nitesimal translations are thus given by inner derivatives, whih is in lear distintion to ommutative �eld theories.10



2.2 Quantum Field Theory2.2 Quantum Field TheoryIf spae and time do not ommute, anonial quantization, path integral quantization and Yang-Feldmanquantization are no longer equivalent [BDFP02℄. In the following we will give an introdution to the �tra-ditional� Eulidean NCQFT de�ned through path integrals. It is ertainly the most studied setup and hasahieved a lot of progress in the last ten years. Afterwards we will explain its ounterpart on Minkowskispaetime, outline its disadvantages and di�erenes to other popular approahes.2.2.1 Standard Perturbative Setting in Eulidean SpaeThe standard way to obtain a �eld theory on nonommutative Eulidean spaetime is to start with a lassialation and to substitute the usual pointwise produts by the star-produt keeping the usual derivatives. Asa simple model one may onsider the φ⋆4 model given by
S =

∫

x

(
1

2
∂iφ ⋆ ∂

iφ+
m2

2
φ ⋆ φ+

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)
(x) (2.30)for real �elds φ(x) and ∫

x
=
∫

RD dDx. The trae property (2.16) implies that the free part, i.e the part ofthe ation quadrati in the �elds, is idential to the ommutative one. We are thus working with an ordinaryommutative �eld theory with �strange� interations. Funtional integral quantization will be performed byintroduing a generating funtional
Z[J ] = N

∫
Dφ exp

(
−S +

∫

x

J(x)φ(x)

) (2.31)with normalization onstant N and Dφ being the ordinary path integral measure of the ommutative ase.In the following we will show, that the generating funtional de�ned through (2.31) an be expressed in asimilar perturbative expansion as in the ommutative ase, leading to the usual Feynman diagrams with thestar-produt standing in for the ordinary pointwise produt.The free part of the generating funtional
Z0[J ] := Z[J ]λ=0 (2.32)ful�lls the same di�erential equation as in the ommutative ase. The onstrution is as follows. Sine theintegrand vanishes at the boundaries, by partial integration we get the identity

0 =

∫
Dφ δ

δφ(y)
exp

(
−S0 +

∫

x

J(x)φ(x)

)

=

∫
Dφ
(
− δS0

δφ(y)
+ J(y)

)[
exp

(
−S0 +

∫

x

J(x)φ(x)

)]
. (2.33)with S0 = S|λ=0. Notiing that for a generi funtional F

∫
DφF (φ) exp

(
−S0 +

∫

x

J(x)φ(x)

)
= F

(
δ

δJ

)∫
Dφ exp

(
−S0 +

∫

x

J(x)φ(x)

) (2.34)we arrive at the di�erential equation for the free generating funtional
(−∂2

i +m2)
δZ0[J ]

δJ(x)
= J(x)Z0[J ] (2.35)As an easily be heked this equation is solved by

Z0[J ] = exp

(
1

2

∫

x

∫

y

J(x)∆(x− y)J(y)

) (2.36)with the usual free propagator ∆(x) = 〈x|(−∂2
i +m2)−1|0〉. 11



2 Nonommutative Quantum Field TheoriesNow we onsider the full interating theory. By partial integration we �nd
0 =

∫
Dφ

(
− δS
δφ(y)

+ J(y)

)[
exp

(
−S +

∫

x

J(x)φ(x)

)]
. (2.37)We would like to pull out the terms in the �rst braket in (2.37) to obtain a funtional equation for Z[J ]analogously to (2.35). So we need an expression for the funtional derivative of S whih now ontainsstar-produts. Using the trae property and assoiativity of the star-produt one easily shows that

δS
δφ(x)

= (−∂2
i +m2)φ(x) +

λ

3!
(φ ⋆ φ ⋆ φ)(x) (2.38)while pulling this out of the funtional integral leads to the di�erential equation [MSJ01℄

(−∂2
i +m2)

δZ[J ]

δJ(x)
+
λ

3!

(
δ

δJ(x)
⋆

δ

δJ(x)
⋆

δ

δJ(x)

)
Z[J ] = J(x)Z[J ] . (2.39)The star-produt of funtional derivatives is a short-hand notation for

e
i
2 Θµν∂ξµ ∂ην e

i
2 Θρσ∂αρ ∂βσ

δ

δJ(x + ξ)

δ

δJ(x + η + α)

δ

δJ(x + η + β)
Z[J ]

∣∣∣∣
ξ=η=α=β=0

. (2.40)We will now show, that analogously to the ommutative ase, the solution is given by
Z[J ] = N exp

(
−Sint

[
δ

δJ

])
Z0[J ] (2.41)with Sint[φ] = λ

4!

∫
x
φ⋆4 the interation term and ∫

x
(δ/δJ)⋆4Z[J ] de�ned through (2.40) and the trae prop-erty. Using the trae property one �nds

[∫

y

(
δ

δJ(y)

)⋆4

, J(x)

]
=

(
δ

δJ(x)

)⋆3

. (2.42)Now Campbell-Baker-Hausdor�
e AB e−A = B + [A,B] +

1

2!
[A, [A,B]] + . . . (2.43)and the fat that [

∫
(δ/δJ)⋆4, (δ/δJ)⋆3] = 0 imply

exp

(
Sint

[
δ

δJ

])
J(x) exp

(
−Sint

[
δ

δJ

])
= J(x) + L′int

[
δ

δJ

] (2.44)where ∫
x
Lint[φ] = Sint[φ] is the interation Lagrangian. Putting (2.41) into (2.39) we �nd

(−∂2
i +m2)

δZ[J ]

δJ(x)
+
λ

3!

(
δ

δJ(x)
⋆

δ

δJ(x)
⋆

δ

δJ(x)

)
Z[J ](2.41)

= N exp

(
−Sint

[
δ

δJ

])(
(−∂2

i +m2)
δ

δJ(x)
+ L′int

[
δ

δJ

])
Z0[J ](2.35)

= N exp

(
−Sint

[
δ

δJ

])(
J(x) + L′int

[
δ

δJ

])
Z0[J ](2.44)

= J(x)N exp

(
−Sint

[
δ

δJ

])
Z0[J ](2.39)

= J(x)Z[J ] , (2.45)whih proves that (2.41) is indeed a solution for the generating funtional. This an be evaluated pertur-batively in terms of Feynman diagrams orresponding to Sint. Contrary to the usual ommutative theories,the propagators are multiplied with respet to the star-produt, for whih this diagrammati expansion isknown as modi�ed Feynman rules. These are illustrated in the next setion.12



2.2 Quantum Field Theory2.2.2 Feynman Diagrams, UV/IR Mixing and RenormalizationUsing Fourier transformation and the Campbell-Baker-Hausdor� relation, one an dedue the followingmomentum spae representation for the φ⋆4 interation part
∫

dDxφ⋆4(x) =

4∏

a=1

(∫
dDka

(2π)D/2

)
φ̂(k1)φ̂(k2)φ̂(k3)φ̂(k4) V̂ (k1, . . . ,k4) (2.46)with

V̂ (k1, . . . ,km) = (2π)Dδ

(
m∑

i=1

ki

)
exp(− i

m∑

i<j=1

ki × kj) (2.47)the interation vertex and p × q = piΘ
ijqj/2. The interation is real, positive and translation invariant,but has an additional phase fator relative to the ommutative theory. Due to momentum onservationthe propagator in momentum representation only depends on the di�erene of the momenta ∆(k,k′) =

δD(k − k′)∆(k). As in the ommutative ase eah ontration an thus be represented by an oriented linewith de�nite momentum. The modi�ed Feynman rules in momentum spae are given by
k

=
1

k2
i +m2

k2

k1 k4

k3

=
λ
4!

e
− i
P4

i<j=1 ki×kj

The additional mixing fator breaks the permutation symmetry of the lines at eah vertex one is used to inthe ommutative ase. The vertex is only invariant under yli permutations of the �elds, whih leads totwo di�erent kind of Feynman diagrams. Those whih an be drawn on a sheet of paper without rossingof lines are alled planar diagrams. Those whih have rossed internal lines are alled non-planar diagrams.Simple examples are given by the planar and non-planar tadpole:
p

k

pPlanar tadpole. p

k

pNon-planar tadpole.Filk has shown [Fil96℄ that the vertex of a general Feynman diagram in this φ⋆4 theory an be simpli�edthrough the following two ontrations
V̂ (k1, . . . ,kn1 ,p)V̂ (kn1+1, . . . ,kn2 ,−p) = (2π)Dδ

(
n1∑

i=1

ki

)
V̂ (k1, . . . ,kn2) (2.48)

V̂ (k1, . . . ,kn1 ,p,kn1+1, . . . ,kn2 ,−p) = V̂ (k1, . . . ,kn2) for n2∑

i=n1+1

ki = 0 . (2.49)The �rst of these Filk moves redues a line by gluing together two verties into bigger a one. Applying thismove n − 1 times to an n-vertex graph, one obtains a graph with all lines starting and ending at the samevertex, alled a rosette. Planarity then desribes the absene of rossing loop lines, for whih the phase anbe shown to anel out using the seond Filk move. Planar diagrams are thus idential to their ommutative13



2 Nonommutative Quantum Field Theoriesounterparts and have to be renormalized aordingly. Nonommutativity alone is thus not able to tame allUV divergenes. However, the situation is even worse.The non-planar diagrams arry additional phase fators oupling the internal and external lines. Theinitial hope that NCQFTs might be better behaved due to a natural UV ut-o� however turned out to betoo optimisti. Minwalla, Van Raamsdonk and Seiberg found an intriguing mixing of UV and IR degrees offreedom [MVRS00℄. A famous example is the non-planar tadpole in 4 spae dimensions whih is given by
λ

12

∫
d4k

(2π)4
− e i piΘ

ijkj

k2
i +m2

=
λ

48π2

√
m2

(Θ · p)2
K1(

√
m2(Θ · p)2)

pi→0∼ p−2
i , (2.50)where K1 is a modi�ed Bessel funtion of the seond kind. Contrary to the ommutative ase this diagramis �nite for �nite p due to the extra phase fator, however diverges as p−2

i for pi → 0. A hain of thesediagrams inserted into a bigger graph will inevitably lead to divergent integrals. A natural regularization inthis plane wave basis is given by the restrition of the momenta to the annulus |Λ0| < |p| < |Λ|. However,the osillations imply that a UV uto� Λ generates an e�etive IR uto� Λ1 = 1/|θ|Λ, whih is the rootof the UV/IR mixing. This makes the Wilsonian renormalization impossible, sine it would require a learseparation of high and low momentum sales. A general investigation of the renormalizability has beenperformed in [CR01℄. Sine divergenes oming from non-planar diagrams annot be absorbed by planarounterterms, renormalizable theories have to have �nite non-planar diagrams.2.2.3 NCQFT on Minkowski Spaetime and UnitarityThe transition to NCQFTs on Minkowski spaetime is formally straightforward. The lassial ation of the
φ⋆4 theory in Minkowski spaetime reads

S =

∫

x

(
1

2
∂µφ ⋆ ∂

µφ− m2

2
φ ⋆ φ− λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)
(x) (2.51)while its quantum theory is formally given by

Z[J ] = N
∫
Dφ exp

(
iS +

∫

x

J(x)φ(x)

)
. (2.52)with some normalization N . The preise form of the path integral measure is not needed to determine Z[J ]perturbatively, sine only the vanishing of the integrand for |φ| → ∞ is needed to �nd a di�erential equationfor the generating funtional. This is however not ful�lled, sine the ation is real and the integrand badlyosillating. This is usually remedied by adding for the time being the damping fator i ǫ

∫
φ2 to the ationwith ǫ > 0

Z[J ] = lim
ǫ→0+

N
∫
Dφ exp

(
iS − ǫ

∫
φ2 +

∫

x

J(x)φ(x)

)
, (2.53)whih at the same time regularizes the singularity of the free propagator (∂2

µ +m2)−1. Analoguesly to (2.35)we an derive for the free part of the generating funtional Z0[J ] = Z[J ]λ=0

lim
ǫ→0+

(∂2
µ +m2 − 2 i ǫ)

δZ0[J ]

δJ(x)
= − i J(x)Z0[J ] , (2.54)whih has the solution

Z0[J ] = N exp

(
i

2

∫

x

∫

y

J(x)∆F (x− y)J(y)

) (2.55)with ∆F the Feynman propagator
∆F (x) = lim

ǫ→0+

∫
dDk

(2π)D

e i kµxµ

k2
µ −m2 + i ǫ

. (2.56)14



2.2 Quantum Field TheoryUsing idential arguments as in setion 2.2.1 the full generating funtional is given by
Z[J ] = N exp

(
iSint

[
δ

δJ

])
Z0[J ] (2.57)leading to a perturbative expansion in terms of Feynman diagrams orresponding to Sint and the usualFeynman propagators.However, as has been found in [GM00℄, this perturbative setting leads to a violation of unitarity if spaeand time do not ommute. The authors of [GM00℄ showed, that the utting rule for the φ⋆3 two-pointfuntion and for the φ⋆4 four-point funtion are not ful�lled at one-loop order. As a neessary ondition fora unitary S-matrix they found the positive de�niteness of the expression

− pµΘµνΘνσp
σ , (2.58)whih is not ful�lled for time/spae nonommutative theories. In this ase the analytial ontinuation ofEulidean Feynman diagrams produes new branh uts that are responsible for the failure of the uttingrules.This seems to ontradit the ommon knowledge that a Hermitian interation Hamiltonian HI leads toa unitary S-matrix. And indeed, this remains true in the time/spae nonommutative ase [Bah04℄. But,the Lagrangian formulation of the quantum theory in terms of the path integral is no longer equivalent tothe Hamiltonian approah using the Dyson series and the interation Hamiltonian HI . As was pointed outin [BDFP02℄ the usual Wik theorem does not apply to non-loal interations. The ontributions to the

n-point funtion are given by
Gk(x1, . . . ,xn) =

(−1)n

n!
〈0|Tφ(x1) · · ·φ(xn)HI(t1) · · ·HI(tk)|0〉 (2.59)where T denotes the time ordering with respet to the time variables x0

1, . . . , x
0
n and t1, . . . , tk. The Wiktheorem now tells us that all two-point funtions ∆+(x) = 〈0|φ(x)φ(0)|0〉 and Heaviside step funtions θ(x0)oming from the time ordering an be ombined to give a Feynman diagram in terms of Feynman propagators

∆F (x) = θ(x0)∆+(x) + θ(−x0)∆+(−x) . (2.60)This is not true for time/spae-nonommutativity. The φ⋆n interation Hamiltonian has the general form
HI(t) =

∫ n∏

i=1

d4aiGt(a1, . . . , an) : φ(a1) · · ·φ(an) : . (2.61)In this ase the time ordering is with respet to the time variable t, alled interation point, and has norelation to the ai at all. The perturbative analysis based on this �true� time ordering is known as interationpoint time ordering presription [LS02b, LS02, B+03℄. The Heaviside funtions in the Feynman propagator,however, ome from an ordering of the �time� oordinates of the �elds. Thus with time-spae nonommutingoordinates the star-produt and the time ordering no longer ommute as is learly visible from
θ(x0)∆⋆2

+ (x) + θ(−x0)∆⋆2
+ (−x) 6= ∆⋆2

F (x) (2.62)due to
θ ⋆ θ 6= θ . (2.63)Atually, as has been pointed out in [DS03, Pia04℄, the Wik redution does lead to the usual Feynmandiagrams also for non-loal theories, however with propagators given by

D(x, τ) =
1

i
(θ(τ)∆+(x) + θ(−τ)∆+(−x)) (2.64)where τ depends on the interation points of the HI(t)s. The star-produts are performed with respet tothe x ourring in two-point funtions. For loal interations we �nd τ ≡ t.There are approahes towards a formulation of unitary NCQFTs in Minkowski spaetime with time-likenonommutativity. For models build on the Hamiltonian approah see e.g. [DFR95, Bah04℄ and [Pia10℄15



2 Nonommutative Quantum Field Theoriesfor a nie review. UV/IR mixing is absent in this framework to lowest orders. Sine perturbation theorygets ompliated already at lower loops it is not lear whether it is ompletely free of UV/IR-mixing andmight still be present in this framework. It has the disadvantage, or advantage, that di�erent ways to de�nethe interation Hamiltonian are possible. A drawbak is that the free �elds do not obey the �eld equationeven at tree level leading to a violation of urrent onservation. Yet another perturbative ansatz whihis equivalent to the others on ommutative, but not on nonommutative spaetime is the Yang-Feldmanequation [BDFP02, Bah04℄.The perturbative setup in the Hamiltonian approah is quite ompliated suh that it would be desirableto have an equivalent Eulidean path integral setup simplifying the ombinatorial aspet of perturbationtheory. The question is, what kind of Eulidean theory arises from a given Minkowskian theory and vieversa. In [Bah09℄ it has been shown that the Eulidean ounterparts of the n-point funtions for the Klein-Gordon theory on nonommutative Minkowski spaetime are not those following from the standard Eulideansetting, but appear with on-shell twisting fators, that is involving only on-shell momenta pµ = (ωp, pa) for
a = 1, . . . , D − 1 and ωp =

√
p2

a +m2.We are interested in the other diretion, starting with a Eulidean theory in a path integral setup. Wewill show that there exist models whih allow for well-de�ned analytially ontinuations to Minkowski spae-time with help of a speial regularization. These models are the LS-ovariant models suh as the Grosse-Wulkenhaar model and LSZ model, whih at the same time have no UV/IR-mixing problem and are renor-malizable to all orders in perturbation theory in Eulidean spae. We are interested in the renormalizationproperties of their Minkowskian ounterparts and the question, whether the unitarity problem still persistsand in if yes in whih sense. In the next hapter we will give a brief introdution to the LS-ovariant modelsin Eulidean spae and explain, how they are able to irumvent the UV/IR-mixing problem.
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3 How to ure the UV/IR Mixing ProblemThe UV/IR mixing poses severe problems to the renormalization program of NCQFTs. As was pointed outin [GW05b℄,the message of the UV/IR entanglement is that nonommutativity relevant at short distanesmodi�es the physis of the model at very large distanes.The question is how to modify the theory? Nowadays there are two di�erent approahes on the market whihgive an answer to this question, both de�ned on Eulidean spae. The LS-ovariant models are de�ned insetion 3.2. We will demonstrate their ovariane under the Langmann-Szabo duality (LS-duality) in setion3.3, whih is seen to be responsible for their renormalizability and vanishing of their β-funtions. In setion3.4 we will give a brief overview of the results whih have been ahieved in the last seven years. As analternative to the LS-ovariant models we brie�y disuss another renormalizable model based on a di�erentapproah to ure the UV/IR mixing problem in setion 3.5.3.1 UV and IR Behavior of NCQFTsThe UV/IR mixing an be traed bak to the non-loality of the theory. Let f and g be two �elds, whih areloated in a small region ∆ ≪
√
θ. Then one an show that ontrary the star produt of both is non-zeroover a large region of size θ/∆. As an extreme example one an take two delta funtions, whose star produtis onstant throughout spae

δ(x) ⋆ δ(x) =
1

det(πθ)
. (3.1)This shows that the interation of nonommutative �eld theory is mediated by non-loal extended objetsinstead of the point-like partiles of ordinary quantum �eld theory. By exponentiation of the in�nitesimaltranslations given by (2.23) to global translations we �nd

e− i kµxµ

⋆ f(x) ⋆ e i kµxµ

= f(x + Θ · k) . (3.2)One is thus tempted to imagine that a plane wave does not orrespond to a partile, but to a �dipole�, whoselength is proportional to its transverse momentum [SJ99, BS00, DN01, Rey02℄. For a dipole of momentum k,its dipole moment is Θ ·k and the position oordinate of the salar �eld is Bopp shifted to the ommutativeoordinate
r = x + Θ · k . (3.3)The ultraviolet dynamis in the regime E ≫ Θ−1/2 are mediated through interations of these dipoles whointerat by joining at their ends:

e− i kx

f(x)

e i k·x

17



3 How to ure the UV/IR Mixing ProblemSine the length of the dipoles is given by |Θ · k|, a sharp ultraviolet uto� Λ in momentum spae induesan infrared uto� at 1/(|Θ|Λ), the inverse of the maximal dipole length.On the other hand, the infrared dynamis in the regime E ≪ Θ−1/2, where nonommutativity is negligible,are governed by the elementary quantum �elds φk, whih reate pointlike quanta of momentum k. Thissuggests that the UV/IR mixing problem may be understood as a mismath between the dressed oordinates(3.3) and the elementary momenta k, thus by the asymmetry between extended and pointlike degrees offreedom governing the di�erent regimes. In order to ure this mismath one an make the UV and IR regimesymmetri via substitution of the generalized momenta
k −→ k + B · x , (3.4)where the real onstant D×D antisymmetri matrix B an be interpreted as an eletromagneti bakground.In terms of �eld theory, the natural implementation of this symmetrization is the replaement of usualderivatives by ovariant derivatives
∂i −→ ∂i + iBijx

j . (3.5)with (Bij) a D × D real, non-degenerated antisymmetri matrix. This is a generalization of the ovariantderivative introdued by Filk [Fil90℄, as was illustrated at the end of setion 2.1 whereB = (Θ/2)−1. Contraryto (2.30), the free part now desribes a Klein-Gordon �eld moving in a onstant magneti �eld perpendiularto the plane. Filk's ation has not attrated any attention for more than ten years, until it turned out to be theruial ingredient to suessfully improve the renormalization properties of nonommutative quantum �eldtheories. The various motivations and mathematial interpretations for the bakground �eld are summarizedin [dG10℄.3.2 LS-Covariant Models in Eulidean SpaeVariations of the ansatz introdued above are the LSZ model [LSZ03, LSZ04℄, the Grosse-Wulkenhaar model[GW03, GW05b℄ and the vulanized Gross-Neveu model [VT07b℄, all of them de�ned in Eulidean spae.The symmetry of the position and momentum degrees of freedom is known as LS-duality, and manifestsitself in an invariane of the theory under Fourier transformation plus a speial saling [LS02a℄. Rivasseauet al. proposed to all the proedure of making a theory ovariant under LS-duality (3.4) vulanization(see footnote 1). A proof that this symmetry holds at the lassial level for Eulidean and Minkowskiansignature will be given in setion 3.3 below. In order to prove the quantum version of this duality, we haveto distinguish both ases. This is beause the wave operators under onsideration will have di�erent spetralproperties depending on the metri. The proof that this is a duality at quantum level will be handed inafter the introdution of the matrix basis in hapter 4. The extension to Minkowski spaetime will be donein hapter 5.3.2.1 LSZ ModelThe general Langmann-Szabo-Zarembo model (LSZ model) in D = 2n dimensions is a omplex φ⋆4 theory.It is de�ned by the ation SLSZ = S0 + Sint with
S0 =

∫
dDxφ∗(x)

(
σK2

i + (1 − σ)K̃2
i + µ2

)
φ(x)

Sint = g

∫
dDx [α (φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β (φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)]

. (3.6)The parameters are restrited to σ ∈ [0, 1], α, β ∈ R+ and µ2 > 0 is the mass parameter. The generalizedmomenta Ki and generalized dual momenta K̃i are given byKi = − i ∂i +Bijx
jK̃i = − i ∂i −Bijx
j

(3.7)18



3.2 LS-Covariant Models in Eulidean Spaefor i = 1, . . .D and obey the ommutation relations
[Ki,Kj ] = 2 iBij , [K̃i, K̃j ] = −2 iBij . (3.8)and [Ki, K̃j ] = 0. Eah of them desribes a system in a onstant magneti �eld with �eld strength ∓2Bij ,respetively. The oordinate system will be hosen suh that the D×D dimensional deformation matrix Θtakes the anonial skew-symmetri form

(Θij) =




0 θ1
−θ1 0

0. . .
0

0 θD/2

−θD/2 0




(3.9)with θk > 0 and k = 1, . . . , D/2. The eletromagneti �eld strength B is of the same form
(Bij) =




0 B1

−B1 0
0. . .

0
0 BD/2

−BD/2 0




(3.10)with Bk > 0 and k = 1, . . . , D/2 and Bk = 2Ω/θℓ for all k and 0 < Ω ≤ 1. This implies that the waveoperator σK2
i + (1− σ)K̃2

i of the LSZ model in D = 2n dimensions breaks down to a sum of n parts withK2
i =

n∑

k=1

(P2
i )kK̃2

i =

n∑

k=1

(P̃2
i )k

(3.11)and
(P2

i )k = −(∂2
2k−1 + ∂2

2k)− 2 iBk(x2k∂2k−1 − x2k−1∂2k) + B2
k(x2

2k−1 + x2
2k)

(P̃2
i )k = −(∂2

2k−1 + ∂2
2k) + 2 iBk(x2k∂2k−1 − x2k−1∂2k) + B2

k(x2
2k−1 + x2

2k) .
(3.12)In the next hapter we will be onerned with diagonalizing the free ation. Sine all operators (3.12)ommute with eah other, the problem redues to �nding the eigenfuntions of one pair of operators (P2

i )kand (P̃2
i )k. The interation part onsists of two inequivalent, nonommutative quarti interations weightedby real parameters α and β. The α-part is known as oriented interation while the β-part is alled unorientedinteration. Up to now, renormalizability has only been shown for the oriented part.For generi σ the free part an be rewritten as

S0 =

∫
dDxφ∗(x)

(K2
i |B→B̃ + Ω2x̃2

i + µ2
)
φ(x) (3.13)with B̃ = (2σ − 1)B = (2σ − 1)(Bij), x̃i = 2Θ−1

ij x
j and Ω = Bkθk/2. The free part desribes a massiveomplex salar �eld oupled to a onstant magneti bakground and in a on�ning eletri potential pro-portional to Ω2x̃2

i . By adjusting the parameter σ we an swith between purely magneti bakground at
σ = 0, 1 or mixed magneti and eletri bakground.The quantum theory will be de�ned by the generating funtional for the LSZ model

Z[J, J∗] = N
∫
DφDφ∗ exp

(
−SLSZ +

∫

x

J∗(x)φ(x) +

∫

x

φ∗(x)J(x)

)
. (3.14)Compared to the usual φ⋆4 model investigated in setion 2.2.1 there are the additional terms in the freepart of the ation (apart from the extra degrees of freedom due to having omplex instead of real �elds).The external bakground will be treated exatly by using the dressed propagator of the �eld moving in this19



3 How to ure the UV/IR Mixing Problembakground, whih is known as Furry piture [Fur51℄. This is done by de�ning the free part of the ationthrough all terms depending quadratially on the �elds. The orresponding �free� generating funtional isthen a solution of
(σK2

i + (1 − σ)K̃2
i + µ2)

δZ0[J, J
∗]

δJ∗(x)
= J(x)Z0[J, J

∗]

(σK2
i + (1 − σ)K̃2

i + µ2)
δZ0[J, J

∗]

δJ(x)
= J∗(x)Z0[J, J

∗] .

(3.15)given by
Z0[J, J

∗] = exp

(∫

x

∫

y

J∗(x)∆(x,y)J(y)

)
. (3.16)with dressed propagator ∆(x,x′) determined by

(σK2
i + (1− σ)K̃2

i + µ2)∆(x,y) = δ2(x− y) . (3.17)It should be noted that translation invariane is broken. The momentum is thus not onserved and thepropagator ∆(x,y), does not depend solely on the di�erene x − y.1 This implies that ontrary to theusual φ⋆4 theory investigated in setion 2.2.2, planar diagrams will not be idential to its ommutativeounterparts. The full interating quantum theory is de�ned through
Z[J, J∗] = N exp

(
−Sint

[
δ

δJ∗ ,
δ

δJ

])
Z0[J, J

∗] , (3.18)leading to modi�ed Feynman diagrams with dressed propagator ∆(x,y). As will be shown in 3.3 the lassialation is ovariant under LS-duality. The proof that this symmetry holds in the full quantum theory will begiven in setion 4.5.3.2.2 The Grosse-Wulkenhaar ModelThe Grosse-Wulkenhaar model (in the following GW model for short) is a speial ase of the LSZ modelde�ned above for σ = 1/2 and real �elds. Beause of its distinguished role it played in the proess ofunderstanding renormalizable NCQFTs we will give a brief aount on it. Compared to the usual Klein-Gordon �eld, the free part moves in a harmoni osillator potential, whih amounts to replaing the Laplaeoperator aording to
∂2

i −→ ∂2
i − Ω2x̃2

i , x̃i = 2Θ−1
ij x

j , (3.19)with frequeny Ω = Bkθk/2. The ation in D = 2n dimensions is given by
SGW =

∫
dDx

1

2
φ(x)

(
−∂2

i + Ω2x̃2
i + µ2

)
φ(x) + Sint (3.20)with interation term

Sint = g

∫
dDx (φ ⋆ φ ⋆ φ ⋆ φ)(x) . (3.21)Despite being a real model, it is still ovariant under LS-duality, as will be shown below. The perturbativesetting for the GW model is de�ned through the partition funtion

Z[J ] = N
∫
Dφ exp

(
−SGW +

∫

x

J(x)φ(x)

) (3.22)with real �elds φ(x). The only di�erene to the usual φ⋆4 model investigated in setion 2.2.1 is the additionalosillator term in the free part of the ation. In the Furry piture, the free generating funtional is thusgiven by
Z0[J ] = exp

(
1

2

∫

x

∫

y

J(x)∆(x,y)J(y)

)
. (3.23)1For σ = 1 we have invariane under magneti translations, whih is the invariane of translations plus a suitable gaugetransformation of the magneti �elds: φ(x) 7→ e i a·B·xφ(x + a). The free propagator then is of the form ∆(x, y) =

e− i x·B·y ∆̄(x − y). The same is true for σ = 0 with B → −B.20



3.3 Classial LS-Covarianewith dressed propagator ∆(x,x′) determined by
(−∂2

i + Ω2x̃2
i + µ2)∆(x,y) = δ2(x− y) . (3.24)The momentum is not onserved and the propagator ∆(x,y) thus depends on both variables x and yindependently. The perturbative setting for the full interating theory is given

Z[J ] = N exp

(
−Sint

[
δ

δJ

])
Z0[J ] , (3.25)leading to the modi�ed Feynman diagrams for the φ⋆4 vertex with the dressed propagator ∆(x,y).3.2.3 Vulanized Gross-Neveu ModelAs an example for a fermioni LS-ovariant model we will shortly present the vulanized Gross-Neveu model.The usual Gross-Neveu model is a quantum �eld theory of two-dimensional Dira fermions oupled through

(ψψ)2 interation terms. The free part of the vulanized Gross-Neveu model (vGN model) is the usualfermioni Gross-Neveu model whih has been made LS-ovariant aording to the presription explainedabove. The ation of the nonommutative vulanized version (with only one �avor) reads
SGN =

∫
d2xψ(x)

(
/P+ µ

)
ψ(x) + Vo + Vno , (3.26)with /P = γiPi and γ1, γ2 onstituting a two-dimensional representation of the Cli�ord algebra

{γi, γj} = 2δij . (3.27)The interation terms are divided into orientable Vo and non-orientable Vno terms, given by
Vo =

λ1

4

∑

a,b

∫
d2nxψ ⋆ ψ ⋆ ψ ⋆ ψ(x) (3.28)

+
λ2

4

∑

a,b

∫
d2nxψ ⋆ γiψ ⋆ ψ ⋆ γiψ(x) (3.29)

+
λ3

4

∑

a,b

∫
d2nxψ ⋆ γ5ψ ⋆ ψ ⋆ γ5ψ(x) (3.30)and

Vno =
λ4

4

∑

a,b

∫
d2nxψ ⋆ ψ ⋆ ψ ⋆ ψ(x) (3.31)

+
λ5

4

∑

a,b

∫
d2nxψ ⋆ γiψ ⋆ ψ ⋆ γiψ(x) (3.32)

+
λ6

4

∑

a,b

∫
d2nxψ ⋆ γ5ψ ⋆ ψ ⋆ γ5ψ(x) (3.33)where γ5 = i γ0γ1. Sine there is no renormalization proof in matrix representation available we will notfurther investigate this model in the forthoming hapters.3.3 Classial LS-CovarianeWe will now introdue the LS-duality and show that the models introdued above are indeed LS-ovariantat the lassial level. This result was initially proven in [LS02a℄ for the Eulidean spae. We will reprodueit at this point to show that the proof also holds for Minkowskian signature.For the interation term we will need the following lemma 21



3 How to ure the UV/IR Mixing ProblemLemma 3.1. The multiple star produt of funtions fk ∈ S(RD) for k = 1, . . . 4 has the following momentumand position spae representations
∫

dDx (f1 ⋆ f2 ⋆ f3 ⋆ f4) (x) =

4∏

a=1

(∫
dDxa

(2π)D/2

)
f(x1) f(x2) f(x3) f(x4)V (x1,x2,x3,x4)

=

4∏

a=1

(∫
dDka

(2π)D/2

)
f̂(k1) f̂(k2) f̂(k3) f̂(k4) V̂ (k1,k2,k3,k4)

(3.34)with vertex funtions given by
V (x1,x2,x3,x4) =

(2π)D

| det(Θ/2)|δ
D(x1 − x2 + x3 − x4) e− i x1∧x2− i x3∧x4

V̂ (k1,k2,k3,k4) = (2π)DδD(k1 + k2 + k3 + k4) e− i k1×k2− i k3×k4 .

(3.35)where p× q = 2−1piΘ
ijqj and p ∧ q = 2pi(Θ

−1)ijqj .Proof: is given in appendix A.The spaetime metri does not play any role in this proof, sine only Fourier expansions and Gaussianintegrals were needed. Changing from Eulidean to Minkowskian metri amounts to interhanging Eulideanand Minkowskian salar produts in the expressions above. We will need a simple variation of this lemma.Using relation f̂∗(k) = f̂∗(−k) we �nd
∫

dDx (f∗
1 ⋆ f2 ⋆ f

∗
3 ⋆ f4) (x) =

4∏

a=1

(∫
dDka

(2π)D/2

)
f̂∗
1 (k1) f̂2(k2) f̂

∗
3 (k3) f̂4(k4) V̂ (−k1,k2,−k3,k4)

∫
dDx (f∗

1 ⋆ f
∗
2 ⋆ f3 ⋆ f4) (x) =

4∏

a=1

(∫
dDka

(2π)D/2

)
f̂∗
1 (k1) f̂

∗
2 (k2) f̂3(k3) f̂4(k4) V̂ (−k1,−k2,k3,k4) .(3.36)Note that these results are in lear ontrast to the ommutative ase, in whih the position and momentumverties are very di�erent. There we have a loal position-spae interation vertex V (x1,x2,x3,x4) ∝

δD(x1 − x2 + x3 − x4)δ
D(x1 − x2)δ

D(x2 − x3) and a non-loal interation vertex in momentum spae
V̂ (k1,k2,k3,k4) ∝ δD(k1 + k2 + k3 + k4). The nonommutative ation possess a duality between the UVand IR regime. In ontrast to the usual free salar ation this manifests itself in a symmetry of the wholeLSZ ation. In the following we will reprodue the proof given in [LS02a℄, in order to show that the dualityholds irrespetively of the signature of the metri.Lemma 3.2 (Classial duality). The general LSZ ation

SLSZ = S0 + Sint ≡ SLSZ[φ;B, g,Θ] (3.37)de�ned above obeys
SLSZ[φ;B, g,Θ] = SLSZ[φ̃;B, g̃, Θ̃] , (3.38)where

φ̃(x) =
√
| detB|φ̂(B · x) , (3.39)

φ̂(k) the Fourier transform of φ(x), and the salar produt may have Eulidean or Minkowskian signature.The transformed oupling parameters are
Θ̃ = −4B−1Θ−1B−1 , g̃ = |det(BΘ/2)|−1

g . (3.40)Moreover, the transformation (φ;B, g,Θ) 7→ (φ;B, g̃, Θ̃) is a duality of the �eld theory, i.e. it generates ayli group of order two.22



3.3 Classial LS-CovarianeProof: For the following we de�ne the derivatives ∂̂j = ∂/∂kj and ∂̃i = ∂/∂k̃i = −Bij ∂̂j with k̃ = B−1 · k.We start with the mass term. Using the Parseval relation we get
µ2

∫
dDxφ∗(x)φ(x) = µ2

∫
dDk φ̂∗(k) φ̂(k)

= µ2

∫
dDk̃ | detB| φ̂∗(B · k̃) φ̂(B · k̃)

= µ2

∫
dDx φ̃∗(x) φ̃(x) . (3.41)where in the last we renamed k̃ = x. Furthermore we getP̂iφ = (ki + iBij ∂̂

j)φ̂(k) = (− i ∂̃i +Bij k̃
j)φ̂(k) . (3.42)Thus de�ning Qi = i ∂̃i −Bij k̃

j we an proeed as before using again the Parseval relation
∫

dDx (Piφ)†(x) (Piφ)(x) =

∫
dDk̃ | detB| (Qiφ̂)†(B · k̃) (Qiφ)(B · k̃)

=

∫
dDx (Qiφ̃)†(x) (Qiφ̃)(x) (3.43)whih has the same form as before with φ̃ substituted for φ. The same analysis holds for the part ontainingP̃i, whih proves the duality for the free part. Surely, these onsiderations are independent of the partiularhoie of the metri.The symmetry of the interation term Sint follows immediately from lemma 3.1 and relations (3.36). Upto the term | det(Θ/2)|−1, they have the same form in momentum and position spae but with (Θ/2)−1substituted for Θ/2. Changing φ̂→ φ̃ and k→ k̃ this implies

g → | det(BΘ/2)|−1g ,

Θ→ −4B−1Θ−1B−1 ,
(3.44)whih �nally proves the lemma.At the speial points Θ = ±2B−1 the �eld theory is ompletely invariant under Fourier transformation(up to the sign of θ), and it is said to be self-dual. It is important to notie that everything we needed toprove this theorem were Fourier and Gaussian integrals. This implies that this lassial duality holds forEulidean as well as for Minkowskian metri.The proof of the lassial duality in the LSZ ase is based on the fat that the Fourier transformed omplexonjugated �elds get momenta with �ipped sign. For real �elds this has to be ensured arti�ially by usingthe yli Fourier transformation instead of the usual Fourier transformation, de�ned by

φ̂(ka) :=

∫
dDxa

(2π)D/2
φ(xa) e i (−1)aka·xa , (3.45)where a = 1, 2, 3, 4 enumerates the momenta involved. It ensures that the sign of the momenta in the kinetiand the interation term is the same as in the LSZ ase suh that the integrations an be done in the sameway, proving the duality for the GW model. In the literature this duality is sometimes presented in theequivalent formLemma 3.3. Under the exhange of position and momenta

pi ↔ x̃i , φ̂(k)↔
√
| det(Θ/2)|φ(x) (3.46)with φ̂ the yli Fourier transformed �eld, the Grosse-Wulkenhaar model given by the ation SGW transformsas

SGW[φ; Ω, λ, µ] = Ω2SGW

[
φ;

1

Ω
,
λ

Ω2
,
µ

Ω

] (3.47)23



3 How to ure the UV/IR Mixing ProblemAt Ω = ±1 the theory is again invariant under LS duality.The interation terms of the vGN model are idential to those of the salar models given by the relations(3.36). Using P̂iψ = (ki − iBij ∂̂
j)ψ̂(k) (3.48)it is lear that also the vGN model is ovariant under Fourier transformation plus some appropriate resalingof the �elds, namely the LS-duality.3.4 LS-Covariane, Renormalizability and Vanishing of the

β-FuntionThe LS-duality ovariane has been turned out to be a ruial onept in the onstrution of renormalizablenonommutative quantum �eld theories on Eulidean spae. As a motivation for the searh of orrespondingtheories on Minkowski spaetime, we will now give a brief overview on established results.For the LSZ model there are two independent interation terms. However, only the oriented interation,i.e. the α-dependent part has been shown to be renormalizable. In the following β is always assumed to be0. The behavior of these models strongly depend on their parameters σ and Ω. There are four ases whihare generally distinguished:
• σ = 1,Ω = 1 (ritial and self-dual)
• σ < 1,Ω = 1 (self-dual)
• σ < 1, 0 < Ω < 1 (ordinary)
• σ = 1, 0 < Ω < 1 (ritial)Eah model may be omplex or real. A model is alled ritial if the orresponding propagator in positionspae ∆(x,x′) deays if |x− x′| goes to in�nity, but only osillates as |x + x′| → ∞.2The ritial and self-dual φ⋆4 model was �rst introdued in [Fil90℄, while its invariane under LS-dualityhas been pointed out [LS02a℄. It has been shown to be exatly solvable [LSZ03, LSZ04℄ in general evendimensions, in the sense that there is a losed formula for the partition funtion for the regularized theory.The UV �xed point of the theory is, however, trivial, and the oupling onstant vanishes if the UV uto� isremoved. The self-dual φ⋆3 theory in two, four and six dimensions, based on the real GW free ation, hasbeen shown to be renormalizable, non-trivial and essentially solvable genus by genus,3 while in six dimensionsthis model is asymptotially free [GS06a, GS06b, GS08℄.To improve the renormalization properties it was suggested in [LSZ03, LSZ04℄ to slightly disturb the LSZmodel by hoosing σ < 1. In this ase the model gets altered by a harmoni osillator term (see equation(3.13)), making the position-spae propagator well behaved, with an exponential deay in |x−x′| → ∞ and

|x + x′| → ∞ separately. The �rst result was due to Grosse and Wulkenhaar for σ = 1/2 and real �elds.Using the matrix basis they showed that in two and four dimensions this theory is renormalizable to allorders in perturbation theory [GW03, GW05b℄. While in two dimensions the harmoni osillator frequenyvanishes if the uto� is removed and the theory is superrenormalizable, in four dimensions the selfdual point
Ω = 1 is a non-trivial �xed point of the theory. Their analysis relied on numerial determination of thesaling behavior of the propagator. This gap has later been �lled by Rivasseau et al. [RVTW06℄, on�rmingthe renormalizability. In addition, in four dimensions and at the self-dual point, the β-funtions for bothouplings Ω and g vanish to all orders in perturbation theory, and thus the renormalized ouplings �ows toa �nite bare oupling [GW04, DR07, DGMR07℄. This breakthrough has been possible due to ertain Wardidentities the model ful�lls at quantum level, whih are believed to be related to the LS duality. It is arguedthat the same is true for Ω < 1, sine the renormalization group �ow of Ω→ 1 is very fast [DGMR07℄. These2The designation ritial is due to Rivasseau et al. [RT08℄. In order to avoid onfusion with �ritial phenomena�, it hasbeen proposed to all them ovariant models [Riv07b℄. Sine in this thesis we are already using the terminus LS-ovariantmodels for all of these models we will stik to the desription ritial.3Feynman diagrams in the perturbative expansion of NCQFTs form a Riemannian surfae using the double line formalism,whih we will introdue in setion 4.4. The genus of a diagram is then idential to the genus of the surfae.24



3.5 Translation-Invariant Modelresults have been extended to all 0 < σ < 1 for both real and omplex �elds in [GMRVT06, GGR09℄. Theextension to bosons with N �avors, alled olor Grosse-Wulkenhaar model, have been studied in [GR08℄.They have been shown to be renormalizable and asymptoti free for N > 1.The LSZ model for σ = 1 and Ω < 1 is more di�ult to treat. It belongs to the ategory of ritialNCQFTs. It is shown to be renormalizable in 4 dimensions (see [RT08℄). The vulanized Gross-Neveumodel is also of this type. In [VT07a℄ it has been shown that the massless orientable LS-duality ovariantGross-Neveu model is renormalizable to all orders in perturbation theory. Interestingly, the UV/IR mixingis partly still present, whih, however, does not prevent the theory to be renormalizable. This seems toindiate that the preise role of LS-duality and the vulanization proedure has not been fully understoodyet. Furthermore it has been shown, that at one-loop level this theory is asymptotially �free� but notasymptotially safe [LVTW07℄, just like its ommutative ounterpart.The salar LS-ovariant models have a vanishing β-funtion and thus ontain no Landau ghost, ontrary tothe ommutative φ4
4 theory. Unlike non-abelian gauge theories, this elimination is ahieved without asymp-toti freedom, but instead with asymptoti safety. For these reasons, a full non-perturbative onstrutionof the quantum �eld theory without any ut-o� is believed possible [Riv07a, MR08℄, whih would be the�rst known model in four dimensions. However, while the vanishing of the β-funtion was blessing from theonstrutive �eld theory point of view, it might turn out to be a problem from the physial perspetive,as its onnetion to the ommutative regime Θ → 0 may not exist. For this reason another renormalizablemodels has been suggested, alled the translation-invariant model, brie�y exposed in the next setion.3.5 Translation-Invariant ModelWe will not keep quite about yet another onept whih has suessfully overome the UV/IR mixingproblem, but whih at the same time avoids the breaking of translation invariane. It still keeps the UV/IRmixing under ontrol and is renormalizable to all orders in perturbation theory [GMRT09℄. It is alledtranslation-invariant model and de�ned by the ation

S1/p2 =

∫
d4x

1

2

(
∂iφ(x) ∂iφ(x) + µ2φ2(x)− φ(x) ⋆

a2

θ2∂2
i

⋆ φ(x)

)
+
λ

4!

∫
d4xφ⋆4(x) , (3.49)with a a dimensionless onstant and ∂−2

i regarded as the Green funtion of ∂2
i . The momentum spaepropagator, given by

G(k) =
1

k2 +m2 + a2

k2

, (3.50)does not a�et the UV behavior, but has a nie damping in the IR regime. Putting n one-loop diagramsinto one big loop has a nie IR behavior and thus solves the UV/IR mixing problem. It is renormalizable toall orders in perturbation theory [GMRT09℄.The 1/p2-modi�ed propagator an be seen as the usual propagator dressed by quantum orretions. Indeed,the 1/p2 orretions appear at every order in perturbation theory of the usual φ⋆4 theory. Its β-funtion isa rational multiple of the β-funtion of the ommutative model [GT08℄. It follows that ontrary to the LS-ovariant models it might not be realizable non-perturbatively, but it might have a meaningful ommutativelimit. In [MRT09℄ a ommutative limit mehanism has been proposed, in whih the 1/p2-terms get tradedin for mass and wave funtion ounterterms in the limit θ → 0. It is also argued that the extension to gaugetheories is easier than in the LS-ovariant models [GT08℄, sine this extension preserves its trivial vauum[BGK+08℄. In this thesis we will not further follow this diretion and restrit ourselves to the investigationof LS-ovariant models. For more information see [Tan08, Tan10, BKSW10℄ and referenes therein.
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3 How to ure the UV/IR Mixing Problem
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4 Matrix Model Representation of EulideanLS-Covariant NCQFTsAn invaluable tool in the investigation of the LS-ovariant models has been the Landau basis, whih allowsto map them onto matrix models. It has been used to solve the ritial, self-dual LSZ model exatly, to provethe renormalizability of the GW model and the vanishing of its β-funtions. Though the renormalizability ofthese models have already been proven in position spae, it will give us the possibility to de�ne a well-de�nedanalytial ontinuation to Minkowski spaetime.From a physiist's point of view, the Landau basis is a very natural basis for the Hilbert spae L2(R2),sine it is made of (Wigner transformations of) the produts of two opies of harmoni osillator states.Furthermore, its elements are funtions, whih an be desribed as �best loalized states� with respet tothe star-produt. The analog of Heisenberg's unertainty relation for nonommuting oordinates forbidsthe simultaneous loalization of onjugated oordinates xi and xj with θij = θ 6= 0. If we try to loalizeGaussian wave pakets in two dimensions through a multipliation with itself one �nds
e−x2

i /a2

⋆θ e−x2
i /a2

= c e−x2
i /d2 (4.1)with

c = 1 +
θ2

a4
and d =

√
a4 + θ2

2a2
. (4.2)This implies that for a > √θ we get d < a and for a < √θ we �nd d > a with a �xed point at a =

√
θ and abest foused Gaussian given by

f00(x) ∼ 2 e−x2
i /θ . (4.3)The Landau funtions fmn ∈ S(R2) with m,n ∈ N are build on this Gaussian as a ground state via appli-ation of �ladder operators�, and form an ountable in�nite orthonormal basis for L2(R2). They are energyeigenfuntions of the Landau Hamiltonian, whih desribes the motion of a harged partile, moving in atwo-dimensional plane exposed to a perpendiular magneti �eld, namely the (P2

i )k and (P̃2
i )k. Expand-ing the �elds in this basis, the theory gets mapped onto a matrix model, simplifying the interation partonsiderably through the relation

fmn ⋆ fkℓ ∼ δnkfmℓ . (4.4)With help of this basis we get rid of the twisting fators showing up in the vertex funtions in the planewave basis, trading the nonommutative star-produt in for the nonommutative matrix-produt.In the following we will derive the matrix model representation for Eulidean LS-ovariant theories. Thiswill be done in a fashion whih will make it easy to apture the generalization to Minkowski spaetime. Insetion 4.1 we use the Weyl-Wigner transformation to map the eigenvalue equation for the operators (P2
i )kand (P̃2

i )k to the harmoni osillator problem. Using its Fok spae representation we onstrut the Landaufuntions in 4.2, whih brings us immediately to the matrix model representation in setion 4.3. Afterwardswe will introdue the modi�ed Feynman rules in terms of ribbon graphs and prove the LS-ovariane atquantum level. In the following we will work in two dimensions. The generalization to higher dimensions isstraightforward and will be given in setion 4.6.4.1 Mapping onto the Harmoni OsillatorThe Eulidean LS-ovariant models introdued in the last hapter are speial in the sense that there existsa matrix representation whih diagonalizes the free part of the ations. This is implied by the fat that the27



4 Matrix Model Representation of Eulidean LS-Covariant NCQFTsoperators (P2
i )k and (P̃2

i )k for eah k = 1, . . .D/2 have disrete spetra resembling the harmoni osillatorspetrum. In the following we will show how to see this and how to onstrut the eigenbasis.We will skip the index k and work with the 2 dimensional wave operators P2
i and P̃2

i ating on funtionson S(R2) depending on x = (x, y). Sine P2
i and P̃2

i ommute, we an �nd simultaneous eigenfuntions suhthat P2
i fmn(x) = λmnfmn(x)P̃2
i fmn(x) = λ̃mnfmn(x)

(4.5)with λmn, λ̃mn ∈ R and some indies m and n. The ation of P2
i and P̃2

i on some funtion g(x) an berepresented as P2
i g(x) = B2(x2 + y2) ⋆2/B g(x)P̃2
i g(x) = g(x) ⋆2/B B2(x2 + y2) ,

(4.6)where ⋆2/B is the usual Moyal produt with θ = 2/B. This an be veri�ed by using the perturbativerepresentation of the star produt to get
B2(x2 + y2) ⋆θ g(x) =

(
B2(x2 + y2) + iB2θ(x∂y − y∂x)− 1

4
B2θ2(∂2

x + ∂2
y)

)
g(x) . (4.7)Setting θ = 2/B the rhs yields exatly P2

i g(x) sineP2
i = −∂2

i − 2 iB(y∂x − x∂y) +B2x2
i , (4.8)ompare (3.12). Now interhanging the order of the two fators of the lhs of (4.7) �ips the sign of θ on therhs. This is equivalent to interhanging P2

i and P̃2
i .The ation of P2

i and P̃2
i an thus be represented as a star produt with the lassial Hamiltonian B2(x2 +

y2), whih is the harmoni osillator if we interpret y as the momentum onjugated to x. We an exploitthis fat, by using the Weyl-Wigner transformation, whih maps the star produt of two funtions onto theoperator produt of its Weyl symbols (2.14). The symbols
Ŵ
[√

2Bx
]

= q̂ and Ŵ
[√

2By
]

= p̂ (4.9)obey the Heisenberg algebra
[q̂, p̂] = 2B2[x, y]⋆2/B

= i 4B . (4.10)Noting that Ŵ [x2
]

= Ŵ [x]
2 and Ŵ [

y2
]

= Ŵ [y]
2 we �ndP2

i fmn(x) = W

[
Ĥhof̂mn

]
= λmnfmn(x)P̃2

i fmn(x) = W

[
f̂mnĤho

]
= λ̃mnfmn(x)

(4.11)with
Ĥho =

1

2
(p̂2 + q̂2) (4.12)the harmoni osillator and f̂mn = Ŵ [fmn]. Clearly, the left/right-eigenfuntions of Ĥho are tensor produtsof the form

f̂mn = Cf |φm〉〈φn| (4.13)with Cf being some onstant and φn denoting the harmoni osillator eigenstates. Working in the represen-tation
〈q′|q̂|q〉 =

√
2Bq 〈q′|q〉 ⇒ 〈q′|p̂|q〉 = − i

∂

∂q/
√

8
〈q′|q〉 . (4.14)the harmoni osillator is given by

〈q′|Ĥho|q〉 = 4
(
−∂q + γ2 q2

)
〈q′|q〉 (4.15)28



4.2 Landau Funtionswith γ = B/2. It is a self-adjoint operator on L2(R) with a disrete spetrum given by {8γ (n+1/2) , n ∈ N}.Its eigenfuntions are known as harmoni osillator wavefuntions and are given by
φn(q) =

( √
γ

2nn!
√
π

)1/2

e− γ
2 q2

Hn(
√
γ q) . (4.16)They form a Hilbert spae basis for L2(R) and obey

〈φm|φn〉 = δmn . (4.17)In summary, the simultaneous eigenvalue equations for P2
i and P̃2

i are equivalent to two harmoni osillatorproblems with eigenvalues given by
λmn = 4B

(
m+

1

2

) and λ̃mn = 4B

(
n+

1

2

)
, (4.18)and eigenfuntions being Wigner transformations of two harmoni osillator states

f (B)
mn (x) = CfW [|φm〉〈φn|] (x) (4.19)known as Landau funtions. We use the supersript (B) to distinguish the Landau funtions with di�erentmagneti �eld strengths B.4.2 Landau FuntionsWe will now onstrut the Landau funtions and prove those properties whih will be needed to �nd thematrix model representation of the LS-ovariant models. In the following we will set θ = 2/B, thus ⋆ = ⋆2/B.Using the expliit representation for the Wigner transformation (2.10) with θ = 2/B one gets

∫
d2x W [|φm〉〈φn|] (x) =

∫
dx

∫
dy

∫
dk e i B

2 ky〈x + k/2|φm〉〈φn|x− k/2〉

=
4π

B

∫
dx〈x|φm〉〈φn|x〉

=
4π

B
. (4.20)Thus demanding the normalization

∫
d2x f (B)

mn (x) =

√
4π

B
δmn (4.21)we �nd with (4.19)

f (B)
mn (x) =

√
B

4π
W [|φm〉〈φn|] (x) . (4.22)Using again the expliit expression for the Wigner transformation we an immediately dedue

f (B)
mn (x)∗ =

√
B

4π

∫
dk e− i B

2 ky〈x+ k/2|φn〉〈φm|x− k/2〉 = f (B)
nm (x) . (4.23)An important property an be proven by using the star-produt relations for Wigner distributions (2.14) forthe produt of two Landau funtions

(
f (B)

mn ⋆ f
(B)
kℓ

)
(x) =

B

4π
W [|φm〉〈φn|φk〉〈φℓ|] (x) =

√
B

4π
δnkf

(B)
mℓ (x) . (4.24)whih is alled the projetor property and allows us to map the nonommutative models to matrix models.Note that the de�nition of the Landau funtions with �eld strength B implies the projetor property only29



4 Matrix Model Representation of Eulidean LS-Covariant NCQFTsfor ⋆ = ⋆2/B thus for θ = 2/B.1 Combining the identities (4.21) and (4.24) we �nd that the f (B)
mn areorthonormal with respet to the L2 salar produt

〈f (B)
mn |f (B)

kℓ 〉 =

∫
dx f (B)

nm (x) f
(B)
kℓ (x)

=

∫
dx (f (B)

nm ⋆ f
(B)
kℓ )(x)

=

√
B

4π

∫
dx δmk f

(B)
nℓ (x)

= δmnδkℓ . (4.25)The Landau funtions have a simple form in terms of generalized Laguerre polynomials:Lemma 4.1. We de�ne the radial oordinates x = r cosϕ and y = r sinϕ. The Landau funtions fmn(r, ϕ)are given by
f (B)

mn (r, ϕ) = (−1)min(m,n)

√
B

π

√
min(m!, n!)

max(m!, n!)

(
Br2

)|m−n|/2
e i ϕ(n−m) e−r2/θL

|m−n|
min(n,m)

(
Br2

) (4.26)where Lα
k (x) are assoiated Laguerre polynomials.A proof of this lemma will be given in setion E.The ladder operator representation of the harmoni osillator states has an analog on the Wigner side,whih will be useful to determine the matrix model representation of the NCQFTs. Observe that

W [|φm〉〈φn|] =
1√
m!n!

W
[
(â†)m|φ0〉〈φ0|(â)n

]

=
1√
m!n!

(W
[
â†])⋆m ⋆W [|φ0〉〈φ0|] ⋆ (W [â])⋆n . (4.27)The Fok spae ladder operators for the harmoni osillator with frequeny 4B are de�ned by linear ombi-nations â = (q̂ + i p̂)/

√
8B. Using Ŵ [√

2Bx
]

= q̂ and Ŵ [√
2By

]
= p̂ we �nd for the Wigner transformedladder operators

W [â] =

√
B

4
(x + i y) , W

[
â†]
√
B

4
(x− i y) (4.28)whih are proportional to the omplex oordinates z = x + i y and z̄ = x − i y. We de�ne new ladderoperators a, a† and b, b† through

(√
B

4
z

)
⋆ g(x) = a g(x) ,

(√
B

4
z̄

)
⋆ g(x) = a† g(x)

g(x) ⋆

(√
B

4
z̄

)
= b g(x) , g(x) ⋆

(√
B

4
z

)
= b† g(x) .

(4.29)De�ning ∂z = ∂x − i ∂y and ∂z̄ = ∂x + i ∂y one notes that
i

B
(∂x∂

′
y − ∂y∂

′
x) =

1

2B
(∂z∂

′
z̄ − ∂z̄∂

′
z) . (4.30)Using ∂zz = ∂z̄ z̄ = 2 one easily �nds

(√
B

4
z

)
⋆ g(x) =

(√
B

4
z

)
g(x) + 2

√
B

4

1

2B
∂z̄g(x) =

1

2

(
√
Bz +

√
1

B
∂z̄

)
g(x) (4.31)1We should remark that the fmn also obey the projetor property

“

f
(B)
mn ⋆(−2/B) f

(B)
kℓ

”

(x) =

r

B

4π
δmℓf

(B)
kn (x) .whih follows from f ⋆−θ g = g ⋆θ f .30



4.3 Matrix Model Representationand similarly
a =

1

2

(√
1

B
∂z̄ +

√
Bz

)
, a† =

1

2

(
−
√

1

B
∂z +

√
Bz̄

)

b =
1

2

(√
1

B
∂z +

√
Bz̄

)
, b† =

1

2

(
−
√

1

B
∂z̄ +

√
Bz

)
.

(4.32)These operators indeed generate two ommuting opies of the harmoni osillator algebra
[
a, a†

]
=

[
b, b†

]
= 1

[a, b] =
[
a, b†

]
= 0 .

(4.33)A ommon vauum state is de�ned by af (B)
00 = bf

(B)
00 = 0. Demanding the normalization (4.21) one an usethe expliit expressions (4.32) to solve for the ground state funtion

f
(B)
00 (x) =

√
B

π
e−B

2 x2
i . (4.34)Applying the ladder operators we generate the Landau funtions

f (B)
mn (x) =

(a†)m

√
m!

(b†)n

√
n!
f

(B)
00 (x) . (4.35)and one easily �nds

a f (B)
mn (x) =

√
mf

(B)
m−1,n(x) , a† f (B)

mn (x) =
√
m+ 1 f

(B)
m+1,n(x)

b f (B)
mn (x) =

√
nf

(B)
m,n−1(x) , b† f (B)

mn (x) =
√
n+ 1 f

(B)
m,n+1(x) .

(4.36)whih will be important in the next setion.4.3 Matrix Model RepresentationThe Landau funtions f (B)
mn ful�ll the projetor property with respet to the star-produt ⋆ = ⋆2/B thus with

θ = 2/B. However, the deformation parameters θ ourring in the interation terms of the LS-ovarianttheories are not equal to 2/B in general. In this ase we an either simplify the interation or the free partof the ation. Sine we are able to �nd the matrix propagator even for θ 6= 2/B, see setion 8.2, we hoosethe �rst option and expand in f (2/θ)
mn , whih obey the projetor property with ⋆ = ⋆θ for θ 6= 2/B.For the following we assume the �elds to be well-behaved funtions whih allow for an expansion in theLandau basis, like Shwartz funtions (we will ome bak to this issue in setion 6.2). From the ation wean read o� the perturbative de�nition of the orrelation funtions of the orresponding quantum theory.However, these will in general onsist of produts of distributions, and have to be regularized. An appro-priate regularization is the matrix uto� introdued in setion 4.5. Removing this regularization is partof the renormalization program, and neessitates a good deay behavior of the propagator in the matrixrepresentation for large indies (see setion 8).We start with the interation part of the two-dimensional LSZ model given by2

Sint = g

∫
d2x [α (φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β (φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)] (4.37)The salar �elds are expanded in Landau basis read

φ(x) =

∞∑

mn

f (2/θ)
mn (x)φmn

φ(x)∗ =

∞∑

mn

f (2/θ)
mn (x)φmn

(4.38)2The generalization to higher dimensions is straightforward and given in setion 4.6. 31



4 Matrix Model Representation of Eulidean LS-Covariant NCQFTswith oe�ients given by
φmn = 〈f (2/θ)

mn |φ〉 =

∫
d2x f (2/θ)

nm (x)φ(x)

φmn = 〈f (2/θ)
mn |φ〉 =

∫
d2x f (2/θ)

nm (x)φ(x)∗ .

(4.39)Note that φmn = φnm = (φnm)∗ = (φmn)†. Using
f (2/θ)

m1n1
⋆ f (2/θ)

m2n2
⋆ f (2/θ)

m3n3
⋆ f (2/θ)

m4n4
=

1
√

2πθ
3 δn1m2δn2m3δn3m4f

(2/θ)
m1n4

, (4.40)the general φ⋆4 interation term of the LSZ model simpli�es to
Sint =

g

2πθ

∑

n,m,k,ℓ,p

(
αφmnφnk φkℓφℓm + β φmnφnk φkℓφℓm

)
. (4.41)For the Grosse-Wulkenhaar model this simply reads

Sint =
g

2πθ

∑

mnkℓ

φmnφnkφkℓφℓm (4.42)We already know that at the self-dual points θ = ±2/B the Landau funtions diagonalizes also the freepart of the ations. The wave operator P2 beomesP2
i = 4B

(
a†a+

1

2

) for θ = +2/BP2
i = 4B

(
b†b+

1

2

) for θ = −2/B ,

(4.43)and analogously for P̃2
i with a, a† ↔ b, b† interhanged. Their matrix representations at θ = 2/B then simplyread

(P2
i )mn;kℓ =

∫

x

f (2/θ)
mn (x)P2

i f
(2/θ)
kℓ (x) = 4B

(
k +

1

2

)
δmℓδnk

(P̃2
i )mn;kℓ =

∫

x

f (2/θ)
mn (x) P̃2

i f
(2/θ)
kℓ (x) = 4B

(
ℓ+

1

2

)
δmℓδnk .

(4.44)For generi θ the expressions are more ompliated:Lemma 4.2. The wave operator of the two-dimensional LSZ model in matrix representation is given by
Gmn;kℓ =

(
µ2 + 2

(1 + Ω2)

θ
(m+ n+ 1)δmℓδnk +

4Ω̃

θ
(n−m)

)
δmℓδnk

+2
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)
, (4.45)with frequenies Ω = Bθ/2 and Ω̃ = (2σ − 1)ΩProof: The wave operator in matrix representation is given by

Gmn;kℓ =

∫

x

f (2/θ)
mn (x)

(
σP2

i + (1− σ)P̃2
i + µ2

)
f

(2/θ)
kℓ (x) . (4.46)We show the following relation:P2

i =
1

2θ

[
(2 +Bθ)2

(
a†a+

1

2

)
+ (2−Bθ)2

(
b†b+

1

2

)
+
(
θ2B2 − 4

) (
a†b† + ab

)]
. (4.47)32



4.3 Matrix Model RepresentationThis an be veri�ed by inserting the expliit expressions (4.32) for a and b with 2/θ substituted for B. Notingthat
a†b† + ab =

1

2

(
2

θ
zz̄ +

θ

2
∂z∂z̄

)

(
a†a+

1

2

)
+

(
b†b+

1

2

)
=

1

2

(
2

θ
zz̄ − θ

2
∂z∂z̄

) (4.48)
(
a†a+

1

2

)
−
(
b†b+

1

2

)
=

1

2
(z̄∂z̄ − z∂z) .we indeed �ndP2

i =
1

2θ

[
(4 +B2θ2)

1

2

(
2

θ
zz̄ − θ

2
∂z∂z̄

)
+ (B2θ2 − 4)

1

2

(
2

θ
zz̄ +

θ

2
∂z∂z̄

)
+ 4Bθ

1

2
(z̄∂z̄ − z∂z)

]

=
1

2θ

[
B22θzz̄ − 2θ∂z∂z̄ + 4Bθ

1

2
(z̄∂z̄ − z∂z)

]

= B2x2
i − ∂2

i + 2 iB(x∂y − y∂x)

= (− i ∂i +Bijx
j)2i . (4.49)The orresponding expression for P̃2

i are obtained by interhanging a, a† ↔ b, b†. Using (4.36) one an easilyread o� the matrix versions of the wave operators P2
i and P̃2

i

(P2
i )mn;kℓ =

1

2θ

[
(2 +Bθ)2

(
n+

1

2

)
δmℓ δnk + (2−Bθ)2

(
m+

1

2

)
δmℓ δnk

+
(
θ2B2 − 4

)(√
nmδm,ℓ+1 δn,l+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)] (4.50)and
(P̃2

i )mn;kℓ =
1

2θ

[
(2 +Bθ)2

(
m+

1

2

)
δmℓ δnk + (2−Bθ)2

(
n+

1

2

)
δmℓ δnk

+
(
θ2B2 − 4

) (√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)]
. (4.51)These an be ombined to give

σ(P2
i )mn;kℓ + (1− σ)(P̃2

i )mn;kℓ

=
1

2θ
σ

[
(2 +Bθ)2

(
n+

1

2

)
δmℓ δnk + (2 −Bθ)2

(
m+

1

2

)
δmℓ δnk

]

+
1

2θ
(1− σ)

[
(2 +Bθ)2

(
m+

1

2

)
δmℓ δnk + (2 −Bθ)2

(
n+

1

2

)
δmℓ δnk

]

+
1

2θ

[(
θ2B2 − 4

) (√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)]

=
2

θ

[
(1 + (Bθ/2)2)(m+ n+ 1)δmℓδnk + (2σ − 1)Bθ(n−m)δmℓδnk

+
(
(θB/2)2 − 1

)(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)]
, (4.52)whih proves the theorem.The two-dimensional general LSZ model then has the matrix model representation

SLSZ =
∑

mnkℓ

φmnGmn;kℓφℓk

+
g

2πθ

∑

mnkℓ

(
αφmnφnk φkℓφℓm + β φmnφnkφkℓ φℓm

)
. (4.53)33



4 Matrix Model Representation of Eulidean LS-Covariant NCQFTsNote that at σ = 1 the in�nite Landau level degeneray, i.e. the dependene on only one of the two Landauindies, manifests itself in a U(∞) symmetry
φ −→ U · φ , φ† −→ φ† · U † . (4.54)This is the maximal symmetry-group of area-preserving di�eomorphisms, and it ats through rotations ofthe magneti quantum numbers n. The phase spae beomes degenerate and the wave funtions dependonly on one half of the position spae oordinates, leading to a redution of the quantum Hilbert spaeat θ = 2/B [LSZ04℄. In position spae, this implies an osillatory behavior of the propagator in the longvariable |x + x′| → ∞, making the renormalization proedure more involved [RT08℄.From lemma 4.2 we an easily follow for σ = 1/2Lemma 4.3. The two-dimensional Grosse-Wulkenhaar wave operator in matrix representation is given by

Gmn;kℓ =

(
µ2 + 2

Ω2 + 1

θ
(m+ n+ 1)

)
δmℓ δnk

+2
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1)δm,ℓ−1δn,k−1

) (4.55)with frequeny Ω = Bθ/2.The orresponding ation reads
SGW =

∑

mn;kℓ

(
1

2
φnmGmn;kℓφkℓ +

g

2πθ
φmnφnkφkℓφℓm

)
. (4.56)4.4 Perturbative Quantum Field Theory in Matrix RepresentationIn the following we will demonstrate how the LS-ovariant quantum �eld theories an be de�ned perturba-tively in the matrix representation. The matrix representation of GW model is straightforwardly obtainedusing the perturbative solution of the generating funtional (3.25) and the expansion of the GW ation asin (4.56), whih leads to the generating funtional

Z[J ] = N exp

(
−g

∑

mnkℓ

∂4

∂Jmℓ∂Jℓk∂Jkn∂Jnm

)
exp

(
1

2

∑

mnkℓ

Jmn∆mn;kℓJkℓ

) (4.57)The propagator solves the equation
∑

kℓ

Gmn;kℓ∆ℓk;sr =
∑

kℓ

∆nm;ℓkGkℓ;rs = δmrδns . (4.58)A preise expression for ∆mn;kℓ will be determined in setion 8.2.2. The modi�ed Feynman rules are onve-niently presented in the double line formalism. The vertex is diagonal and given by
= −g δmpδnqδkrδℓs .and the double line for the propagator

m
n

ℓ

k = ∆nm;ℓk .34



4.5 LS-Duality at Quantum LevelSine the GW model onsiders real �elds the Feynman diagrams are unoriented. The double lines haveno distinguished diretion, with arrows showing in both diretions. They are usually kept for bookkeepingpurposes.For omplex �elds eah double line has arrows direted in the same diretion, either inoming or outgoing.The matrix representation of the LSZ model reads
Z[J ] = N exp

(
−αg

∑

mnkℓ

∂4

∂Jmℓ∂Jℓk∂Jkn∂Jnm

− β g
∑

mnkℓ

∂4

∂Jmℓ∂Jℓk∂Jkn∂Jnm

)

× exp

(∑

mnkℓ

Jmn∆mn;kℓJkℓ

)
,

(4.59)The double lines are now oriented from φ∗ to φ :
m
n

ℓ

k = ∆nm;ℓk ,The two interation terms φ∗ ⋆ φ ⋆ φ∗ ⋆ φ and φ∗ ⋆ φ∗ ⋆ φ ⋆ φ are represented by di�erent diagrams
∼ φ∗ ⋆ φ ⋆ φ∗ ⋆ φ ∼ φ∗ ⋆ φ∗ ⋆ φ ⋆ φhaving verties −g δmpδnqδkrδℓs times α or β. Restriting to one of these interations redues the numberpossible diagrams for the omplex matrix model.Every Feynman diagram is represented by a ribbon graph. Its topologial data is now deisive for thequestion whether it is divergent or not. The power ounting theorem for general non-loal matrix modelshas been proven by Grosse and Wulkenhaar in [GW05a℄.3 More on this in hapter 84.5 LS-Duality at Quantum LevelTo ensure the LS-duality at the quantum level, we have to �nd a regularization sheme for the model, whihsuppresses possible divergenes and at the same time keeps the duality manifestly. We demonstrate theproedure at the GW model. Using this regularization sheme, Grosse and Wulkenhaar were able to provethe renormalizability of the GW model in two and four dimensions [GW03, GW05b℄.Conneted Green funtions with M external legs are given by

GM (x1, . . . ,xM ;B, g,Θ) =
M∏

i=1

δ

δJ(xi)
W (J ;B, g,Θ)

∣∣∣∣∣
J=0

. (4.60)with
W [J ] = − ln

Z[J ]

Z[0]
≡W [J ;B, g,Θ] . (4.61)the generating funtional of onneted graphs. Sine the path integral measure is formally invariant under

φ→ φ̃, the duality symmetry of the lassial ation plus the identity
∫

x

φ(x)J(x) =

∫

x

φ̃(x) J̃(x) (4.62)3A matrix model is thereby alled loal if ∆nm;ℓk = ∆(m, n)δmℓδnk for some funtion ∆(m, n) and non-loal otherwise. 35



4 Matrix Model Representation of Eulidean LS-Covariant NCQFTsformally yields the identity
W [J ;B, g,Θ] = W [J̃ ;B, g̃, Θ̃] . (4.63)Hene any onneted Green funtion with M external legs formally obeys the identity

ĜM (k1, . . . ,kM ;B, g,Θ) = |det(B)|M/2 GM

(
k̃1, . . . , k̃M ;B, g̃, Θ̃

) (4.64)with ĜM the Fourier transform of GM and as before k̃ = B−1 · k.However, to nail this symmetry down, one has to regularize possible divergenes while keeping this dualitymanifestly at any step in perturbation theory. Note that the propagator for the two-dimensional GW modelreads
∆(x,x′) =

∑

m,n

f
(B)
mn (x)f

(B)
nm (x′)

2B (m+ n+ 1) + µ2
. (4.65)Sine for real B we have

F [f (B)
mn ](k) =

i m−n

B
f (B)

mn (B−1 · k) , (4.66)whih is proven in appendix H, and
F [P2

i f
(B)
mn ](k) = 4B

(
m+

1

2

)
F [f (B)

mn ](k) ,

F [P̃2
i f

(B)
mn ](k) = 4B

(
n+

1

2

)
F [f (B)

mn ](k) ,

(4.67)we �nd that Fourier transformation relates the propagator in position spae to the momentum spae prop-agator
∆̂(k,k′) =

1

B2
∆(k̃, k̃

′
) . (4.68)This is just the re�etion of the lassial LS-ovariane proven in setion 3.3 and oinides with the generalexpression (4.64) for g = 0. Following [LS02a℄, an appropriate regularization sheme whih uts o� simulta-neously short distanes and low momenta in a duality invariant way is to modify the propagator with thehelp of the operator P2

i + P̃2
i = −∂2

i + Ω2x̃2
i . Let Λ ∈ R+ be a ut-o� parameter and L a smooth ut-o�funtion whih is monotonially dereasing with L(y) = 1 for y < 1 and L(y) = 0 for y > 2. The modi�edpropagator in position spae is thus given by

∆Λ(x,x′) = 〈x| 1
1
2P2

i + 1
2 P̃2

i + µ2
L
(
Λ−2|P2

i + P̃2
i |
)
|x′〉 (4.69)Sine P2

i + P̃2
i is LS-duality ovariant, this is a ovariant regularization of the propagator. One expets −∂2

ito ut o� high momenta and x̃2
i to regulate possible infrared divergenes. This gets substantiated with helpof the matrix representation.Contrary to the previous setion we adjust the matrix funtions suh as to diagonalize the propagator

∆Λ(mn; kℓ) =
δmℓδnk

2B (m+ n+ 1) + µ2
L
(
Λ−2 [4B(m+ n+ 1)]

)

=: δmℓδnk∆Λ(m,n) . (4.70)The interation vertex in matrix representation is now given by
v(m1, n1, . . . ,m4, n4) :=

∫

x

(
f (B)

m1n1
⋆θ f

(B)
m2n2

⋆θ f
(B)
m3n3

⋆θ f
(B)
m4n4

)
(x) . (4.71)36



4.6 Generalization to Higher DimensionsThe Landau funtions are elements of a subspae of S(R2), the so alled Gel'fand-Shilov spae Sα
α (R2) with

α ≥ 1/2 (see e.g. appendix C.1), whih is losed under the star-produt. We thus follow that the interationvertex v is well-de�ned. All Feynman diagrams are now of the form
∑

m1n1,...,mKnK

K∏

i=1

∆Λ(mi, ni) (· · · ) (4.72)where (· · · ) is a produt of interation vertex v, depending on the regularized propagator ∆Λ and externalverties m1, n1, . . . ,mM , nM . Sine the ∆Λ is only nonzero for 4B(m+n+ 1) < 2Λ2, all Feynman diagramsare represented by �nite sums, and thus onstitute well-de�ned and LS-duality ovariant Green funtions
GM (m1, n1, . . . ,mM , nM ) in matrix basis.By multiplying these expression with f (B)

mini(xi) for i = 1, . . . ,M and summing over all mi, ni we get bakthe position spae Green funtions. They are also well-de�ned and LS-duality ovariant, sine they are buildby �nite sums of well-de�ned ovariant objets. This ends the proof of the LS-duality of the GW model atquantum level. The proof for the LSZ model is idential.4.6 Generalization to Higher DimensionsThe D = 2n-dimensional LS-ovariant theories are linear ombinations of the operators (P2
i )k and (P̃2

i )k for
k = 1, . . . , n, see (3.11). Sine all of them ommute with eah other, the generalization to higher dimensions isremarkable simple. Taking D/2 = n opies of the Landau funtions f (Bk)

mknk(xk) with xk = (x2k−1, x2k) ∈ R2,the produts
f (B)

mn(x) :=

n∏

k=1

f (Bk)
mknk

(xk) , (4.73)for all multi-dimensional indies m = (mk),n = (nk) ∈ Nn, B = (Bk) ∈ Rn
+ and x = (xi) ∈ RD, obviouslyform an orthonormal basis for L2(RD) and are eigenfuntions of K2

i and K̃2
i . The deformation matrix Θ isassumed to be in its anonial form

(Θij) =




0 θ1
−θ1 0

0. . .
0

0 θn

−θn 0




(4.74)with θi ∈ R. The star produt of two suh multi-dimensional Landau funtions with respet to (4.74)deouples into produts of Landau funtions depending on (x2k−1, x2k) for k = 1, . . . , n. If in addition
Bk = 2/Θk for all k, then

(
f (B)

mn ⋆Θ f
(B)
m′n′

)
(x) = δnm′ f

(B)
mn′(x) (4.75)with δm′n =

∏n
k=1 δm′

knk
.The generalization of the matrix model representation is straightforward. The salar �elds living on RDexpanded in Landau basis read

φ(x) =
∞∑

m,n∈Nn

f (2θ−1)
mn (x)φmn

φ(x)∗ =

∞∑

m,n∈Nn

f (2θ−1)
mn (x)φmn

(4.76)where the oe�ients are given by
φmn = 〈f (2θ−1)

mn |φ〉 =

∫
dDx f (2θ−1)

nm (x)φ(x)

φmn = 〈f (2θ−1)
mn |φ〉 =

∫
dDx f (2θ−1)

nm (x)φ(x)∗ .

(4.77)37



4 Matrix Model Representation of Eulidean LS-Covariant NCQFTsand f (2θ−1)
nm (x) given by (4.73) with Bk = 2θ−1

k . The matrix representation of the D-dimensional LSZ modelaway from the self-dual point is given by
SLSZ =

∑

m,n,k,ℓ∈Nn

φmnGmn;kℓ φℓk

+
g

2πθ

∑

m,n,k,ℓ∈Nn

(
αφmnφnk φkℓφℓm + β φmnφnkφkℓ φℓm

)
. (4.78)with D-dimensional wave operator

Gmn;kℓ :=

n∑

i=1

Gmini;kiℓi + µ2δmℓδnk (4.79)and eah Gmini;kiℓi given by the massless, two-dimensional wave operator (4.45). Any result of this hapteran now formally be generalized to higher dimensions by substituting multi-indies m,n, . . . ∈ Nn for usualone-dimensional indies m,n, . . . ∈ N.
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5 LS-Covariant NCQFTs in MinkowskiSpaetimeThe introdution of an external bakground �eld proved very useful in Eulidean NCQFT, making the theoryovariant under LS-duality. Furthermore the ourring wave operators K2
i and K̃2

i have disrete spetra suhthat the orresponding models an be handled properly with help of the matrix basis. However, in passingfrom the Eulidean LS-ovariant NCQFTs to Minkowski signature, the main feature of the wave operatorshanges dramatially. The same bakground �eld, being magneti in Eulidean metri, now plays the roleas an eletri �eld.The presene of an eletri-like external �eld implies a qualitative hange ompared to the magneti �eldase, due to the work whih is done on the partiles by the �eld. The eletri �eld aelerates and splitsvirtual dipole pairs leading to pair prodution. This is re�eted in the spetra of the Hamiltonian and of thewave operators, being now the whole real axis and unbounded from below. The main problem for us is, thatthe disrete spetrum of the wave operator was essential for the model to have a matrix representation inform of a ountable in�nite set of eigenfuntions whih solve the projetor property. Surely the Landau basisan again be used to map this model onto a matrix model, however the free part will not be diagonalized,whih was part of the proof of the LS-ovariane at quantum level. A di�erent matrix basis has to be found,whih is tailored for the Minkowskian version of the LS-ovariant nonommutative �eld theories.In the following we will introdue the LS-ovariant models in Minkowski spaetime. We derive their relationto the inverted harmoni osillator whih possesses the onjetured ontinuous spetrum. By omputing itseigenfuntions a possible matrix expansion is identi�ed with a resonane expansion. Finally we de�ne thequantum �eld theories for both approahes, the ontinuous and the disrete one. To make the latter well-de�ned a speial regularization will be introdued.5.1 LS-Covariant Models in Minkowski SpaetimeWe will again work in D = 2n dimensions. Vetors will now be indiated by Greek indies µ, ν, . . . rangingfrom 0 to d = D − 1. The signature is given by (1,−1, . . . ,−1).The general LSZ-model in D dimensional spaetime is given by the ation S0 + Sint with
S0 =

∫
dDxφ∗(x)

(
σK2

µ + (1 − σ)K̃2
µ − µ2

)
φ(x) (5.1)

Sint = −g
∫

dDx [α (φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β (φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)] (5.2)with generalized momenta Kµ = i ∂µ − Fµνx
νK̃µ = i ∂µ + Fµνx
ν ,

(5.3)obeying the ommutation relations
[Kµ,Kν ] = 2 iFµν , [K̃µ, K̃ν ] = −2 iFµν . (5.4)and [Kµ, K̃ν ] = 0. The oordinate system will be hosen suh that the D×D dimensional deformation matrix

Θ takes the anonial skew-symmetri form
(Θµν) =




0 θ1
−θ1 0

0. . .
0

0 θn

−θn 0




(5.5)
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5 LS-Covariant NCQFTs in Minkowski Spaetimewith θk > 0 for all k. The eletromagneti tensor Fµν is given by
(Fµν) =




0 E
−E 0

0

0 B2

−B2 0 . . .
0

0 Bn

−Bn 0




(5.6)for E,Bk > 0 and Eθ1/2 = Bkθk/2 = Ω for all k and 0 < Ω ≤ 1. The 2n-dimensional wave operators againbreak up into n parts K2
µ =

n∑

k=1

(P2
µ)kK̃2

µ =

n∑

k=1

(P̃2
µ)k

. (5.7)The negative of the operators
(P2

µ)k = (∂2
2k−2 + ∂2

2k−1) + 2 iBk(x2k−1∂2k−2 − x2k−2∂2k−1)− B2
k(x2

2k−2 + x2
2k−1)

(P̃2
µ)k = (∂2

2k−2 + ∂2
2k−1)− 2 iBk(x2k−1∂2k−2 − x2k−2∂2k−1)− B2

k(x2
2k−2 + x2

2k−1)
(5.8)for k = 2, . . . , n desribe two dimensional Eulidean Klein-Gordon �elds moving in an external magnetibakground, already investigated in hapter 4, while

(P2
µ)1 = −(∂2

0 − ∂2
1)− 2 iE(x1∂0 + x0∂1)− E2(x2

0 − x2
1)

(P̃2
µ)1 = −(∂2

0 − ∂2
1) + 2 iE(x1∂0 + x0∂1)− E2(x2

0 − x2
1)

(5.9)desribe 1+1 dimensional KG �elds moving in a onstant eletri bakground with �eld strengths ±2E,respetively. Again, all two-dimensional operators (P2
µ)k and (P̃2

µ)k mutually ommute suh that diagonal-ization of the full wave operators amounts to diagonalizing eah of its 2 dimensional parts independently.Eigenfuntions of the operators (5.8) are the Landau funtions. What is missing are the eigenfuntions of(5.9).The �rst important observation is that the operators (5.9) an not be obtained from its Eulidean oun-terpart by an ordinary Wik rotation t → i t. Some additional signs have hanged, showing that for ourtheories the rotation of time has to be aompanied by the transformations B → − iE. This is not surprising,sine this model an be viewed as �eld theory on a urved, non-stati spaetime, for whih this is a generifeature [DeW75℄. Another harateristi of those theories is that the degeneray of the di�erent equivalentde�nitions of the Feynman propagator is resolved [CR77℄. We will ome bak to this problem in setion 7.1.The eigenfuntions of (5.9) will be determined in setion 5.3.The extra transformation of the magneti �eld strength is in onordane with the fat, that in order toensure the relation
[x0, xi] = i Θ0i (5.10)for Eulidean and Minkowskian spae, the deformation parameter Θ0i has to transform aordingly toompensate the phase oming from the Wik rotation. For LS-invariant theories, the deformation matrix isrelated to the �eld strength, whih in turn implies a rotation of the �eld strength.The Minkowskian Grosse-Wulkenhaar model in D spaetime dimensions is again the general LSZ modelfor σ = 1/2 involving real �elds. Exatly as in the LSZ ase, the D dimensional wave operator reduesto a sum of n − 1 Eulidean GW wave operators plus a two dimensional GW wave operator in Minkowskisignature

1

2
(P2

µ)1 +
1

2
(P̃2

µ)1 − µ2 = −(∂2
0 − ∂2

1)− Ω2(x2
0 − x2

1)− µ2 (5.11)with frequeny Ω = Eθ/2. The main di�erene, beside the Minkowskian signature, is an extra minus sign infront of the Ω-term. The orresponding wave operator is an harmoni osillator with imaginary frequeny,known as inverted harmoni osillator. We will ome aross this osillator in the next setion.40



5.2 Mapping onto the Inverted Harmoni Osillator5.2 Mapping onto the Inverted Harmoni OsillatorWe need to �nd the eigenfuntions of the part of the ation depending on the oordinates x1 := (x0, x1) =
(t, x), given by the wave operator σ(P2

µ)1 + (1− σ)(P̃2
µ)1 − µ2. In the following, we work in 1+1 dimensionsand drop the index �1� at the wave operators, the oordinates and the deformation parameter. As in setion4.1, we use the Weyl-Wigner orrespondene to solve the simultaneous eigenvalue equationsP2

µ fmn(x) = λmnfmn(x) ,P̃2
µ fmn(x) = λ̃mnfmn(x) .

(5.12)Noting that
E2x2 ⋆θ f(x) =

(
E2x2 − iE2θx∂t −

1

4
E2θ2∂2

t

)
f(x) ,

E2t2 ⋆θ f(x) =

(
E2t2 + iE2θt∂x −

1

4
E2θ2∂2

x

)
f(x) ,

(5.13)we �nd that in the Minkowski ase the ation of P2
µ and P̃2

µ an be represented as a left- and right-star ationof the lassial funtion E2(x2 − t2):
E2(x2 − t2) ⋆θ g(x) =

[
E2(x2 − t2)− iE2θ(x∂t + t∂x)− 1

4
E2θ2(∂2

t − ∂2
x)

]
g(x)

θ=2/E
= P2

µ g(x) . (5.14)Analogously one �nds P̃2
µ g(x) = g(x) ⋆2/E E2(x2 − t2). To ompare to the Eulidean version we have toidentify B ≡ E and the ordered oordinate pairs (x, y)Eucl ≡ (t, x)Mink and �nd

E2(x2 ± t2) ⋆2/E f(x) =

{P2
i f(x)P2
µ f(x)

. (5.15)De�ning the Weyl symbols
W

[√
2Et

]
= q̂ , W

[√
2Ex

]
= p̂ and W [fmn] = f̂mn , (5.16)we �nd the Heisenberg algebra

[q̂, p̂] = 2E2[t, x]⋆2/E
= i 4E , (5.17)and the eigenvalue equation (5.12) an be expressed asP2

µ fmn(x) = W

[
Ĥi f̂mn

]
= λmnfmn(x) ,P̃2

µ fmn(x) = W

[
f̂mnĤi

]
= λ̃mnfmn(x) .

(5.18)The operator Ĥi = 1
2 (p̂2 − q̂2) is known as inverted harmoni osillator. In q̂ eigenbasis it has the form

Ĥi ∼
1

2
(−∂2

q − γq2) (5.19)thus it is a harmoni osillator with imaginary frequeny ± i γ. Due to the minus sign in front of thepotential q2, it desribes a one dimensional quantum mehanial partile in a potential whih is unboundedfrom below! This is an unbounded operator in L2(R) and has a ontinuous spetrum extending over thewhole real axis σ(Ĥi) = R as already antiipated above. This shows that the neessary ingredients whihled to the matrix basis in Eulidean spae are not given. In the following setion we will investigate theontinuous eigenfuntions and demonstrate, how to squeeze out the matrix nature of the model. 41



5 LS-Covariant NCQFTs in Minkowski Spaetime5.3 Eigenfuntion Expansion and ResonanesIn order to �gure out whih possibilities we have to desribe the LS-ovariant models, we will now �ndthe eigenfuntions of the inverted harmoni osillator. An analytial ontinuation of the eigenvetors tothe omplex energy plane will reveal a disrete pole struture, whih allows us to onstrut a matrix basisexpansion in terms of resonanes. These two ompeting approahes, based on the ontinuous an the disreteresonane expansion, are analyzed and ompared afterwards.The inverted harmoni osillator is parity invariant, thus eah eigenvalue is two-fold degenerated as indi-ated through an additional index ± arried by the eigenfuntions. The eigenvalue equation
1

2
(−∂2

q − γq2)χE
±(q) = EχE

±(q) (5.20)with E ∈ R gets rearranged by substituting z =
√

2 i γq

(
∂2

z + ν +
1

2
− z2

4

)
χE
±(z) = 0 , (5.21)where

ν = − i
E
γ
− 1

2
. (5.22)The di�erential equation (5.21) is solved by paraboli ylinder funtions Dν(z) whih are de�ned by

Dν(z) :=
1

Γ(−ν) e− 1
4 z2

∫ ∞

0

dt e−zt e− 1
2 t2t−ν−1 . (5.23)In partiular, every solution is a linear ombination of the funtions Dν(z), Dν(−z), D−ν−1( i z) and

D−ν−1(− i z). Only two of them are linearly independent. One suh omplete set of eigenfuntions aregiven by [Chr04℄
χE
±(q) =

C√
2πγ

i
ν
2 + 1

4 Γ(ν + 1)D−ν−1

(
∓
√
−2 i γq

)
, (5.24)where C = (γ/2π2)1/4. Taking the other two paraboli ylinder funtions, we get the omplex onjugatedof the χE

s . These funtions satisfy the orthonormality and ompleteness relations [Chr04℄
∫

R

dq χE1
s (q)⋆χE2

s′ (q) = δss′δ(E1 − E2) and ∑

s=±

∫

R

dE χE
s (q)⋆χE

s (q′) = δ(q − q′) (5.25)and belong to the spae of tempered distributions S′(R). The Gel'fand-Maurin theorem now ensures thatthe operator Ĥi an be deomposed on S(R) into these eigenfuntions.1 This means eah �eld in ψ ∈ S(R)is given by
|ψ〉 =

∑

s=±

∫

R

dE ψE
s |χE

s 〉 with ψE
s =

∫

R

dq ψ(q)χE
s (q)∗ , (5.26)and Ĥi has the spetral deomposition̂

Hi =
∑

s=±

∫

R

dE E |χE
s 〉〈χE

s | . (5.27)1The eigenfuntions χE
s are not in the Hilbert spae L2(R), whih is a harateristi feature of unbounded operators. Themathematial framework for dealing with unbounded operators is given by the Gel'fand-Maurin theorem. Let Â be anunbounded self-adjoint operator de�ned on an in�nite-dimensional Hilbert spae H. Roughly it says that if a rigged Hilbertspae an be found, that is a triplet of spaes Φ ⊂ H ⊂ Φ′, where Φ is a dense, topologial vetor subspae of H and Φ′ itstopologial dual, then, having for eah value from the spetrum of Â an eigenvetor F ∈ Φ′, we an expand Â (restrited to

Φ) and eah φ ∈ Φ in this eigenbasis. This theorem is the mathematial basis for quantum mehanis. See [dlM05℄ for anintrodution.42



5.3 Eigenfuntion Expansion and Resonaneswith abuse of Dira's bra-ket notation.Now the eigenfuntions χE
s possess a peuliar analytial struture, if the energy E gets analytially on-tinued to the omplex plane. It has poles on the negative imaginary axis, and furthermore, its residues atthese poles are harmoni osillator eigenfuntions orresponding to imaginary �eigenvalues�! To see this let'sstate the following lemma proved in [Chr04℄Lemma 5.1. The paraboli ylinder funtions Dλ(z) are analyti funtions of λ ∈ C.The analytial struture of the funtions (5.24) is thus entirely governed by the gamma-funtions. Sinethe only singularities of Γ(λ) are simple poles at λ = −n, n ∈ N0 with residuesResλ=−n (Γ(λ)) =

(−1)n

n!
(5.28)and E = i γ

(
ν + 1

2

), we see that χE
± has poles at E = − i γ

(
n+ 1

2

) with residuesResE=− i γ(n+ 1
2 )
(
χE
±(q)

)
∼ (−1)n

n!
i−

n
2 − 1

4Dn

(
∓
√
−2 i γq

)
. (5.29)Now using

Dn(z) = 2−n/2 e−z2/4Hn(z/
√

2) (5.30)for n ∈ N0, we �nd ResE=− i γ(n+ 1
2 )
(
χE
±(q)

)
∼ (∓1)nf−

n (q) (5.31)with
f−

n (q) =

( √− i γ

2nn!
√
π

)1/2

e i γ
2 q2

Hn(
√
− i γq) . (5.32)One should note that starting with the omplex onjugated funtions (χE

±)∗ we would have found poles inthe upper omplex half plane, with residues proportional to f−
n |γ→−γ =: f+

n . The interpretation of thedi�erent sets of funtions will beome lear shortly.One might be reminded of the eigenfuntions of the ordinary harmoni osillator, whih are given by
φn(q) =

( √
γ

2nn!
√
π

)1/2

e−γ
2 q2

Hn(
√
γq) , (5.33)and show up in the Eulidean ase. As said before, the inverted harmoni osillator emerges by inserting animaginary frequeny ± i γ into the usual harmoni osillator, whih also transforms the harmoni osillatorfuntions (5.33) into f±

n . Though these are not eigenfuntions in the usual sense, they appear as residues ofthe proper eigenfuntions χE
±. One an easily verify that the f±

n are not ordinary eigenfuntions of Ĥi bylooking at the �eigenvalue equation�̂
Hif

±
n (q) = ± i γ

(
n+

1

2

)
f±

n (q) , (5.34)whih follows diretly from the de�ning equation for Hermite polynomials. This equation seems to ontraditthe well-known fat that Hermitian operators have real eigenvalues. But the f±
n are in S′(R) and Ĥi is notHermitian on these states:

〈f±
n |Ĥif

±
n 〉 6= 〈Ĥif

±
n |f±

n 〉 (5.35)due to non-vanishing boundary terms. Apart from this, the f±
n are not normalizable in L2-norm:

〈f±
n |f±

n 〉 =

∫

R

dq f∓
n (q) f±

n (q)

∼
∫

R

dq Hn(
√
∓ i γ q)Hn(

√
± i γ q) =∞ . (5.36)43



5 LS-Covariant NCQFTs in Minkowski SpaetimeSuh states are known as resonane states or Gamow states, whih were �rst introdued to desribe deayphenomena in nulei. They orrespond to omplex eigenvalues of the Hamiltonian and are a harateristifeature of open quantum systems. The imaginary part of the �Hamiltonian expetation value� of the resonantstate determines the momentum �ux out of the system, whih is proportional to 〈f±
n |f±

n 〉. This expressionis in�nite, whih mirrors the fat that in an in�nite volume an in�nite amount of real partile/anti-partilepairs are produed per unit time. Resonant states always our as resonant/anti-resonant pairs, whih inour ase are the pairs of poles ± i γ(n+ 1/2). For an overview see [CG04, HSNP08℄.How an these funtions nevertheless help us onstruting a diagonal matrix expansion of our models?First of all note that the L2 salar produt of f+
n with f−

n an be de�ned as
〈f+

n |f−
m〉 = δnm , (5.37)by an analytial ontinuation of the identity 〈φn|φm〉 = δnm to imaginary frequenies. Thus they form amathematial struture alled bi-orthogonal system. The naive answer is then that by losing the integrationontour of (5.26) and (5.27) in the lower omplex half plane we pik up the poles with help of the residuetheorem. This tehnique is well known in the physis literature, alled resonane expansion. Using

(∓1)nD−n−1(−
√

2 i γq) +D−n−1(
√

2 i γq) =

√
2π

n!
(− i )n2−n/2 e i γ

2 q2

Hn(
√
− i γq) (5.38)we �nd

− 2π i
∑

s=±
ResE=−En

(
〈q|χE

s 〉〈χE
s |q′〉

)
= f−

n (q)f−
n (q′) (5.39)and thus get the following formal expansions

|ψ〉 =

∞∑

n=0

|f−
n 〉〈f+

n |ψ〉

Ĥi =

∞∑

n=0

(− i )γ(n+ 1/2)|f−
n 〉〈f+

n | .
(5.40)Note that in both expansions di�erent funtions appear in the kets and bras. This is in onordane withthe pairing de�ned in (5.37), whih is only well-de�ned for f−-kets with f+-bras or vie versa.The resonane expansion should be allowed for those funtions, for whih the integrand of the eigenvetorexpansion vanishes faster than 1/r in the lower omplex half plane, if r determines the distane to the origin.Seondly, sine there are in�nitely many poles sattered over a non-ompat region, we have to make surethat the arising sum onverges. The ordinary Landau basis were naturally de�ned on the Shwartz spae,whih as its most prominent representative has the Gaussian ψ(q) = e−bq2 . Sine this Gaussian alreadyfeatures all the problems we will enounter, we will try to expand it in the f−

n basis. Instead of verifyingthat the integrand vanishes faster than 1/r in the omplex plane (whih is possible), we will expand thisfuntion diretly in f−
n -basis and hek whether

ψ(q)
?!
=

∞∑

n=0

f−
n (q) 〈f+

n |ψ〉 . (5.41)Though we will �nd that the resulting series is not absolutely onvergent, it inevitably tells us how to overomethese problems.As is shown in proposition B.1 the f−
n an be represented as2

f−
n =

( √− i γ

2nn!
√
π

)1/2

(2 i )n/2

∫ ∞

−∞
da (−1)nδ(n)(a) e i S(x,a) (5.42)with S(x, a) = γ

2x
2 −√2γxa+ a2

2 and γ > 0. The oe�ients ψn =
∫

q
f−

n (q)ψ(q) are given by
ψn =

(√− i γ√
π

)1/2
i n/2

√
n!

∫
dx

∫
da (−1)nδ(n)(a) e i S(x,a) e−b x2

. (5.43)2In the notation used in the appendix we have f−
n ≡ f

(− i γ)
n with γ > 0.44



5.3 Eigenfuntion Expansion and ResonanesThe x-integration is Gaussian and an be performed
∫

x

e i γ
2 x2− i

√
2γxa+ i

2 a2−b x2

=

√
π

b− i γ/2
exp

{
i

2
a2

(
b+ i γ/2

b− i γ/2

)} (5.44)leading to
ψn =

(√− i γ√
π

)1/2
i n/2

√
n!

√
π

b− i γ/2

(
i

2

b+ i γ/2

b− i γ/2

)n/2 ∫

a

δ(a)∂n
a e a2

. (5.45)The a integration follows from
∫

a

δ(a)∂n
a e a2

= ∂n
a e a2

∣∣∣
a=0

=

{ n!
(n/2)! n even
0 n odd , (5.46)hene

ψn =

(√− i γ√
π

)1/2
i n/2

√
n!

√
π

b− i γ/2

(
i

2

b+ i γ/2

b− i γ/2

)n/2
n!

(n/2)!
. (5.47)Putting this bak into the expansion yields

∞∑

n=0

ψn f
−
n (x)

=

∞∑

n=0

( √− i γ

2nn!
√
π

)1/2

e i γ
2 x2

Hn

(√
− i γx

)

×
(√− i γ√

π

)1/2
i n/2

√
n!

√
π

b− i γ/2

(
i

2

b+ i γ/2

b− i γ/2

)n/2
n!

(n/2)!

{
1 n even
0 n odd

=

∞∑

k=0

√
− i γ

b− i γ/2

(
i

2

)2k (
b+ i γ/2

b− i γ/2

)k
1

k!
e i γ

2 x2

H2k

(√
− i γx

)
. (5.48)The sum an be performed using equation (49.4.4) from [Han75℄:

∞∑

k=0

tk

k!
H2k(z) = (1 + 4t)−1/2 exp

(
4tz2

1 + 4t

)
. (5.49)This formula is learly not valid for all t ∈ C. Using the asymptoti behavior of the Hermite funtion for

n→∞ [MOS66℄
Hn(x) ∼ n!

(n/2)!
e
√

2n|Imx| (5.50)and Stirling's formula n! ∼ nn e−n we �nd
∣∣∣∣
tk

k!
H2k(x)

∣∣∣∣ ∼ |t|k e 2k ln 2k−2k ln k e
√

4k|Imx| ∼ (4|t|)k e
√

4k|Imx| (5.51)In order to get an absolutely onvergent series we have to ensure that |t| < 1/4. This is however not ful�lledin our ase, sine we have |t| = 1/4. This shows us that the Shwartz spae is too big for our purpose.The problem might be irumvented by onsidering an even smaller spae, like the spae of smoothfuntions with ompat support. The expansion on S(R) might then be de�ned in some limiting proedure.But, sine we are lying exatly at the edge of the onvergene radius, a natural proedure is to make γslightly imaginary suh that |t| < 1/4 and we an proeed with summing up. We have
z =

√
− i γx , t = −1

4

b + i γ/2

b − i γ/2
, (5.52)45



5 LS-Covariant NCQFTs in Minkowski Spaetimewhih gives us the relevant ombinations
1

4t
+ 1 =

−b+ i γ/2 + b+ i γ/2

b+ i γ/2
=

i γ

b+ i γ/2

4tz2

1 + 4t
=

(b+ i γ/2)(− i γ)x2

i γ
= − i

γ

2
x2 − bx2 (5.53)

1 + 4t =
−b− i γ/2 + b− i γ/2

b− i γ/2
=

− i γ

b− i γ/2
.Inserting into the sum yields

∞∑

n=0

f−
n (x)ψn

=
∞∑

k=0

√
− i γ

b− i γ/2

(
i

2

)2k (
b+ i γ/2

b− i γ/2

)k
1

k!
e i γ

2 x2

H2k

(√
− i γx

)

=

√
− i γ

b − i γ/2
(1 + 4t)−1/2 e i γ

2 x2

e− i γ
2 x2−bx2

= e−b x2

, (5.54)giving us bak the Gaussian we started with. Most importantly, this result is independent of γ, thus putting
γ bak on the real line is no problem at the end. The resonane expansion an thus be understood withhelp of the regularization i γ → e i ϑγ with 0 < ϑ < π/2, while −π/2 < ϑ < 0 orresponds to the analogregularized expansion in f+

n -basis. The ase ϑ = 0 is exatly the harmoni osillator ase (5.33).This regularization seems to be natural, as it is a well-known proedure in QFT de�ned on Minkowskispaetime. There one often enounters pseudo-Gaussian integrals like
∫

R

dxxn e i ax2

=

√
i

a

n+1

Γ

(
n+ 1

2

)
, (5.55)whih have a meaning if regularized in the same way as above. The same integral appears in the salarprodut 〈f+

n |f−
m〉 = δnm and has to be understood in this way. The regularized f±

n will be denoted in thefollowing by
f (γϑ)

n (q) =

( √
γϑ

2nn!
√
π

)1/2

e− γϑ
2 q2

Hn(
√
γϑ q) (5.56)using the ompat notation

γϑ = e i ϑγ (5.57)with γ > 0. For ϑ ∈ (−π/2, π/2) they possess an exponential deay due to the Gaussian fator, and are thusShwartz funtions.3 Apparently, they are eigenfuntion of the harmoni osillator with omplex frequeny
γϑ whih is known as omplex harmoni osillator. In appendix C.2 we show that their linear span is densein L2(R). But the ourring sums are not onvergent with respet to L2-norm and thus do not build a Rieszbasis [Dav99, DK04℄. Its general appliability will be srutinized in setion 6.2.To summarize, we have (at least) two di�erent onepts at our disposal to treat the Minkowskian LS-ovariant models. There is the ontinuous approah based on the eigenfuntions χE

s and the matrix approahusing the regularized funtions f (γϑ)
n . The eigenfuntions of the wave operators are given by
χEE′

ss′ (x) := CχW

[
|χE

s 〉〈χE′

s′ |
]
(x) (5.58)

f (2γϑ)
mn (x) := CfW

[
|f (γϑ)

m 〉〈f (γ−ϑ)
n |

]
(x) (5.59)with some normalization onstants Cχ and Cf , where the (bi-)orthogonality of χE

s and f (γϑ)
n will ensure thesimpli�ation of the φ⋆4 through (2.14) analog to the Eulidean Landau funtions. In the next setion wewill show how to implement the regularized matrix basis.3This is in ontradistintion to the original funtions f

(±)
n = limϑ→±π/2 f

(γϑ)
n , whose modulus inreases polynomially. Theyare tempered distributions.46



5.4 LS-Covariant NCQFT and the ϑ-Regularization5.4 LS-Covariant NCQFT and the ϑ-RegularizationWe have seen that a regularization is needed to endow the funtions f (±)
n with nie properties. Sine theseregularized funtions, or rather their Wigner transformed ounterparts (5.59), will not diagonalize the freeations we are onerned with, it raises the question how to exploit the regularized funtions to �nd amatrix representation for the LS-ovariant models on Minkowski spaetime? The answer is that we have toregularize the ation anyway to de�ne the orresponding quantum �eld theory. In setion 2.2.3 we enhanedthe ation by an additional term i ǫ

∫
φ2, whih ensured the orret asymptoti deay of the integrand withinthe generating funtional at |φ| → ∞ and at the same time imposed ausality. We will now introdue aregularization of the model, whih will be alled ϑ-regularization and orresponds to the regularization ofthe matrix funtion above. In ase of vanishing bakground �eld this turns out to be the i ǫ-presription.We know that the f (γϑ)

n are analytial ontinuations of the harmoni osillator funtions. So a naturalguess for a orresponding generalization of the free LS-ovariant models is
iS0[ϑ] = i sin(ϑ)SM

0 − cos(ϑ)SE
0 (5.60)where SM

0 stands for the Minkowskian version and SE
0 for its Eulidean ounterpart. Obviously this ationrelates both signatures, with ϑ = 0 orresponding to the Eulidean and ϑ = ±π/2 to the Minkowskian ase.The ombinations of the wave operators showing up in S0[ϑ] for the di�erent models are given by

e− i ϑK2(ϑ) := cos(ϑ)K2
i − i sin(ϑ)K2

µ ,

e− i ϑK̃2
(ϑ) := cos(ϑ)K̃2

i − i sin(ϑ)K̃2
µ ,

(5.61)where the phase fator has been fatored out suh thatK2(±π/2) = K2
µ , K̃2(±π/2) = K̃2

µ ,K2(0) = K2
i , K̃2(0) = K̃2

i .
(5.62)As will be shown below, the wave operators K(ϑ) and K̃(ϑ) have disrete spetra with eigenfuntions givenby

f (Eϑ)
m1n1

(x1)f
(B2)
m2n2

(x2) · · · f (Bn)
mnnn

(xn) (5.63)with xk = (x2k−2, x2k−1), f (Bk)
mknk(xk) the usual Landau funtions and f

(Eϑ)
m1n1(x1) given by (5.59). Thequantum �eld theory is de�ned by the generating funtional

Z[J ] = lim
ϑ→±π/2

∫
Dφ exp

(
i sin(ϑ)SM

0 − cos(ϑ)SE
0 + iSint +

∫
Jφ

) (5.64)for the GW model and analogously for the omplex LSZ model, where one of the two options ϑ → ±π/2has to be hosen. The free ation in the exponent of (5.64) an be expanded in the ϑ-regularized matrixbasis. Remember that SE
0 is a positive funtional on the �elds, thus for ϑ 6= 0 this an be interpreted as apath integral in Minkowski spae with an additional onvergene fator, orresponding to the − ∫ ǫφ2 termin the free ase (2.53). Not really surprising, in the limit E → 0 the modi�ation (5.60) turns out to be the

i ǫ presription of the free ase:
σ e− i ϑK2(ϑ) + (1 − σ) e− i ϑK̃(ϑ) + e i ϑµ2 E→0−→ − e− i ϑ∂2

0 − e i ϑ∂2
i + e i ϑµ2 , (5.65)whih holds for all σ. The ϑ-regularization is hene a generalization of the i ǫ-presription to the externaleletromagneti �eld ase! One is thus tempted to interpret the two di�erent models near +π/2 is −π/2analogously to the situation in the free ase. There, �ipping the sign in the exponential of the path integralinterhanges the partile and anti-partile desription, by interhanging the Feynman- and Dyson-propagator(also known as anti-ausal propagator) whih orrespond to di�erent ways of irumventing the poles. It willbe shown in setion 7.1.1 that this interpretation indeed holds for E 6= 0. Without restrition of generalitywe will hoose in the following always ϑ > 0 and de�ne ϑ = π/2− ǫ > 0 for a small ǫ > 0. Denoting

(K2
µ − µ2)ǫ := e i ǫ K2(π/2− ǫ)− e− i ǫµ2 (5.66)

(K̃2
µ − µ2)ǫ := e i ǫ K̃2

(π/2− ǫ)− e− i ǫµ2 (5.67)47



5 LS-Covariant NCQFTs in Minkowski Spaetimethe regularized LSZ model is de�ned by the lassial ation
S(ǫ)

LSZ =

∫

x

φ∗(x)
(
σ(K2

µ − µ2)ǫ + (1− σ)(K̃2
µ − µ2)ǫ

)
φ(x)

− g
(
α

∫

x

(φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β

∫

x

(φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)

) (5.68)and the regularized GW model by
S(ǫ)

GW =

∫

x

1

2
φ(x)

(
1

2
(K2

µ − µ2)ǫ +
1

2
(K̃2

µ − µ2)ǫ

)
φ(x)− g

∫

x

(φ ⋆ φ ⋆ φ ⋆ φ) (x) . (5.69)What remains is to show that these ations get indeed diagonalized by the funtions (5.63) in some spae offuntions. This will be shown in the next hapter.Note that the usual i ǫ-presription amounts to adding the onstant i ǫ to the ontinuous spetrum of thewave operators, but leaves its ontinuous harater unaltered. A perturbative quantum theory amenable forthe ontinuous basis approah with funtions (5.58) is the generating funtional
Z[J ] = lim

ǫ→0+

∫
Dφ exp

(
iSM

0 − ǫ
∫
φ2 + iSint +

∫
Jφ

)
. (5.70)We thus have two possible de�nitions for a generating funtional, while it is not obvious that both areequivalent.The perturbation theory of the Minkowskian LS-ovariant NCQFT an be derived quite similar to theusual φ⋆4 theory 2.2.3, where the bakground �eld is treated exatly in the Furry representation as in setion3.2. For real �elds we write the regularized free ations as

S(ǫ)
0 =

∫

x

φ(x)D
(ǫ)
x φ(x) (5.71)where D

(ǫ)
x is the wave operator, whih has been regularized in one of two possible ways. The regularizationensures the vanishing of the integrand in the path integrals for |φ| → ∞ leading to the free generatingfuntional

Z0[J ] = lim
ǫ→0+

exp

(
i

2

∫

x

∫

y

J(x)∆(ǫ)(x,y)J(y)

)
. (5.72)with ∆(ǫ) the propagator de�ned through one of the equations

(
σ(K2

µ − µ2)ǫ + (1 − σ)(K̃2
µ − µ2)ǫ

)
∆(ǫ)(x,y) = δ(x− y) ,

(
σK2

µ + (1− σ)K̃2
µ − µ2 + i ǫ

)
∆(ǫ)(x,y) = δ(x− y) .

(5.73)This is the point where the regularization ould make the di�erene, sine it is not lear initially whetherthese two propagators oinide in the limit ǫ → 0+. We will ome bak to this point in hapter 7. Theformal setting of a perturbative analysis of the interating NCQFTs is now given by
Z[J ] = lim

ǫ→0+
N exp

[
iSint

(
δ

δJ

)]
exp

(
i

2

∫

x

∫

y

J(x)∆(ǫ)(x,y)J(y)

)
. (5.74)with Sint the interation part and N some normalization onstant. For omplex �elds we get

Z[J, J∗] = lim
ǫ→0+

N exp

[
iSint

(
δ

δJ∗ ,
δ

δJ

)]
exp

(
i

∫

x

∫

y

J∗(x)∆(ǫ)(x,y)J(y)

)
. (5.75)In the following hapter we will onstrut the matrix representations of the regularized LS-ovariant models.
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6 Matrix Model Representation ofMinkowskian LS-Covariant NCQFTIn the previous hapter we showed that it is possible to �nd a matrix representation for the LS-ovariantmodels through a suitable regularization, whih has been dubbed ϑ-regularization and is an alternative tothe usual i ǫ-presription. In this hapter we will try to nail this matrix representation down. In setion 6.1we will use the Weyl-Wigner transformation to map the eigenvalue problem of the regularized wave operators(5.61) to the omplex harmoni osillator. Its spetrum and eigenfuntions are investigated in setion 6.2, aswell as the possibility to expand funtions and distributions in terms of these eigenfuntions. The generalizedLandau funtions are onstruted in setion 6.3. Using their Fok spae representation, we will �nally arriveat the matrix model representation for the two-dimensional lassial models in 6.4 and their orrespondingquantum theories. The generalization to higher dimensions is illustrated in setion 6.5.6.1 Mapping onto the Complex Harmoni OsillatorThe �rst step is to �nd the orresponding Weyl symbols of the generalized operatorsK2(ϑ) = e i ϑ
(
cos(ϑ)K2

i − i sin(ϑ)K2
µ

)
,K̃2(ϑ) = e i ϑ

(
cos(ϑ)K̃2

i − i sin(ϑ)K̃2

µ

)
,

(6.1)similar to the Eulidean and Minkowskian ases in setion 4.1 and 5.2, whih again split up into two-dimensional wave operators de�ned by (3.12), (5.8) and (5.9). In D = 2n dimensions the omponents (P2
i )kand (P2

µ)k, and likewise (P̃2
i )k and (P̃2

µ)k, di�er only by a minus sign for k = 2, . . . , n up to a relabeling ofthe oordinates. We thus �ndK2(ϑ) = e i ϑ
(
cos(ϑ)(P2

i )1 − i sin(ϑ)(P2
µ)1
)

+ e 2 i ϑ
n∑

k=2

(P2
i )k ,K̃2(ϑ) = e i ϑ

(
cos(ϑ)(P̃2

i )1 − i sin(ϑ)(P̃2
µ)1

)
+ e 2 i ϑ

n∑

k=2

(P̃2
i )k .

(6.2)What remains is to �nd the eigenfuntions of the remaining parts of the wave operators. We denote the
k = 1 part as P2(ϑ) = e i ϑ

(
cos(ϑ)(P2

i )1 − i sin(ϑ)(P2
µ)1
)
,P̃2(ϑ) = e i ϑ

(
cos(ϑ)(P̃2

i )1 − i sin(ϑ)(P̃2
µ)1

)
.

(6.3)Using (5.13), one easily on�rms that P2(ϑ) f(x) = H(ϑ) ⋆2/|E| f(x) ,P̃2(ϑ) f(x) = f(x) ⋆2/|E| H(ϑ) ,
(6.4)with

H(ϑ) := E2(x2 + e 2 i ϑt2) . (6.5)Alloating to eah funtion H(ϑ) a Weyl symbol Ĥ(ϑ) we �nd
Ĥ(ϑ) =

1

2

(
Ŵ
[√

2Ex
]2

+ e 2 i ϑŴ
[√

2Et
]2)

=
1

2

(
p̂2 + e 2 i ϑq̂2

)
, (6.6)49



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTwhere the symbols Ŵ [√
2Ex

]
= p̂ and Ŵ [√2Et

]
= q̂ obey the Heisenberg algebra

[q̂, p̂] = 2E2[t, x]⋆2/E
= i 4E . (6.7)The operators Ĥ(ϑ) for ϑ ∈ (−π/2, π/2) are known as omplex harmoni osillators, and the eigenvalueequations of our original operators are related to their orrespondents on the Weyl side byP2(ϑ)f (Eϑ)

mn (x) = W

[
Ĥ(ϑ)̂f(Eϑ)

mn

]
(x) = λ(Eϑ)

mn f (Eϑ)
mn (x)P̃2(ϑ)f (Eϑ)

mn (x) = W

[
f̂(Eϑ)
mn Ĥ(ϑ)

]
(x) = λ̃(Eϑ)

mn f (Eϑ)
mn (x)

(6.8)with f̂
(Eϑ)
mn = Ŵ[f

(Eϑ)
mn ]. The spetrum of Ĥ(ϑ) and its eigenfuntions f̂

(Eϑ)
mn will be investigated in the nextsetion. The eigenvalues will turn out to depend on E and ϑ only through the ombination

E e i ϑ := Eϑ , (6.9)whereas the eigenfuntions are tensor produts of two generalized osillator funtions of frequeny Eϑ/2,whih explains the (Eϑ)-supersript of the funtions. The simultaneous eigenfuntions of P2(ϑ) and P̃2(ϑ)an afterwards be ahieved with help of the Wigner transformation
f (Eϑ)

mn (x) = W[̂f(Eϑ)
mn ](x) . (6.10)The extension to the full D-dimensional ase will be given in setion 6.5.6.2 Generalized Osillator BasisIn this setion investigate the omplex harmoni osillator Ĥ(ϑ), whih turns out to have a disrete spetrumresembling the harmoni osillator spetrum rotated into the omplex plane by a fator e i ϑ, and whoseeigenfuntions are found to be the regularized harmoni osillator funtions f (γϑ)

n of setion 5.3. In addition,the general appliability of the generalized osillator basis is srutinized.The omplex harmoni osillator in a representation independent form is given by
Ĥho =

1

2
(p̂2 + e 2 i ϑq̂2) (6.11)with ommutation relation

[q̂, p̂] = i 4E (6.12)and positive real frequeny E ∈ R+. Sine q̂ = Ŵ
[√

2Et
], it is natural to work in a representation suhthat

〈q′|q̂|q〉 =
√

2Eq 〈q′|q〉 ⇒ 〈q′|p̂|q〉 = − i
∂

∂q/
√

8
〈q′|q〉 (6.13)thus

〈q′|Ĥ(ϑ)|q〉 = 4
(
−∂q + γ2

ϑ q
2
)
〈q′|q〉 (6.14)with the ondensed notation

γϑ = e i ϑγ with γ = E/2 ∈ R+ . (6.15)Firstly note that the equation
4(−∂2

q + γ2
ϑq

2)φn(q) = 8γϑ

(
n+

1

2

)
φn(q) (6.16)50



6.2 Generalized Osillator Basisis ful�lled even for omplex γϑ, if φn(q) is the osillator funtion (4.16) with γϑ substituted for γ. We de�nethe generalized harmoni osillator funtions
f (γϑ)

n (q) =

( √
γϑ

2nn!
√
π

)1/2

e−γϑ
2 q2

Hn(
√
γϑq) (6.17)as a generalization of the φn to omplex frequenies, whih oinide with the funtions found in setion5.3. These possess an exponential deay and are thus Shwartz funtions for |ϑ| < π/2. We expet that byontinuity, for |ϑ| small enough, the eigenvalues of the omplex harmoni osillator are given by the set

{8γϑ (n+ 1/2) , n ∈ N} . (6.18)In fat, the values (6.18) are indeed the eigenvalues of Ĥ(ϑ) for |ϑ| < π/2 [Dav99℄.The generalized harmoni osillator funtions (6.17) are not orthogonal, and thus do not serve as a usualHilbert spae basis for S(R). But together with its omplex onjugated funtions and for Re(γϑ) > 0,they onstitute a bi-orthogonal system with respet to the L2-norm. This means the two sets of funtions
(f

(γϑ)
n )n∈N and (f

(γ−ϑ)
n )n∈N with nonzero γϑ and Re(γϑ) > 0 ful�ll

〈f (γ−ϑ)
n |f (γϑ)

m 〉 =
∫ ∞

−∞
dq f (γϑ)

n (q) f (γϑ)
m (q) = δnm . (6.19)whih follows immediately from the orthogonality of the Hermite funtions by a deformation of the integrationontour to a straight line from −∞ e i ϑ to +∞ e i ϑ. This is possible due to the fator e−γϑ

2 q2 in theintegrand, ensuring an exponential deay for Re(γϑ) > 0. In addition their linear span is dense in L2(R),whih means that every square-integrable funtion an be approximated pointwise by a linear ombinationof these funtions. This is shown in appendix D. To ensure the appliability to arbitrary quantum �eldtheories, however, one has also to be able to deal with salar produts and distributions. In the followingwe will �rst brie�y explain how things work out in the usual osillator basis φn(q) with positive frequeny
γ ∈ R+. Afterwards we will present preliminary results onerning the generalized osillator basis.The usual osillator basis provide a onvenient tool in the investigation of tempered distributions andsimilar objets. Charaterizations of standard lasses of funtions, as Shwartz spae S(R) and its dual
S′(R) and many others are easily given in terms of their expansion oe�ients with respet to the osillatorfuntions [Sim70℄, whih in the following will be alled the Hermite oe�ients. Sine the issue of howto implement NCQFT into a mathematially rigorous formalism has still to be lari�ed, see e.g. [BN04,Sol07b, Sol07a, CMTV08, Sol09, Sol10℄, we will only disuss the expansion of several spaes in terms ofthe osillator basis and its generalization. The haraterization of Shwartz funtions is as follows. For afuntion ϕ(x) ∈ S(R) with Hermite oe�ients

ϕn =

∫

R

dq φn(q)ϕ(q) , (6.20)one �nds [Sim70℄
‖ϕ‖2k :=

∑

n

|ϕn|2(n+ 1)k <∞ (6.21)for every k ∈ N. If on the other hand ‖ψ‖k < ∞ for all k, then ∑n ψnφn(x) onverges in the Shwartztopology to a funtion in S(R), establishing an isomorphism between the Shwartz spae and the spae offast falling sequenes. Moreover onvergene in the topology of S(R) is equivalent to onvergene of theirHermite oe�ients with respet to the in�nite set of norms ‖ · ‖k for k ∈ N.Now suppose that T ∈ S′(R) is a tempered distribution with Tn = T (φn) denoting its Hermite oe�ients.Then |Tn| ≤ C(1 + n)k for some C and k and
T (ϕ) =

∞∑

n=0

Tnϕn , (6.22)for any ϕ ∈ S(R) with Hermite oe�ients ϕn. Conversely, if Tn ≤ C(1 + n)k for some k and all n, then
ϕ 7→ ∑

n Tnϕn de�nes a tempered distribution. By duality the usual osillator basis thus provides a meanto deal with tempered distributions. 51



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTThe extension to larger spaes of distributions, like the spae Sα
α (R)′ with α ≥ 1/2, whih is the dual of theGel'fand-Shilov spae Sα

α (R), is also possible in the same manner. The spae Sα
α (R) is dense in the Shwartzspae, losed under Fourier transformation and the star-produt, whih makes them to an appropriate testfuntion spae for nonommutative �eld theories. For a short introdution see appendix C.1. In [LCP07℄it has been shown that its elements are exatly those fast-falling funtions ϕ, whose Hermite oe�ients

ϕn = 〈φn|ϕ〉 ful�ll the ondition
∞∑

n=0

|ϕn|2 e n
1
2α ω < 0 . (6.23)for some onstant ω > 0. Its dual spae Sα

α (R)′ onsists of those distributions T , whose Hermite oe�ients
Tn = T (φn) satisfy

|Tn| ≤ e n
1
2α ω (6.24)for all ω > 0, and T (ϕ) for every ϕ ∈ Sα

α (R) has the representation
T (ϕ) =

∞∑

n=0

Tnϕn . (6.25)Conversely, for any sequene (Tn)n∈N satisfying (6.24) for all ω > 0, then ϕ→∑
n Tnϕn de�nes an elementof Sα

α (R)′.The question is, if a similar haraterization holds if we ontinue γ into the omplex plane, thus for theexpansion in generalized osillator funtions. Analogously to the ordinary ase desribed above, we wouldlike to de�ne the ation of a tempered distribution T ∈ S′(R) on test funtions ϕ by
T (ϕ) =

∞∑

n=0

T (γϑ)
n ϕ(γϑ)

n , (6.26)where
ϕ(γϑ)

n = 〈f (γ−ϑ)
n |ϕ〉 . (6.27)and

T (γϑ)
n = T (f (γϑ)

n ) (6.28)for nonzero γϑ ∈ C with Re(γϑ) > 0. The generalized Hermite oe�ients T (γϑ)
n exists for every tempereddistribution sine f (γϑ)

n ∈ S(R). However, it is not lear for whih funtions ϕ the series (6.26) is well-de�ned.Conerning this question we only have partial results. Note that for any tempered distribution (or Shwartzfuntion) ψ we an formally swith between the usual Hermite oe�ients, de�ned for nonzero frequeny
γ ∈ R+, and rotated Hermite oe�ients with frequeny γϑ through

ψ(γϑ)
n =

∞∑

m=0

h(ϑ)
nmψm , (6.29)where

h(ϑ)
nm =

∫

R

dq f (γϑ)
n (q)φm(q) (6.30)is the transition matrix. This follows from equation (6.22) for ϕ = f

(γ)
n and T = ψ. In appendix B.3 weshow, that for arbitrary nonzero, distint β, γ ∈ C with Re(γ + β) > 0 the general transition matrix

h(γ,β)
nm :=

∫

R

dq f (γ)
n (q) f (β)

m (q) (6.31)52



6.2 Generalized Osillator Basishas the following asymptoti behavior for given m and large n:
h(γ,β)

nm
n→∞∼ n−1/2

∣∣∣∣
β − γ
β + γ

∣∣∣∣
n

. (6.32)We see that the transition matrix has an exponential deay if the angle between β and γ is less than π/2. Toanswer the question whether there is are funtions suh that the expansion (6.26) of tempered distributionsis allowed, we have to �nd the asymptotis of the orresponding generalized Hermite funtions. This an bedone using the transition matrix and relation (6.29), sine the asymptotis of the usual Hermite oe�ientsare known.A spae whih is omputationally feasible is the Gel'fand-Shilov spae of type Sα
α (R) ⊂ S(R) with α = 1/2.In appendix C.2 we show that for this ase the orresponding generalized Hermite oe�ients ϕ(γϑ)

n have thefollowing asymptoti upper bound for large n
|ϕ(γϑ)

n | . 1 + e 2ωr

e 2ω − r . (6.33)with
r = | tan(ϑ/2)| . (6.34)Thus for a given r ∈ [0, 1] there is a lower bound ω0 given by

ω0 =
1

2
ln

(
1 + r

1− r

) (6.35)suh that every Gel'fand-Shilov funtion with ω > ω0 has an exponential deay. However, this is not apreise lower bound, sine we used a rough estimation to obtain this result. The atual asymptotis forthose funtions might be better. For �xed ϑ there is thus a spae of funtions whih might serve as testfuntion spae. If we allow r to beome arbitrary lose to 1, aording to the asymptotis of the transitionmatrix (6.32) we have to restrit to those funtions whose usual Hermite oe�ients deay faster than e−nωfor every ω. The spae of funtions obeying this ondition is spae made up of all �nite linear ombinationsof harmoni osillators, thus the spae spanned by the φn. But this is obvious, sine every �nite linearombination∑N
m=0 φm(q)am gives rise to a funtion in the rotated osillator basis with generalized Hermiteoe�ients

a(ϑ)
n =

N∑

m=0

h(ϑ)
nmam , (6.36)whih, aording to the asymptotis of the transition matrix h(ϑ)

nm given by (6.32), have an exponential deayfor |ϑ| < π/2 in the limit n→∞. This spae is obviously dense in L2(R) pointwise.Using the same methods, analog results may be derived for tempered distributions giving exponentialdivergenes
|T (γϑ)

n | ∼ (n+ 1)q

(
1 + r

1− r

)n/2 (6.37)for some q > 0, whih have been derived in appendix C.3. Using these upper bounds, one an �nd su�ientonditions on the test funtions suh that the sum (6.26) onverges. In order to get a deay whih dampsthe divergene of (6.37) we �nd the ondition
2ω >

2− (1 − r)2
2− (1 + r)2

. (6.38)This has only �nite solutions ω for r < √2 − 1 or equivalently ϑ < π/4, ruling out test funtions made upof an in�nite linear ombination of osillator funtions. Again, we have to emphasize that these are roughestimates and the atual deay behavior might be muh better. 53



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTThe question for whih spaes of funtions this generalized osillator basis makes sense is thus still openand will be left for future work. For a spei� theory, however, one only needs the asymptotis of the matrixversion of the orresponding propagator, to ensure the onvergene of the sums in Feynman diagrams and toproeed with the renormalization program. We will ome bak to this aspets in hapter 8 and omment onthe appliability to LS-ovariant theories. In the forthoming hapters, we will use the matrix basis to derivethe propagators of the various theories and �nd that they oinide with the position spae propagators in allthose ases, where results are already known in the literature. In appendix F the one-loop e�etive ationof the Klein-Gordon theory in a onstant eletri �eld is alulated with help of the matrix basis and alsooinides with the known results. By piking up the regularization sheme imposed on the position spaepropagator in the Eulidean ase, whih e�etively uts o� the matrix summations at some �nite N , theourring Feynman diagrams of the ϑ-regularized LS-ovariant theories are well-de�ned and LS-ovariant.6.3 Generalized Landau funtionsIn the following, we go bak to the Wigner side, by onstruting the generalized Landau funtions f (Eϑ)
mn ,de�ned by (4.19) through Wigner distribution of the tensor produt of two generalized osillator funtions.We will derive a �ladder operator�-onstrution, whih allows us to obtain the matrix model representationof the LS-ovariant models. Temporarily we set θ = 2/E and thus ⋆ = ⋆2/E.We an use a similar onstrution as in the Eulidean ase in setion 4.2 by relating the ordinary to theomplex harmoni osillator funtions using omplex saling methods. Introduing the Hermitian salingoperator

V̂(ϑ) = exp

(
− ϑ

4γ
(p̂q̂ + q̂p̂)

) (6.39)and using
e XY e−X = e ad XY = Y + [X,Y ] +

1

2!
[X, [X,Y ]] + . . . (6.40)we see that

V̂(ϑ) q̂ V̂(ϑ)−1 = e i ϑ
2 q̂ ,

V̂(ϑ) p̂ V̂(ϑ)−1 = e− i ϑ
2 p̂ .

(6.41)The omplex harmoni osillator is thus related to the ordinary one by
Ĥ(ϑ) := e i ϑ V̂(ϑ) Ĥho V̂(ϑ)−1

=
1

2

(
p̂2 + e 2 i ϑq̂2

)
, (6.42)while the generalized eigenfuntions an now easily obtained by the osillator funtions |φn〉, where 〈q|φn〉 =

φn(q) as in (4.16), by noting that
Ĥ(ϑ) V̂(ϑ)|φn〉 = e i ϑV̂(ϑ) Ĥho |φn〉 = e i ϑ8γ (n+ 1/2) V̂(ϑ) |φn〉 (6.43)and the orresponding eigenvetors are related to the osillator wave funtions by
f (γϑ)

n (q) = 〈q|f (γϑ)
n 〉 := 〈q|V̂(ϑ)|φn〉 = e i ϑ/4φn

(
e i ϑ/2 q

)
. (6.44)From here on we an ontinue deriving the orresponding results for the generalized osillator funtionssimilar to the Eulidean ase, with generalized Landau funtion given by

f (Eϑ)
mn (x) =

√
E

4π
W

[
V̂(ϑ)|φm〉〈φn|V̂(−ϑ)

]
(x) . (6.45)where normalization onstant has been hosen suh that again

∫
dx f (Eϑ)

mn (x) =

√
4π

E
δmn . (6.46)54



6.3 Generalized Landau funtionsUsing the expliit representation for the Wigner transformation (2.10) we see that omplex onjugationyields
f (Eϑ)

mn (x)∗ =

√
E

4π

∫
dk e− i E

2 kx〈t+ k/2|V̂(−ϑ)|φn〉〈φm|V̂(ϑ)|t− k/2〉 = f (E−ϑ)
nm (x) (6.47)and the projetor property takes the form

(
f (Eϑ)

mn ⋆ f
(Eϑ)
kℓ

)
(x) =

E

4π
W

[
V̂(ϑ)|φm〉〈φn|φk〉〈φℓ|V̂(−ϑ)

]
(x) =

√
E

4π
δnkf

(Eϑ)
mℓ (x) . (6.48)Together with the normalization ondition this implies the bi-orthogonality of the generalized Landau fun-tions with respet to the L2 salar produt

〈f (Eϑ)
mn |f (E−ϑ)

kℓ 〉 =

∫
dx f (E−ϑ)

nm (x) f
(E−ϑ)
kℓ (x)

=

∫
dx
(
f (E−ϑ)

nm ⋆ f
(E−ϑ)
kℓ

)
(x)

=

√
E

4π

∫
dx δmkf

(E−ϑ)
nℓ (x)

= δmkδnℓ . (6.49)The expliit expressions of the matrix basis funtions are given byTheorem 6.1. The generalized Landau funtions f (Eϑ)
mn (x) with m,n ∈ N0 are given by

f (Eϑ)
mn (t, x) = (−1)min(m,n)

√
E

π

√
min(m!, n!)

max(m!, n!)
E

|m−n|/2
ϑ

× e−Eϑ
2 x

(ϑ)
+ x

(ϑ)
− (x

(ϑ)
−sgn(m−n))

|m−n| L|m−n|
min(m,n)

(
Eϑ x

(ϑ)
+ x

(ϑ)
−

) (6.50)with x(ϑ)
± = t± i e− i ϑx and Lα

n(z) the generalized Laguerre Polynomials.The proof is given in appendix E. Setting ϑ = 0 this result proves the Eulidean ounterpart given in lemma4.1. Noting that
Eϑ x

(ϑ)
+ x

(ϑ)
− = E

(
e i ϑt2 + e− i ϑx2

)

= E
{
cos(ϑ)(t2 + x2) + i sin(ϑ)(t2 − x2)

}
. (6.51)we see that similar to the f (γϑ)

m these funtions are Shwartz funtions only for |ϑ| < π/2. In partiular theyare in Sα
α (R2) for all α ≥ 1/2. At ϑ = ±π/2 we have a polynomial inrease and thus tempered distributions.The Fok spae representation of the harmoni osillator funtions has a ounterpart in the omplex saledversion, whih will be very useful in the expliit determination of the matrix versions of the LS-ovariantmodels. Note that

|f (γϑ)
n 〉〈f (γ−ϑ)

m | = V̂(ϑ)
(â†)m

√
m!
|φ0〉〈φ0|

(â)n

√
n!

V̂−1(ϑ)

=
1√
m!n!

(
V̂(ϑ)â†V̂−1(ϑ)

)m

|f (γϑ)
0 〉〈f (γ−ϑ)

0 |
(
V̂(ϑ)âV̂−1(ϑ)

)n (6.52)with â = (q̂ + i p̂)/
√

8E. We an use relations (6.41) to get
V̂(ϑ)â†V̂−1(ϑ) = e i ϑ/2q̂− i e− i ϑ/2p̂ ,

V̂(ϑ)âV̂−1(ϑ) = e i ϑ/2q̂ + i e− i ϑ/2p̂ .
(6.53)Sine W

[√
2Et

]
= q̂ and W

[√
2Ex

]
= p̂ we �nd

W

[
V̂(ϑ)â†V̂−1(ϑ)

]
=

√
Eϑ

4
x

(ϑ)
− , W

[
V̂(ϑ)âV̂−1(ϑ)

]
=

√
Eϑ

4
x

(ϑ)
+ . (6.54)55



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTwhere we introdued generalized light one oordinates
x

(ϑ)
± = t± i e− i ϑx . (6.55)The orresponding derivatives are given by

∂
(ϑ)
± = ∂t ∓ i e i ϑ∂x , (6.56)with ∂

(ϑ)
± x

(ϑ)
± = 2 and ∂

(ϑ)
± x

(ϑ)
∓ = 0. The matrix funtions on R2 an now be obtained via Weyl-Wignerorrespondene

f (Eϑ)
mn =

1√
m!n!

W

[
|f (γϑ)

m 〉〈f (γ−ϑ)
n |

]

=
1√
m!n!

(√
Eϑ

4
x

(ϑ)
−

)⋆m

⋆W

[
|f (γϑ)

0 〉〈f (γ−ϑ)
0 |

]
⋆

(√
Eϑ

4
x

(ϑ)
+

)⋆n

. (6.57)Analogue to setion 4.2 we de�ne ladder operators through1
(√

Eϑ

4
x

(ϑ)
−

)
⋆ g(x) = a+

(Eϑ)g(x) ,

(√
Eϑ

4
x

(ϑ)
+

)
⋆ g(x) = a−(Eϑ)g(x) ,

g(x) ⋆

(√
Eϑ

4
x

(ϑ)
+

)
= b+(Eϑ)g(x) , g(x) ⋆

(√
Eϑ

4
x

(ϑ)
−

)
= b−(Eϑ)g(x) .

(6.58)The operators on the rhs an most easily be obtained by expressing the star-produt in terms of the gener-alized light one oordinates. Inverting the relations (6.56) we get
∂t =

1

2
(∂

(ϑ)
+ + ∂

(ϑ)
− ) , ∂x =

e− i ϑ

2 i
(∂

(ϑ)
− − ∂(ϑ)

+ ) , (6.59)thus
i

E
(∂t∂

′
x − ∂x∂

′
t) =

1

2Eϑ
(∂

(ϑ)
+ ∂

′(ϑ)
− − ∂(ϑ)

− ∂
′(ϑ)
+ ) . (6.60)The ladder operators are then given by

a±(Eϑ) =

√
Eϑ

4

(
x

(ϑ)
∓ ∓ 1

2Eϑ
2∂

(ϑ)
±

)
=

1

2

(√
Eϑx

(ϑ)
∓ ∓

√
1

Eϑ
∂

(ϑ)
±

)
,

b±(Eϑ) =

√
Eϑ

4

(
x

(ϑ)
± ∓ 1

2Eϑ
2∂

(ϑ)
±

)
=

1

2

(√
Eϑx

(ϑ)
± ∓

√
1

Eϑ
∂

(ϑ)
∓

)
,

(6.61)and ful�ll the relations
[
a−(Eϑ), a

+
(Eϑ)

]
=

1

2
[∂

(ϑ)
− , x

(ϑ)
− ] = 1 , (6.62)

[
b−(Eϑ), b

+
(Eϑ)

]
=

1

2
[∂

(ϑ)
+ , x

(ϑ)
+ ] = 1 , (6.63)whereas all others are zero. We note that the equations derived above are formally idential to those obtainedin the Eulidean ase in setion 4.2, when substituting Eϑ for E. Of ourse both oinide for ϑ = 0. Theground state is determined by

a−(Eϑ)f
(Eϑ)
00 (x) = b−(Eϑ)f

(Eϑ)
00 (x) = 0 (6.64)plus the normalization ondition

∫
d2x f

(Eϑ)
00 (x) =

√
4π

E
(6.65)1Sine (a+

(Eϑ)
)† 6= a−

(Eϑ)
and (b+

(Eϑ)
)† 6= b−

(Eϑ)
they are stritly speaking not ladder operators, but we will nevertheless allthem as suh.56



6.4 Matrix Model Representation of the Regularized LS-ovariant Modelswhih has the solution
f

(Eϑ)
00 (x) =

√
E

π
e−Eϑ

2 x
(ϑ)
+ x

(ϑ)
− . (6.66)The funtions f (Eϑ)

mn have the ladder operator representation
f (Eϑ)

mn (x) =
(a+

(Eϑ))
m

√
m!

(b+(Eϑ))
n

√
n!

f
(Eϑ)
00 (x) . (6.67)It immediately follows that

a−(Eϑ)f
(Eϑ)
mn (x) =

√
mf

(Eϑ)
m−1,n(x) , a+

(Eϑ)f
(Eϑ)
mn (x) =

√
m+ 1f

(Eϑ)
m+1,n(x) ,

b−(Eϑ)f
(Eϑ)
mn (x) =

√
nf

(Eϑ)
m,n−1(x) , b+(Eϑ)f

(Eϑ)
mn (x) =

√
n+ 1f

(Eϑ)
m,n+1(x) .

(6.68)We will use these relations to obtain the matrix representation of the models in the next setion.Note that the problem of the right test funtion spae is the same as in the generalized osillator ase.The results of the previous setion arry over diretly to the Wigner transformed ase, using the followingresult [Teo06℄:Lemma 6.2. Let ψ ∈ Sα
α (Rd), ϕ ∈ Sα

α (Rd)′. Then ψ ∈ Sα
α (Rd) if and only if W [|ψ〉〈ϕ|] ∈ Sα

α (R2d).Following this lemma, we an relate the subspaes of Gel'fand-Shilov spaes Sα
α (R) found in the previoussetion to subspaes of Sα

α (R2) via Wigner transformation.6.4 Matrix Model Representation of the Regularized LS-ovariantModelsUsing the Fok spae representation of the last setion we will now derive the matrix representation of thelassial regularized ations (5.68) and (5.69). In the following we denote
f ǫ

mn := f (2/θ−ϑ)
mn (6.69)with ϑ = π/2 − ǫ. In addition we set ⋆ = ⋆θ with θ 6= 2/E in general, whih means that the generalizedLandau funtions diagonalize the interation part, but not neessarily the free part of the ation. As insetion 4.3 we will assume the �elds to be suh that the expansion in generalized Landau funtions arewell-de�ned.We expand the salar �elds in terms of the generalized Landau basis

φ(x) =

∞∑

mn

f ǫ
mn(x)φǫ

mn

φ(x)∗ =

∞∑

mn

f ǫ
mn(x)φǫ

mn

(6.70)where the oe�ients given by
φǫ

mn =

∫
d2x f ǫ

nm(x)φ(x)

φǫ
mn =

∫
d2x f ǫ

nm(x)φ(x)∗ .

(6.71)Using the projetor property (6.48) we �nd
f ǫ

m1n1
⋆ f ǫ

m2n2
⋆ f ǫ

m3n3
⋆ f ǫ

m4n4
=

1
√

2πθ
3 δn1m2δn2m3δn3m4f

ǫ
m1n4

. (6.72)57



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTand thus the LSZ interation
g

2πθ

∑

mnkℓ

(
αφǫ

mnφ
ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm + β φǫ

mnφ
ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm

) (6.73)and GW interation
g

2πθ

∑

mnkℓ

(φǫ
mnφ

ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm) . (6.74)The free parts of the ations an be dedued from the followingLemma 6.3. The wave operator of the two-dimensional LSZ model in matrix representation is given by

G
(ǫ,σ)
mn;kℓ =

(
− e− i ǫµ2 + 2 i

(1 + Ω2)

θ
(m+ n+ 1)δmℓδnk +

4Ω̃

θ
(n−m)

)
δmℓδnk

+2 i
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

) (6.75)with frequenies Ω = Eθ/2 and Ω̃ = (2σ − 1)Ω.Proof: The wave operator is de�ned by
G

(ǫ,σ)
mn;kℓ =

∫

x

f ǫ
mn(x)

(
σ e i ǫ P2(π/2− ǫ) + (1− σ) e i ǫ P̃2(π/2− ǫ)− e− i ǫµ2

)
f ǫ

kℓ(x) . (6.76)One �ndsP2(ϑ) =
e i ϑ

2θ

[
(2 + Eθ)2

(
a+a− +

1

2

)
+ (2− Eθ)2

(
b+b− +

1

2

)
+
(
θ2E2 − 4

) (
a+b+ + a−b−

)] (6.77)and a similar expression for P̃2(ϑ) with a± and b± swapped. The veri�ation of these expressions an bedone exatly as in the proof of lemma 4.2 by simply substituting θ−ϑ for θ and Eϑ for B. The matrixrepresentation of P2(ϑ) and P̃2(ϑ) away from the dual point an be obtained from (6.77) with help of (6.68)leading toP2
mn;kℓ(ϑ) =

e i ϑ

2θ

[
(2 + Eθ)2

(
m+

1

2

)
δmℓ δnk + (2− Eθ)2

(
n+

1

2

)
δmℓ δnk

+
(
θ2E2 − 4

) (√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)] (6.78)and P̃2
mn;kℓ(ϑ) =

e i ϑ

2θ

[
(2 + Eθ)2

(
n+

1

2

)
δmℓ δnk + (2− Eθ)2

(
m+

1

2

)
δmℓ δnk

+
(
θ2E2 − 4

)(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)]
. (6.79)whih an be ombined to give (6.75).The regularized LSZ model in two-dimensional Minkowski spaetime then has the matrix model representa-tion

S(ǫ)
LSZ =

∑

mnkℓ

φǫ
mnG

(ǫ,σ)
mn;kℓ φ

ǫ
ℓk +

g

2πθ

∑

mnkℓ

(
αφǫ

mnφ
ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm + β φǫ

mnφ
ǫ
nkφ

ǫ
kℓ φ

ǫ
ℓm

)
. (6.80)A perturbative expansion of the generating funtional in matrix basis is similarly obtained as in the Eulideanase 4.4. The generating funtional of the LSZ model reads

Z[J ] = lim
ǫ→0+

N exp

(
− iαg

∑

mnkℓ

∂4

∂Jǫ
mℓ∂J̄

ǫ
ℓk∂J

ǫ
kn∂J̄

ǫ
nm

)

× exp

(
− iβ g

∑

mnkℓ

∂4

∂Jǫ
mℓ∂J

ǫ
ℓk∂J̄

ǫ
kn∂J̄

ǫ
nm

)
exp

(
i

2

∑

mnkℓ

J̄ǫ
mn∆

(ǫ,σ)
mn;kℓJ

ǫ
kℓ

)
, (6.81)58



6.4 Matrix Model Representation of the Regularized LS-ovariant Modelswith Jǫ
mn and J̄ǫ

mn the soures in matrix basis and the propagator ∆
(ǫ,σ)
mn;kℓ de�ned as the inverse of G(ǫ,σ)

mn;kℓ:
∑

kℓ

G
(ǫ,σ)
mn;kℓ∆

(ǫ,σ)
ℓk;sr =

∑

kℓ

∆
(ǫ,σ)
nm;ℓkG

(ǫ,σ)
kℓ;rs = δmrδns . (6.82)The modi�ed Feynman rules are presented in the double line formalism and are exatly as in the Eulideanase. The double lines are oriented pointing from φ∗ to φ :

m
n

ℓ

k = ∆
(ǫ,σ)
nm;ℓk .The two interation terms φ∗ ⋆ φ ⋆ φ∗ ⋆ φ and φ∗ ⋆ φ∗ ⋆ φ ⋆ φ are represented by di�erent diagrams

∼ φ∗ ⋆ φ ⋆ φ∗ ⋆ φ ∼ φ∗ ⋆ φ∗ ⋆ φ ⋆ φhaving verties − i g δmpδnqδkrδℓs times α or β, respetively.The GW model an be treated identially. One an immediately follow from lemma (6.3) by setting
σ = 1/2:Lemma 6.4. The regularized Grosse-Wulkenhaar wave operator in two dimensions has the matrix represen-tation given by

G
(ǫ)
mn;kℓ =

(
− e− i ǫµ2 + 2 i

Ω2 + 1

θ
(m+ n+ 1)

)
δmℓ δnk

+2 i
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1)δm,ℓ−1δn,k−1

) (6.83)with frequeny Ω = Eθ/2.The Minkowskian GW ation then reads
S(ǫ)

GW =
∑

mn;kℓ

(
1

2
φǫ

mnG
(ǫ)
mn;kℓφ

ǫ
kℓ +

g

2πθ
φǫ

mnφ
ǫ
nkφ

ǫ
kℓφ

ǫ
ℓm

)
. (6.84)The generating funtional is given by

Z[J ] = lim
ǫ→0
N exp

(
− i g

∑

mnkℓ

∂4

∂Jǫ
mℓ∂J

ǫ
ℓk∂J

ǫ
kn∂J

ǫ
nm

)
exp

(
i

2

∑

mnkℓ

Jǫ
mn∆

(ǫ)
mn;kℓJ

ǫ
kℓ

) (6.85)with the propagator ∆
(ǫ)
mn;kℓ being the inverse of G(ǫ)

mn;kℓ and being represented by the unoriented double line
m
n

ℓ

k = ∆
(ǫ)
nm;ℓk .The vertex of the φ⋆4 interation is given by the graph

= − i g δmpδnqδkrδℓs .Sine the vertex is oriented there will be as many diagrams as in the LSZ ation with both parameters αand β turned on. 59



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFT6.5 Generalization to Higher DimensionsThe generalization to higher dimensions an be obtained similarly as in setion 4.6. By de�nition, the
D = 2n-dimensional operators K2(ϑ) and K̃2(ϑ) are given byK2(ϑ) = P2(ϑ) + e 2 i ϑ

n∑

k=2

(P2
i )kK̃2(ϑ) = P̃2(ϑ) + e 2 i ϑ

n∑

k=2

(P̃2
i )k ,

(6.86)aording to equations (6.2) and (6.3). We found that the spetra of both operators are given by
{4E e i ϑ(ℓ1 + 1/2) +

n∑

k=2

4Bk e 2 i ϑ(ℓk + 1/2) , ℓ1, . . . , ℓn ∈ N} , (6.87)where the eigenfuntions are produts of generalized Landau funtions from setion 6.3 f (Eϑ)
m1n1 and ordinaryLandau funtions from setion 4.2 f (Bk)

mknk :
f (F ϑ)

mn (x) := f (Eϑ)
m1n1

(x1)f
(B2)
m2n2

(x2) · · · f (Bn)
mnnn

(xn) (6.88)with xk = (x2k−2, x2k−1) ∈ R2, x = (xµ) ∈ RD, m = (mk),n = (nk) ∈ Nn and F ϑ = (Eϑ, B2, . . . , Bn) ∈
C+ × Rn

+, where C+ denotes the omplex numbers with positive real part. The deformation matrix Θ isassumed to be in its anonial form
(Θµν) =




0 θ1
−θ1 0

0. . .
0

0 θn

−θn 0




(6.89)with θi ∈ R. The star produt of two suh multi-dimensional, generalized Landau funtions with respet to(6.89) deouples into produts of Landau funtions depending on xk for k = 1, . . . , n. If in addition E = 2/θand Bk = 2/θk for all k, then
(
f (F ϑ)

mn ⋆Θ f
(F ϑ)
m′n′

)
(x) = δnm′ f

(F ϑ)
mn′ (x) (6.90)with δm′n =

∏n
k=1 δm′

k
nk
.The generalization of the matrix model representation is straightforward. To on�rm with our previousnotation we set ϑ = π/2− ǫ > 0 and use the notation

f ǫ
mn(x) =

n∏

k=1

f (2/(θk)−ϑ)
mknk

(x) . (6.91)The f ǫ
mn are arranged suh as to simplify the interation part but not neessary the free part of the ation.The salar �elds living on R

D are expanded in the generalized Landau basis
φ(x) =

∞∑

m,n∈Nn

f ǫ
mn(x)φǫ

mn

φ(x)∗ =
∞∑

m,n∈Nn

f ǫ
mn(x)φǫ

mn

(6.92)where the oe�ients are given by
φǫ

mn =

∫
dDx f ǫ

nm(x)φ(x)

φǫ
mn =

∫
dDx f ǫ

nm(x)φ(x)∗ .

(6.93)60



6.5 Generalization to Higher DimensionsThe matrix representation of the D = 2n-dimensional LSZ model away from the self-dual point an beobtained by omparing the operators (6.86) with its two dimensional onstituents and their matrix represen-tations given by the equations (4.50), (4.51), (6.78) and (6.79). The matrix LSZ operator is thus the sum ofthe two-dimensional Minkowskian ase given by (6.75) plus n− 1 opies of the massless Eulidean operatorgiven by (4.45) times e− i ǫ, where we set again ϑ = π/2 − ǫ. Noting that the massless LSZ operators inEulidean and Minkowskian spae di�er only by a fator �i�, we an write
G

(ǫ,σ)
mn;kℓ = iG(σ)

m1n1;k1ℓ1
− e− i ǫ

n∑

i=2

G(σ)
mini;kiℓi

− e− i ǫµ2 (6.94)with m = (mk),n = (nk),k = (kk), ℓ = (ℓk) ∈ Nn and Gmn,kℓ the two dimensional, massless, Eulidean LSZmatrix wave operators
G(σ)

mn;kℓ =

(
2
Ω2 + 1

θ
(m+ n+ 1) +

4Ω̃

θ
(n−m)

)
δmℓ δn,k

+2
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1)δm,ℓ−1δn,k−1

) (6.95)with Ω = Eθ/2 = Biθ/2 and Ω̃ = (2σ − 1)Ω. The 2n-dimensional, regularized LSZ ation is then given inthe usual form
SLSZ =

∑

m,n,k,ℓ∈Nn

φǫ
mnG

(ǫ,σ)
mn;kℓ φ

ǫ
ℓk

+
g

2πθ

∑

m,n,k,ℓ∈Nn

(
αφǫ

mnφ
ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm + β φǫ

mnφ
ǫ
nkφ

ǫ
kℓ φ

ǫ
ℓm

)
. (6.96)Every other result of this hapter an now formally be generalized to higher dimensions by substitutingmulti-indies m,n, . . . ∈ Nn for usual one-dimensional indies m,n, . . . ∈ N.
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7 Aspets of the LS-Covariant TheoriesIn this hapter we will treat several questions onerning the LS-ovariant models in Minkowski spaetime,like the determination of the ausal propagator, LS-ovariane at quantum level and unitarity. Problematifor the propagator and the unitarity issue turns out to be the lak of translation invariane, whih manifestsitself in an instability of the vauum with respet to pair prodution. We review how the ordinary proedures,one is used to, have to be altered to take are of these features. In addition, the two di�erent possibilitiesto treat these models, the ontinuous and the matrix basis, will be ompared. We will �rst omment onthe orresponding propagators, whih one obtains by removing the ϑ-regularization. Afterwards we disusstheir appliability to Feynman diagrams in the ase Ω = 1. The question of how to implement LS-duality atquantum level is given in setion 7.3. The unitarity of the LS-ovariant models will be disussed in setion7.4.7.1 Causal PropagatorIt is a feature of all frequently onsidered physial theories on Minkowski spaetime that there is more thanone propagator, that means a funtion (or distribution) ∆ whih solves the equation Dx∆(x,x′) = δ(x−x′)with Dx being the wave operator of the theory. Any two of these di�er by a solution of the equation of motion.It is therefore neessary to impose further onditions as to make the solution of this problem unique. Thismay be done by imposing boundary onditions, postulating a spetral representation or extending the waveoperator as to make the equation unique. We are mainly onerned with the question whih propagatorsshow up in the generating funtionals (5.74) and (5.75). The free generating funtional Z0[J ] is de�ned asthe vauum-to-vauum amplitude
Z0[J ] = 〈Ω, out|Ω, in〉[J ] , (7.1)where |Ω, in〉 and 〈Ω, out| are the vaua at time instanes tin and tout of the quantum theory de�ned by

S0[ϕ] in presene of the soure J . Using Shwinger's ation priniple, one an show that ausality implies
δ2 logZ0[J ]

δJ(x) δJ(y)

∣∣∣∣
J=0

=
〈0, out|T (φ̂(x)φ̂†(y))|0, in〉

〈0, out|0, in〉 , (7.2)where φ̂ is the �eld operator and |0, in〉 and 〈0, out| the in- and out- vaua for J = 0, whih in the presene offurther interations are supposed to be in the interation piture with respet to S0[ϕ]. Note that for theorieswhih allow spontaneous pair prodution, whih is the ase for the LS-ovariant models we are onsidering,the in- and out- vaua are in general not dual to eah other, thus |〈0, out|0, in〉| < 1 whih has to be takeninto aount. This is evident, sine 〈0, out|0, in〉 measures the vauum persistene and is equal to 1 only ifno spontaneous pair prodution ours. The rhs is known as ausal propagator and will be denoted as i ∆c,where the imaginary unit has been fatored out for onveniene. Quite generally, for a Klein-Gordon �eld,whih may be free or moving in an external bakground whih preserves vauum stability, the expression(7.2) may be evaluated as
i ∆c(x,x

′) = θ(x0 − x′ )
∑

n

φ(+)
n (x)φ (+)

n (x′)

+ θ(x′ 0 − x0)
∑

n

φ(−)
n (x)φ (−)

n (x′) (7.3)with (φ
(±)
n ) being a omplete set of solutions of the equation of motion with positive and negative frequeny,respetively, and n being an index omprising the quantum numbers. One an hek that (7.2) propagates63



7 Aspets of the LS-Covariant Theoriespartiles (positive frequeny solutions) forward in time and anti-partiles (negative frequeny solutions)bakward. This is the imprint of ausality and lends the ausal propagator its name.The situation gets more ompliated if the bakground �eld spoils vauum persistene. Cruial for theanonial quantization sheme and for equation (7.3) to be appliable is the existene of a omplete set ofsolutions, whih allows for a distintion between positive or negative frequenies through all times. However,suh a set of solutions only exists if we are dealing with a �stationary spaetime�, whih says that thespaetime allows for a global timelike Killing vetor �eld [DeW75℄. In our ase, there does not exist suha vetor �eld due to the lak of time translation symmetry. The methods to be used have been developedin [Git77, FG81℄. Sine the asymptoti Hilbert spaes in the remote past and future, provided they exist,are di�erent, we have two sets of solutions, denoted as (φn
(±))n and (φn(±))n and being the equivalent topositive/negative frequeny solutions above in the in�nite future and past, respetively. The generalizationof the sum over solutions (7.3) then reads

i ∆c(x,x
′) = θ(x0 − x′ 0)

∑

m,n

φm
(+)(x)ω(m+|n+)φn(+)(x

′)

+ θ(x′ 0 − x0)
∑

m,n

φn(−)(x)ω(m−|n−)φm
(−)(x′) , (7.4)with ω(m±|n±) being the relative probability for a partile/anti-partile to be sattered by vauum (seealso setion 7.4). For a theory with a stable vauum this is just δmn and in addition φ (±)

n = φn(±). Thisproedure determines the propagator uniquely and is equal to the de�nition (7.2), but might at times bequite ompliated to perform, for whih it is desirable to have another method at hand.Suh an equivalent method, whih will proves pro�table for us, is the eigenvalue representation. Let ϕn(x)be an orthonormal and omplete set of eigenfuntions of the wave operator Dx with eigenvalues λn, i.e.
Dxϕn(x) = λnϕn(x) (7.5)with

∑

n

ϕn(x)ϕn(x′) = δ(x− x′) and ∫

x

ϕn(x)ϕm(x) = δnm . (7.6)Note that, ontrary to the φ(±)
n above, these eigenfuntions may not solve the equations of motion. Deom-posing the propagator into these eigenfuntions gives formally

∆(x,x′) =
∑

n

ϕn(x)λ−1
n ϕn(x′) , (7.7)however singularities at λn = 0 for any n pose problems to this de�nition, whih re�ets the fat of havingmore than one propagator for a single theory. Usually one modi�es the denominator by a small imaginarypart λn → λn + i ǫf(n) with small ǫ > 0 and f(n) some funtion suh that

λn + i ǫf(n) 6= 0 , ∀n . (7.8)A propagator for Dx is �nally obtained by taking the limit ǫ → 0. Equivalently one an regularize theoperator Dx → D
(ǫ)
x with limǫ→0 D

(ǫ)
x = Dx and solve the equation

D
(ǫ)
x ∆(ǫ)(x,x′) = δ(x− x′) , (7.9)where limǫ→0+ ∆(ǫ)(x,x′) is a propagator of the original operator Dx. Hene any well-de�ned operator whihis ontinuously onneted to the original operator and has no zero eigenvalue gives rise to a propagator for Dx.However, apart from the absene of zero eigenvalues of D(ǫ)

x , or equivalently ondition (7.8), the regularizationis arbitrary, and di�erent regularizations may lead to di�erent propagators. For example in the free Klein-Gordon ase f(k) = const. > 0 leads to the Feynman propagator, while f(k) = 2k0 yields the retardedpropagator. In general one annot be sure whether one got the ausal propagator unless one ompares itto the result obtained from (7.2). This is the obvious problem of the eigenvalue method, and it is still notsolved for the general ase of any propagator and any external �eld.64



7.1 Causal PropagatorFor the LSZ model the two di�erent regularized operators are
D

(ǫ)
x,disc = σ(K2

µ − µ2)ǫ + (1 − σ)(K̃2
µ − µ2)ǫ (7.10)

D
(ǫ)
x,cont = σK2

µ + (1 − σ)K̃2
µ − µ2 + i ǫ , (7.11)introdued in setion 5.4. The question to whih propagator they lead in the limit ǫ→ 0 has been answeredfor the i ǫ-presription for several related models. For the KG �eld moving in rossed or parallel uniformeletri and magneti �elds, or in an eletri �eld with an additional plane wave, this method gives the ausalpropagator [Rit70, Rit78, BFS85℄. Sine an additional uniform, onstant magneti bakground should nothange the pole struture of the propagator, we do not doubt that the i ǫ-presription will also give the ausalpropagator in the ase of a pure eletri �eld. In the next setion we will on�rm that the ϑ-regularization(7.10) gives the same propagator.7.1.1 Propagator from Matrix RegularizationThe equivalene of the propagators in the di�erent representations have to be heked by hand, whih iseasily done in the free ase. For generi eletromagneti bakgrounds this is still an open question, and inorder to make a omparison we have to restrit to ases where the propagators are already known. Usingthe �sum over solutions method� (7.4), the ausal propagator for a salar �eld in four dimensions with aonstant, uniform eletri �eld along one spae diretion has been alulated in [FGS91℄ (equation (6.2.40)):

∆c(x,x
′) =

eE

16π2
e i e

2x‖·E·x′
‖

∫ ∞

0

ds

s

1

sinh(sE)

× exp

{
− i sµ2 − i

2
eE(x‖ − x′

‖)
2 coth(seE) + i

(x⊥ − x′
⊥)2

4s

}
.

(7.12)Here we de�ned x = (x‖,x⊥) ∈ R4 with x⊥ denoting the two spae omponents perpendiular to the eletri�eld and
x‖ ·E · x′

‖ := E(x‖)
µǫµν(x′‖)

ν , (7.13)where ǫµν is the two-dimensional Levi-Civita-tensor with ǫ01 = 1 and E > 0 the eletri �eld strength. Belowwe will start with this four-dimensional wave operator, where the eletri part is regularized as in (7.10),and alulate its (unique) propagator. For ǫ→ 0 we �nd oinidene with (7.12) on�rming that this is theausal propagator. This result an easily be arried over to the two-dimensional ase on�rming that the
ϑ-regularization leads to ausality for the LSZ model at σ = 1. We onjeture that this also holds for σ 6= 1.The alulations done here using the matrix basis are omparable simple, suh that the matrix basis an beseen as a powerful omputational tool.We de�ne the map (·, ·)ϑ : R2 × R2 → C for ϑ ∈ [−π/2, π/2] by

(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M , (7.14)where (·, ·)M is the two dimensional Minkowskian and (·, ·)E the two dimensional Eulidean salar produt.In addition we de�ne the map ‖ · ‖ : R2 → C by
‖x‖2ϑ = (x,x)ϑ

= cos(ϑ)‖x‖E + i sin(ϑ)‖x‖M (7.15)with ‖ · ‖E the two dimensional Eulidean and ‖ · ‖M the two dimensional Minkowskian norm. For arbitrarytwo-dimensional vetors x,x′ ∈ R
2 we denote as above

x ·E · x′ = Exµǫµνx
′ν . (7.16)We need the following lemma 65



7 Aspets of the LS-Covariant TheoriesLemma 7.1. Let x ∈ R2 and a ∈ C− {0}. The following identity holds
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an =
E

π
exp

{
−E

2
‖x− x′‖2ϑ + (a− 1)E(x,x′)ϑ − a i x ·E · x′

}

× Lm

(
E‖x− x′‖2ϑ − a(1− a−1)2E(x,x′)ϑ + (a− a−1) i x ·E · x′) .(7.17)Proof: is given in appendix G.An immediate orollary isCorollary 7.2. The following relations hold

∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x)an =
E

π
e (a−1)E(x,x′)ϑam Lm

(
−E (a− 1)2

a
‖x‖2ϑ

) (7.18)
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′) =
E

π
exp

{
−E

2
‖x− x′‖2ϑ − i x ·E · x′

}
Lm

(
E‖x− x′‖2ϑ

) (7.19)
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x) =
E

π
. (7.20)Now we determine the propagator of the Klein-Gordon �eld in four dimensions exposed to a onstant eletri�eld, where the wave operator parallel to the eletri �eld is given by the two-dimensional, regularizedoperator (P2

µ − µ2
)
ǫ
. The oordinate vetor is again written as x = (x‖,x⊥) with x⊥ being the omponentsperpendiular to the eletri �eld, and analogously for the momenta p = (p‖,p⊥) and derivatives ∂µ =

(∂‖, ∂⊥).Theorem 7.3. The propagator of the regularized wave operator D
(ǫ)
x =

(P2
µ − µ2

)
ǫ
+( i ∂⊥)2 oinides in thelimit ǫ→ 0 with the ausal propagator (7.12).Proof: The inverse of D

(ǫ)
x is given by

∆(ǫ)(x,x′) = 〈x| 1

(P2
µ − µ2)ǫ + ( i ∂⊥)2

|x′〉 , (7.21)where (P2
µ − µ2)ǫ + ( i ∂⊥)2 = e i ǫP2(π/2− ǫ)− e− i ǫµ2 + ( i ∂⊥)2 with ǫ > 0 ful�lls the eigenvalue equation

[(P2
µ − µ2

)
ǫ
+ ( i ∂⊥)2

]
f (Eϑ)

mn (x‖) e− i p⊥·x⊥

=

[
i 4E

(
m+

1

2

)
+ p⊥ − e− i ǫµ2

]
f (Eϑ)

mn (x‖) e− i p⊥·x⊥ (7.22)with ϑ = π/2− ǫ. We simply write µ2 for e− i ǫµ2, keeping in mind that µ2 is slightly imaginary. Using theidentity
1

a
= − i

∫ ∞

0

ds e i sa , Im(a) > 0 , (7.23)we obtain
〈x|
(

1P2
µ − µ2

)

ǫ

|x′〉 = − i

∫ ∞

0

ds

∫
d2p⊥
(2π)2

∞∑

m,n=0

f (Eϑ)
mn (x‖)f

(Eϑ)
nm (x′

‖)

× e− i sµ2

e−s4E(m+ 1
2 ) e i sp2

⊥− i (x⊥−x′
⊥)·p⊥ . (7.24)66



7.1 Causal PropagatorThe sum over n is given by relation (7.19), leading to
− i

E

π
e− i x‖·E·x′

‖−E
2 ‖x‖−x′

‖‖2
ϑ

∫ ∞

0

ds

∫
d2p⊥
(2π)2

∞∑

m=0

Lm

(
E‖x‖ − x′

‖‖2ϑ
)

× e− i sµ2

e−s4E(m+ 1
2 ) e i sp2

⊥− i (x⊥−x′
⊥)·p⊥ , (7.25)and the resulting sum over m follows from equation (48.4.1) of [Han75℄:

e−y/2
∞∑

m=0

Lm(y)tm = e−y/2 1

1− t exp

{
yt

t− 1

}

=
1

1− t exp

{
y

2

t1/2 + t−1/2

t1/2 − t−1/2

}
, |t| < 1 , (7.26)whih yields

− i
E

2π
e− i x‖·E·x′

‖

∫ ∞

0

ds
1

sinh(2sE)

× exp

{
− i sµ2 − 1

2
Eϑ‖x‖ + x′

‖‖2ϑ coth(2sE)

}∫
d2p⊥
(2π)2

e i sp2
⊥− i (x⊥−x′

⊥)·p⊥ .

(7.27)The integration over the momenta an be done using
∫

dp e i sp2− i (x−y)p =

√
iπ

s
e i (x−y)2

4s (7.28)yielding
E

8π2
e− i x‖·E·x′

‖

∫ ∞

0

ds

s

1

sinh(s2E)

× exp

{
− i sµ2 − 1

2
Eϑ‖x‖ − x′

‖‖2ϑ coth(2sE) + i
(x⊥ − x′

⊥)2

4s

}
, (7.29)where the salar produts are understood to be Eulidean for the x⊥ omponents. Taking the limit ǫ → 0,thus ϑ→ π/2, and substituting E → eE/2 to onform to the onventions of [FGS91℄, this result is identialto equation (7.12) and proves the lemma.The eigenfuntions for the full regularized operator D

(ǫ)
x fatorize into omponents perpendiular to theeletri �eld and the eigenfuntions of (P2

µ − µ2)ǫ. Sine the eigenvalues of the perpendiular momenta donot produe new singularities, we an neglet them in this alulation and also in the alulation leading to(7.12). Again they perfetly agree, extending this result to the two dimensional LSZ model at σ = 1. Wesuspet that the ϑ-regularization leads to the ausal propagators for σ 6= 1, too.Note that the Shwinger parameter introdued in equation (7.23) only allows for the regularizations ϑ > 0and µ2 − i ǫ beause of the ondition Im(a) > 0, where the latter is usually assoiated to the Feynmanboundary ondition on the propagator. The other hoies ϑ < 0 and µ2 + i ǫ an be applied using
1

a
= i

∫ 0

−∞
ds e i sa , for Im(a) < 0 . (7.30)The regularization µ2 + i ǫ is known as Dyson boundary ondition, whih leads to an anti-ausal propagator,where anti-partiles travel forward and partiles bakward in time. This suggests the onlusion that theregularization ϑ < 0 leads to the Dyson propagator.The regularization of the mass µ2 → e− i ǫµ2 is atually irrelevant for the analysis above. Its only funtionis to provide a ontinuous relation of the Minkowskian and the Eulidean wave operators with help ofparameter ϑ alone, without the need to keep trae of additional minus signs in front of the mass term. Thismeans that the interpretation in terms Feynman/Dyson propagator for the ases ϑ→ ϑ± π/2 still holds byregularizing just the operator P2

µ . 67



7 Aspets of the LS-Covariant TheoriesThe derivation of the propagator with help matrix basis may be ompared to the alulation with othermethods, suh as Shwinger's derivation in his proper time formalism [Sh51℄, the �sum over solutionsmethod� [FGS91℄ or the eigenvalue method using the ontinuous basis [Rit78℄. Compared to the latter thematrix basis involves only polynomials and sums instead of the ompliated integral expressions and thusbrings along a strong simpli�ation. As a further example how the matrix basis an be used serves theone-loop e�etive ation of the same model as above. It has been alulated in appendix F. It is proposedthat going beyond the onstant �eld ase might be possible using the ϑ-regularization and the matrix basis.This might help to probe QED in the non-perturbative regime (see e.g. [Rin01, HI09, Dun09, ILM10℄).We onlude that the matrix basis may serve as a omputational tool to simplify otherwise umbersomealulations.7.2 Continuous versus Matrix BasisWe now diretly ompare the ontinuous basis to the disrete matrix basis. The two-dimensional GW modelin ontinuous basis with φ⋆3 interation term at the self-dual point has been investigated in [Zah10℄. Wewill give a short exposition of the aspets of this work with relevane for us, with its problems and possiblesolutions. The notation of [Zah10℄ ompared to ours is suh that θ = λ2
nc and E = 2/λ2. Its perturbationtheory an be determined analogously to the matrix representation in the last setion, with a di�erentinteration vertex and propagator as demonstrated below. In 1+1 dimensions the ontinuous basis are theWigner transformed tensor produts

χkℓ
st (x) = W

[
|χk

s〉〈χℓ
t|
]
(x) (7.31)with s, t = ± and k, ℓ ∈ R. They an be represented in terms of on�uent hypergeometri funtions, buttheir exat form is irrelevant for the following. They satisfyP2

µ χ
kℓ
st (x) = 4Ek χkℓ

st (x)P̃2
µ χ

kℓ
st (x) = 4Eℓχkℓ

st (x)
(7.32)and obey the projetor property

χkℓ
st ⋆ χ

k′ℓ′

s′t′ = δts′δ(k′ − ℓ)χkℓ′

st′ . (7.33)The real �elds expanded in terms of χkℓ
st read

φ(x) =
∑

st

∫
dk dℓ χkℓ

st (x)φℓk
ts (7.34)with

φts
ℓk =

∫
d2xχℓk

ts (x) ⋆ φ(x) . (7.35)The GW wave operator takes the form
(

1

2
P2

µ +
1

2
P̃2

µ − µ2

)
kℓ;ℓ′s′

st;t′s′ = (2E(k + ℓ)− µ2)δss′δtt′δ(k − k′)δ(ℓ − ℓ′) . (7.36)Due to zero eigenvalues this operator an not simply be inverted. In [Zah10℄ this problem is solved byadding the term i ǫ σst(k, ℓ) with some onstant ǫ > 0 and a sign funtion σst(k, ℓ). Depending on theexpliit funtional behavior of the sign funtion one gets di�erent propagators. This funtion will be leftundetermined for the time being suh that the results may be ompared with di�erent propagators at theend. The double line notation is used with the propagator given by
ks

ℓt

k′s′
ℓ′t′

=
−1

2E(k+ℓ)−µ2+ i ǫ σst(k,ℓ)
δ(k − k′)δ(ℓ − ℓ′)δss′δtt′and the vertex given by68



7.3 LS-Duality at Quantum Level
ks

ℓ′t′

k′s′
ju

ℓt
j′u′

= i g δss′δtt′δuu′δ(k − k′)δ(ℓ− ℓ′)δ(j − j′) ,with oupling onstant g. It follows that the planar �sh graph
ℓt

ks

ℓ′t′

k′s′

is given by
g2δ(k − k′)δ(ℓ − ℓ′)δss′δtt′

×
∑

u

∫
dj dj′

1

4E(k + j)− µ2 + i ǫ σsu(k, j)

1

4E(j′ + ℓ)− µ2 + i ǫ σtu(j′, ℓ)
[δ(j − j′)]2 . (7.37)This expression is divergent due to the squared δ-funtion oming from the undetermined loop integration.It is no UV divergene in the usual sense, as it ours before performing loop integrals, and shows up inevery φ⋆n theory with n ≥ 3 for graphs with an unbroken internal line. A possible ure for this divergeneis a box regularization. Instead of using the i ǫ regularization one puts the system into a box with �nitevolume and imposes periodi boundary onditions. Instead of a ontinuous spetrum we get a disreteone leading to Kroneker δ-funtions and sums instead of Dira δ-funtions and integrals. Obviously thisproedure renders this diagram �nite. However, the box regularization is an IR uto�, whih is likely todestroy the LS-ovariane at quantum level unless one imposes in addition a suitable UV-uto�. In ontrast,the regularized matrix approah has the same e�et on the vertex funtions as the box regularization, butat the same time keeps the model LS-ovariant, as will be demonstrated in the next setion.7.3 LS-Duality at Quantum LevelThe ϑ-regularization allows us to regularize the LS-ovariant theories suh that the LS-duality is preservedat quantum level. This is done in the same spirit as in setion 4.5 with the ϑ-regularization being a newingredient. In the following this will be demonstrated for the two-dimensional GW model. The general LSZase is exatly the same.An important question is, how the ϑ-regularization a�ets the behavior under LS-duality. The regularizedpropagator with ϑ = π/2− ǫ > 0 reads

∆(ǫ)(x,x′) = 〈x|
(

1

2
P2

µ +
1

2
P̃2

µ − µ2

)−1

ǫ

|x′〉

=
∑

m,n

f
(Eϑ)
mn (x)f

(Eϑ)
nm (x′)

2 iE (m+ n+ 1)− e− i ǫµ2
. (7.38)In appendix H we show that the Fourier transformation of matrix funtions is given by

F [f (Eϑ)
mn ](k) = f (1/Eϑ)

nm (k) =
(− i )m−n

E
f (Eϑ)

mn (k̃) (7.39)69



7 Aspets of the LS-Covariant Theorieswith k̃ = E−1 · k = −E−1(k1, k0).1 Sine
F [(P2(ϑ) + P̃2(ϑ))f (Eϑ)

mn ](k) = 4Eϑ (m+ n+ 1)F [f (Eϑ)
mn ](k) , (7.40)we �nd that Fourier transformation relates the propagator in position spae to the momentum spae prop-agator even in the regularized ase:

∆̂(ǫ)(k,k′) =
1

E2
∆(ǫ)(k̃; k̃

′
) . (7.41)Analogously to the Eulidean ase the UV/IR-regularization now amounts to utting o� the sums at some�nite N by modifying the regularized position spae propagator as

∆
(ǫ)
Λ (x,x′) = 〈x|

(
1

2
P2

µ +
1

2
P̃2

µ − µ2

)−1

ǫ

L
(
Λ−2|P2(ϑ) + P̃2(ϑ)|

)
|x′〉 , (7.42)where Λ ∈ R+ is a ut-o� parameter and L a smooth ut-o� funtion whih is monotonially dereasing,with L(y) = 1 for y < 1 and L(y) = 0 for y > 2. We adjust the matrix funtions as to diagonalize the LSZpropagator

∆
(ǫ)
Λ,mn;kℓ =

∫

x

f ǫ
mn(x)

(
1

2
P2

µ +
1

2
P̃2

µ − µ2

)−1

ǫ

L
(
Λ−2|P2(ϑ) + P̃2(ϑ)|

)
f ǫ

kℓ(x)

=
δmℓ δnk

2 iE(m+ n+ 1)− e− i ǫµ2
L
(
Λ−24E(m+ n+ 1)

)
. (7.43)The interation verties in matrix representation are now quite ompliated, being proportional to

∫

x

(
f ǫ

m1n1
⋆θ f

ǫ
m2n2

⋆θ f
ǫ
m3n3

⋆θ f
ǫ
m4n4

)
(x) (7.44)with θ 6= 2/E in general. Sine for ǫ > 0 the f ǫ

mn are in Sα
α (R2) with α ≥ 1/2, whih is losed with respetto the star-produt, the interation vertex (7.44) is well-de�ned. Feynman diagrams an now be produedby suitable derivatives with respet to the external soures involving the regularized propagator. Denoting

∆
(ǫ)
Λ,mn;kℓ = δmk δnℓC

(ǫ)
Λ (m,n) , (7.45)they have the shematial form

∑

n1,m1,...,nK ,mK=0

K∏

k=1

C
(ǫ)
Λ (mk, nk)(· · · ) , (7.46)where (· · · ) denotes the ontributions from the nonommutative interation verties and ombinatorial fa-tors. Sine the propagator is nonzero only if 4E(mk + nk + 1) < 2Λ, whih at �nite Λ is true solely for a�nite number of distint values of (m,n) ∈ N2

0, every Feynman amplitude is represented by a �nite sum andthus onstitutes well-de�ned Green funtions in the matrix basis irumventing the problem of the right testfuntion spae for the time being. By multiplying these expression with f ǫ
mini

(xi) for i = 1, . . . ,M and Mthe number of external verties, we get bak the position spae Green funtions by summing over all mi, ni.They are also well-de�ned, sine they are build by �nite sums of well-de�ned objets. This establishes thequantum duality in Minkowski spaetime for the ase ǫ > 0.To prove the duality at ǫ = 0 in the same manner as above, one has to ensure that the interation vertexaway from the dual point is well-de�ned, whih is not obviously true. We onlude that, to be on the safeside, the ϑ-regularization should be kept unless the matrix uto� has been removed and all summations andintegrations have been performed.1Note that there is a subtle di�erene between the Eulidean and Minkowskian ase. Contrary to the ordinary Landauase in Eulidean spae, the (not yet resaled) Fourier transformed generalized Landau funtions have swapped indiesand an inverted regularization parameter ϑ → −ϑ. The former is equivalent to an inversion of time (or spae) while thelatter orresponds to an interhange of partiles and anti-partiles. This follows from the results of setion 7.1.1, where theregularization ϑ > 0 has been identi�ed with the Feynman boundary ondition and ϑ < 0 with the Dyson boundary ondition.The spei� resaling in both ases, whih are formally idential but di�er by the metri whih is used, ompensates for thisdi�erene.70



7.4 UnitarityAs is usually the ase, the limit Λ → ∞ may still be ill-de�ned and may require a renormalization. Inaddition, the results from setion 6.2 are not able to exlude that even at �nite ǫ > 0 there might be extradivergenes at Λ → ∞ if we work in the matrix basis, stemming from the generalized matrix basis itself.This, however, does not a�et the LS-ovariane of the theory, whih has been ahieved for the Green'sfuntions in position spae through a regularization of the propagators in equation (7.42). This result isindependent of the matrix basis.7.4 UnitarityThe unitarity of the sattering matrix is one of the main pillars of ommutative quantum �eld theory, inwhih statements as analytiity, mirosopi ausality and unitarity are roughly interhangeable. Theseonepts are expeted to be disentangled in NCQFT due to the lak of loality and Lorentz invariane.In [GM00℄ new singularities in the orrelation funtions of the usual φ⋆3 and φ⋆4-theories in the standardperturbative setup have been observed, whih imply a violation of the utting rules and thus the breakdownof unitarity. The question arises what happens to the analytial struture, if the NCQFT is put into abakground eletromagneti �eld, making the theory LS-duality ovariant? The interesting new features ofthe LS-ovariant models in Minkowski spaetime are the duality between Θ and E and the vauum instability.Thus, there are new singularities due to pair reation even to zeroth order in the oupling g.We shortly review the main aspets of unitarity starting from the Hamiltonian formalism in ommutativequantum �eld theory with stable vauum. For simpliity we onsider a theory with one speies of realbosons without external �eld. In a sattering experiment, an initial state |i, in〉 is assumed to onsist of freepartiles in the remote past. The state evolves in time in the presene of some interation, while in the farfuture the detetors are set up to detet a state |f, out〉, onsisting of free partiles of de�nite momenta andmaybe other quantum numbers. It will thereby assumed that the asymptoti initial and �nal Hilbert spaesmay be onstruted as free partile Fok spaes, with ladder operators ap(in), a†p(in) and ap(out), a†p(out)orresponding to partiles with de�nite momenta ating on unique vaua |0, in〉 and |0, out〉, respetively.Sine the theory has a stable vauum, these two spaes are equivalent with |0, in〉 = |0, out〉 up to a phase.In the following we will mainly work in the interation piture. For those few times we need to swith tothe the Heisenberg piture we will designate the states with a subsript H . In the interation piture thetwo Hilbert spaes are related by a unitary operator, the S-matrix operator Ŝ with
Ŝ†ap(in)Ŝ = ap(out) , Ŝ†a†p(in)Ŝ = a†p(out)and

Ŝ|p1, . . . ,pn; in〉 = |p1, . . . ,pn; out〉
〈p1, . . . ,pn; out|Ŝ = 〈p1, . . . ,pn; in|

(7.47)up to an irrelevant phase. The probability of the proess to take plae is given by the S-matrix element
Sfi = H〈f, out|i, in〉H = 〈f, in|Ŝ|i, in〉 . (7.48)

Sfi is related to the n-point funtions in a spei� way, presribed by the LSZ redution formula. As anexample we onsider the sattering proess k1,k2 → p1,p2, where the initial and �nal states have de�nitemomenta pi and ki. The orresponding S-matrix element reads
H〈p1,p2|k1,k2〉H = disonneted terms

+

(
i√
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)4 ∫
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∫
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∫
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∗
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−−−−−−−→
(∂2
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(∂2
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+m2)uk1(x1)uk2(x2) (7.49)where m is the physial mass and Z the �eld strength renormalization. The eigenstates up(x) and u∗p(x) areKlein-Gordon in-states and out-states, respetively, with de�nite momentum p, energy ωp and

up(x) =
1√

(2π)D2ωp

e− i p·x , u∗p(x) =
1√

(2π)D2ωp

e + i p·x . (7.50)71



7 Aspets of the LS-Covariant TheoriesThe four-point funtion G(4) an be expressed in the interation piture as
G(4)(x1,x2,y1,y2) =

〈0|T (Ŝ φ̂(x1)φ̂(x2)φ̂(y1)φ̂(y2))|0〉
〈0|S|0〉 (7.51)with φ̂ the �eld operators in the interation piture and T the time ordering operator. The S-matrix operatoran be written as

Ŝ = T exp

(
− i

∫
dt ĤI(t)

) (7.52)with ĤI(t) being the interation Hamiltonian in the interation piture. The perturbative expansion ofthe S-matrix operator (7.52) plus Wik's ontration theorem leads to a perturbative evaluation of thisexpression in terms of Feynman diagrams.Note that the n-point funtion does not know about whih partile is inoming and whih is outgoing.This designation is imposed by projeting onto the respetive eigenfuntions, whih in the Klein-Gordonase amounts to �xing the signs of the external momenta. At this step pair reating proesses are exludedthrough δ-funtions aused by translation invariane. Disonneted vauum graphs fatorize from all graphsinto a phase fator whih is idential to 〈0|S|0〉 and thus get aneled by the normalization fator of the
n-point funtion. Self-energy subgraphs onneted to the external propagators, like the tadpole or the �sh-graph, simply turns the free external propagators into the full �interation propagators� with shifted masspole and alternated residue. This orresponds to a mass and �eld strength renormalization. This has beentaken into aount already in (7.49) by usage the physial mass m and by the insertion a fator Z−1/2 foreah external propagator. In Fourier spae the probability amplitude is proportional to

(p2
1 −m2)(p2

2 −m2)(k2
1 −m2)(k2

2 −m2)Ĝ(4)(p1,p2,−k1,−k2) , (7.53)with Ĝ(4) being the Fourier transformed four-point funtion. The momenta ki and pi are �on mass-shell� andwould fore the whole expression to vanish, if the n-point funtion had no poles at p2
1 = p2

2 = k2
1 = k2

2 = m2.One an show that this is not the ase and the fators anel exatly the full interating external propagatorof eah diagram, whih are now alled amputated diagrams. One disregards the ase of no atual satteringby splitting up the T -matrix
〈f |Ŝ|i〉 = 〈f |i〉 − i 〈f |T̂ |i〉 , (7.54)where for translation invariant theories 〈f |T̂ |i〉 is proportional to an overall δ-funtion imposing energy-momentum onservation. In summary, the S-matrix elements are given by all onneted and amputatedFeynman diagrams, whih in turn may be evaluated in the usual way using Feynman rules.Unitarity of the S-matrix now formally reads

ŜŜ† = Ŝ†Ŝ = 1 (7.55)and implies relations between di�erent transition probabilities. Sandwihing this relation between in- andout-states with i = f and inserting a omplete set of asymptoti states |n〉, we �nd
2Im〈i|T̂ |i〉 = −

∑

n

|〈n|T̂ |i〉|2 , (7.56)whih is known as optial theorem. Veri�ation of relation (7.56) for single proesses |i〉 is thus a test for theunitarity of the theory. The usual approah to verify (7.56) is to use the utting rules to the orrespondingFeynman diagrams, whih is as follows. A given graph onsists of ombinations of Feynman propagators
(p2 −m2 + i ǫ)−1 and onstant verties. It possess an imaginary part beause of

lim
ǫ→∞

1

x+ i ǫ
= P

1

x
− iπδ(x) . (7.57)The exat value of the imaginary part of a given diagram may be obtained as follows: drawing lines throughinternal propagators suh that the Feynman diagram splits up into two piees, followed by a replaement ofeah ut propagator (p2 −m2 + i ǫ)−1 through −2π i δ(p2 −m2). This should be done in all possible ways,where the imaginary part of the original graph is the sum of all ontributions oming from the ut diagrams.72



7.4 UnitarityIn [GM00℄, Gomis and Mehen heked the utting rules for the two point funtion in φ⋆3-theory andfour-point funtion in φ⋆4-theories to seond order in perturbation theory. Sine the theories are still trans-lation invariant and the propagators are idential to the ommutative ase, the above proedure to �nd theimaginary part of a given Feynman diagram also applies in nonommutative QFT. However, it was foundthat the diagrams have additional branh uts along
p ◦ p = −pµΘµνΘνσp

σ ≤ 0 , (7.58)whih are aessible for time/spae nonommutative theories, and in these ases ause a violation of unitarity.They resemble partile-prodution uts. As has already been pointed out at the end of setion 2.2.3, thereason for this uriosity is the wrong appliation of Wik's theorem in order to redue the determinationof n-point funtions to the evaluation of Feynman diagrams, whih is not allowed sine time derivativesand time ordering do not ommute [BDFP02, Bah04℄. For the two-point funtion at seond order of theperturbative expansion in a φ⋆3-theory the non-unitarity has been spotted to the nonvanishing of the terms
∆ret ⋆∆av + ∆av ⋆∆ret 6= 0 (7.59)for time/spae-nonommutativity, whih in turn is due to θ ⋆ θ 6= θ. Here ∆av and ∆ret are the advanedand retarded propagators, respetively. The question arises, if it is possible to retain unitarity in some way,but at the same time keep the Feynman diagrams as the main building bloks of the perturbative expansion.In [AGBZ01℄ the singularities have been further investigated and assigned to the prodution of tahyonistates. By adding new states to the Hilbert spae the utting rules are formally ful�lled, however, unitarityis still absent due to the presene of tahyoni states in the asymptoti Hilbert spae. What happens in theLS-ovariant ase?To give an answer, we �rst desribe the situation for ommutative theories where pair reation is allowed.A typial example is the usual QED in a vauum stability violating external �eld. The following expositionis quite general and applies to omplex salars and spinors. We will leave aside the tehnial subtleties andgive only a skethy overview of the general proeeding in these ases. For an extensive overview see [FGS91℄.We start with an heuristi argument, assuming the asymptoti Hilbert spaes may be onstruted as beforeas Fok spaes. Due to the pairs whih are reated from the vauum in the ourse of time, the probabilityfor an initial vauum to stay the vauum is not equal to one:
|H〈0, out|0, in〉H | < 1 . (7.60)Going to the interation piture, where the �eld operators now ful�ll the equation of motion of the partilesmoving in the external �eld, the vauum-to-vauum probability is given by

|H〈0, out|0, in〉H| = |〈0, out|Ŝ|0, in〉| < 1 (7.61)with Ŝ the S-matrix operator (7.52). We follow that in ontrast to the relations (7.47) of the ordinary ase,
Ŝ|0, in〉 6= |0, out〉 and 〈0, out|Ŝ 6= 〈0, in|. The S-matrix element for an arbitrary proess |i, in〉 → |f, out〉 isde�ned similarly by

Sfi = H〈f, out|i, in〉H = 〈f, out|Ŝ|i, in〉 (7.62)where we �nd ontrary to (7.48) again an out-state to the left of the S-matrix operator. Thus the orrelationfuntion an not be obtained by a redution to normal form relative to one vauum, but demands a redutionto a generalized normal form relative to the two vaua 〈0, out| and |0, in〉. How to do this will be skethednow.On the level of solutions of the equation of motion, pair prodution manifests itself in an inevitable mixingof positive and negative frequenies. This means that solutions whih have de�nite positive or negativefrequeny throughout all times are no longer available. Sine those are neessary for the ordinary anonialquantization sheme to apply one proeeds as follows [Git77℄. One onstruts two omplete and orthog-onal sets of solutions of the energy eigenvalue equation, one at eah of the two �nite time instanes tinand tout. At these time instanes, these sets an be split into positive and negative frequeny solutionsand anonial quantization of the �elds applies as usual by quantizing the positive/negative energy solu-tions in terms of ladder operators, whih at on the respetive Fok vaua. The limits tin → −∞ and
tout → ∞ are taken afterwards, suh that the solutions remain their harater as positive/negative energy73



7 Aspets of the LS-Covariant Theoriessolutions and the relations whih haraterize pair prodution proesses (equations (7.64)-(7.71) below) re-main well-de�ned.2 The vaua |0, in〉 and |0, out〉 now di�er from eah other, as well as the ladder operators
an(in), a†n(in), bn(in), b†n(in) representing partiles/antipartiles of de�nite momenta at tin whih are dif-ferent to an(out), a†n(out), bn(out), b†n(out) representing partiles/antipartiles of de�nite momenta at tout.The index n thereby ompatly designates all the quantum numbers as momentum and spin. The usualommutation relations hold among the in-operators and among the out-operators, as well as

an(in)|0, in〉 = bn(in)|0, in〉 = 0

an(out)|0, out〉 = bn(out)|0, out〉 = 0 .
(7.63)for all n. The mixing of frequenies imply relations among the ladder operators at di�erent times
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∑
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mn

b†n(out) , (7.64)
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G (+|−)mn a
†
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∑
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mn

bn(out) , (7.65)
am(out) =

∑
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∑
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mn

b†n(in) , (7.66)
bm(out) =

∑
G (+|−)mn a

†
n(in) +

∑

n

G
(
−|−

)
mn

bn(in) , (7.67)where the Bogoliubov-oe�ients G(·) are a measure for partile prodution. A stable vauum thus implies
G (±|∓) = G (±|∓) = 0 with all others being equal to unity. A generalized Wik theorem with respetto 〈0, out| and |0, in〉 an be realized by expressing all operators in terms of an(in), bn(in), a†n(out), b†n(out)alone. The proedure is then to pull all reation operators to the left of the annihilation operators suh thatthe relations (7.63) apply as in the ordinary ase. The ourring generalized ontrations may be obtainedby exploiting the usual ommutation relations and equations (7.64)-(7.67):

am(out)a†n(in) = G−1 (+|+)mn := ω(m+|n+) (7.68)
bm(out)b†n(in) = G−1 (−|−)mn := ω(m−|n−) (7.69)
am(out)bn(out) =

[∑
k G

−1 (+|+)mk G (+|−)kn

]
mn

:= ω(m+n−|0) (7.70)
b†n(in)a†n(in) =

[∑
k G (−|+)mk G

−1 (+|+)kn

]
mn

:= ω(0|m−n+) (7.71)While ω(m+|n+) and ω(m−|n−) are the relative probabilities of partiles and anti-partiles to be satteredby the external �eld (ompare equation (7.4) for the ausal propagator), the quantities ω(m+n−|0) and
ω(0|m−n+) measure the relative probabilities for pair reation and pair annihilation in the vauum.By expressing the �eld operators φ̂ in terms of the ladder operators, the S-matrix element

Sfi = 〈f, out|Ŝ|i, in〉 (7.72)an be now be alulated using the generalized Wik ontrations. The matrix element may be obtainedas in equation (7.49), by substituting the Klein-Gordon operators by the wave operators of the modeland up(x) and u∗p(x) by the new in- and out-states of de�nite momenta. The S-matrix element is thenthe amputated orrelation funtion projeted on these initial and �nal momentum states. Rearranging allreation operators to the left of the annihilation operators, the orrelation funtion an be expressed in termsof the usual Feynman diagrams with the ausal propagator given by
i ∆c(x,y) =

〈0, out|T φ̂(x)φ̂†(y)|0, in〉
〈0, out|0, in〉 , (7.73)whih may be alulated by one of the methods outlined in setion 7.1. Sfi is still a sum of a unit matrixand a T -matrix, where the overall δ-funtion in front of the sattering part of (7.72) is absent due to thelak of energy-momentum onservation. New transition hannels must be taken into aount, orrespondingto pairs reated from the vauum.2Conditions on the solutions suh that the Fok spaes exist may be found in [Git77℄.74



7.4 UnitarityApart from this, the usual utting rules no longer hold. Demanding unitarity of the S-matrix as in equation(7.54), we �nd the generalization of the optial theorem
2Im〈i, in|T̂ |i, in〉 = −

∑

n

|〈n, out|T̂ |i, in〉|2 . (7.74)The ontration sheme disussed above leads to the usual Feynman diagrams on the rhs with additionalpair prodution diagrams. However, on the lhs one has diagrams involving the propagator
i ∆in

c (x,y) = 〈0, in|T φ̂(x)φ̂†(y)|0, in〉 (7.75)instead of the Feynman propagator. These two propagators do not oinide in presene of an instablevauum. In order to hek unitarity of the LS-ovariant theories, one has to �nd a relation between ∆in
c and

∆c. Quite generally, by deomposing the state 〈0, in| in a omplete set of out-states one �nds
∆in

c (x,y) = ∆c(x,y) + ∆a(x,y) , (7.76)
∆a(x,y) = − i

∑

mn

ω(m−n+|0)∗〈0, out|am(out)bn(out)T φ̂(x)φ̂†(x)|0, in〉 , (7.77)where ∆a is a solution of the equation of motion. It should be noted that the usage of the in-propagatoran not be irumvented by onsidering 〈i, out| instead of 〈i, in| in equation (7.74). This would lead to therelation
i 〈i, out|(T † − T )|i, in〉 = −

∑

n

〈0, out|T |n, in〉〈n, in|T †|0, in〉 (7.78)
= −

∑

n

〈0, out|T |n, out〉〈n, out|T †|0, in〉 . (7.79)Sine
〈i, out|T |i, in〉∗ = 〈i, in|T †|i, out〉 , (7.80)the lhs of equation (7.78) is not the imaginary part of 〈i, out|T |i, in〉. In addition, on the rhs we �nd Feynmandiagrams involving the propagator ∆in

c or
i ∆out

c (x, y) = 〈0, out|T φ̂(x)φ̂†(y)|0, out〉 (7.81)depending on whether we insert a omplete set of in-states (7.78) or out-states (7.79).Now we ome to the LS-ovariant theories, where in addition to the instable vauum we have a nonom-mutative interation term. The interation Hamiltonian is symmetri suh that formally the S-matrix isunitary in the Hamiltonian formalism [Bah04℄. As pointed out above, the proof for Wik's theorem does notapply anymore if the interation is nonloal in time, whih is also true for the generalized ontration theo-rem. Thus unless there are some �magi anellations� the perturbative quantum theory based on modi�edFeynman rules will lead to a non-unitary S-matrix. However, this may happen and has to be heked. Buteven in the ase of unitarity violation it is interesting to see how the non-unitarity violating terms look like,and whether there is a possibility to retain unitarity by modifying the theory.A �rst attempt towards an answer to the unitarity issue for LS-ovariant theories in the standard pertur-bation setup was made in [Zah10℄ for the self-dual GW model with φ⋆3 interation. The imaginary parts ofthe ontributions to the two-point funtion at seond order in perturbation theory have been alulated andompared to the expressions obtained from the utting rules. The propagators whih are used are determinedvia i ǫ presription:
∆ℓt,ℓ′t′

ks,k′s′ =
−1

2E(k + ℓ)− µ2 ± i ǫ
δ(k − k′)δ(ℓ − ℓ′)δss′δtt′ . (7.82)Thus the quantity whih has been alulated is not the imaginary part of the Feynman diagrams orre-sponding to 〈i, in|T (2)|i, in〉 but orresponding to 〈i, out|T (2)|i, in〉. These results have, however, then beenompared to diagrams oming from the rhs of (7.74), where the mismath has been interpreted as a lak ofunitarity. From the disussion above we �nd that for a orret investigation we need the probability for pairprodution ω(·|0), in order to relate the propagators ∆c and ∆in

c . Sine for the models under onsideration,the free LSZ and GW model, these are unknown to the author, we annot give a satisfatory answer at thispoint and leave this issue for a future investigation. 75



7 Aspets of the LS-Covariant Theories
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8 Renormalization of the LS-CovariantModelsOne of the most intriguing features of Eulidean LS-ovariant models is their renormalizability. We willnot prove here the renormalizability of their Minkowskian ounterparts, but start this program by derivingtheir propagators in position and matrix representation. First, we give a brief aount of the methods whihwere suessfully used in Eulidean spae. After determining the propagators we will shortly disuss theirasymptotis.8.1 Multisale AnalysisMultisale analysis has been used to prove renormalizability of the LSZ, GW, vGN model and the translationinvariant model. Though in their original proof Grosse and Wulkenhaar used Polhinski's RG equation, wewill introdue the multisale analysis in order to explain the relevant steps towards the renormalization of LS-ovariant models in Minkowski spaetime. Multisale analysis is independent of the preise representation ofthe model and has been suessfully applied to both position- and matrix spae. Multisale analysis replaesthe sharp uto�s in matrix spae by smoother ones diretly in the Shwinger parameter representation ofthe propagator. For a general aount of this method see [Riv91, Riv07b℄.We will now give a skethy illustration of how the asymptoti behavior of the propagator are used to provethe renormalizability of the GW model in Eulidean spae following [RVTW06, Riv07b℄. Feynman graphsfor matrix models are written using the double line formalism. These graphs an not be drawn on a plane,but on two-dimensional Riemann surfaes with non-trivial topologial struture. The power ounting of amatrix model depends essentially on this topologial data. Let G be a graph with V verties, I internal(double) lines and F faes. To get F one has to amputate the external legs. Then F is the number of losedsingle lines and B the number of those losed lines whih arry external legs. The Euler harateristi of theRiemann surfae de�ned by these graphs is given by
χ = 2− 2g = V − I + F (8.1)whih de�nes the genus g of the manifold. The genus g and the number B are a measure for non-planarity.As an illustration how the topologial data of a ribbon graph an be determined serve the following examples:

=⇒
V = 3
I = 3
F = 2
B = 2





=⇒ g = 0

77



8 Renormalization of the LS-Covariant Models
=⇒

V = 2
I = 3
F = 1
B = 1





=⇒ g = 1

In the Grosse-Wulkenhaar model the N-leg ribbon graph in four dimensions has the power ounting degree
ω(G) = (4−N)− 4(2g +B − 1) . (8.2)As a result, the only graphs whih an be relevant or marginal, i.e. those whih have power ounting degree

ω(G) ≥ 0, are planar two- and four-leg graphs. We will give a brief aount on whih role the propagatorrole plays in the derivation of this power ounting theorem.Four indies {m,n; k, ℓ} ∈ N2 are assoiated to eah internal line of a graph and two indies to eahexternal line, thus we get 4I + 2N = 8V indies for a graph of genus g = 1 − 1
2 (V − I + F ). Sine at eahvertex the left index of a ribbon is identi�ed with the right index of its neighbor, we have 4V independentidenti�ations, so that we an write the indies of any propagator in terms of a set I of 4V indies. In thematrix basis the verties are multi-dimensional Kroneker-delta funtions. The amplitude of a graph G thenreads

AG =
∑

I

∏

δ∈G

Gmδ(I),nδ(I);kδ(I),ℓδ(I)δmδ−ℓδ,nδ−kδ
, (8.3)where the four indies of the propagator ∆ of the line δ are funtions of I. Sliing of the propagator as

∆ =
∞∑

i=0

∆i through ∫ 1

0

dα =
∞∑

i=0

∫ M−2(i−1)

M−2i

dα (8.4)with M > 1 leads to a deomposition of the amplitude as
AG =

∑

µ

AG,µ , (8.5)
AG,µ =

∑

I

∏

δ∈G

∆iδ

mδ(I),nδ(I);kδ(I),ℓδ(I)δmδ−ℓδ,nδ−kδ
, (8.6)where µ = {iδ} runs over all possible assignments of a positive integer iδ to eah line δ. The next importantstep is to �nd appropriate bounds on the propagators.The main bounds are given by [RVTW06℄1

∆i
m,n;k,ℓ ≤ KM−i e−cM−i(‖m‖+‖n‖+‖k‖+‖ℓ‖) (8.7)

∑

ℓ

max
n,k

∆i
m,n;k,ℓ ≤ K ′M−i e−c′M−i‖m‖ (8.8)for some onstants K,K ′ and c, c′. About half of the 4V indies are determined by the external indiesand the Kroneker-deltas in (8.3). The undetermined indies are summation indies. Perturbative powerounting amounts to �nding whih summations ost a fator M2i through (8.7)

∞∑

m1,m2

e−cM−i(m1+m2) =
1

(1− e−cM−i)2
=
M2i

c2
(1 +O(M−i)) . (8.9)1For tehnial reasons these bounds where derived only for restrited values of Ω. This limitation has been overome in[GMRVT06℄ using diret spae methods.78



8.2 Propagatorsand whih ost O(1) due to the bound (8.8). Integrating out loops at higher sales of a graph then givese�etive oupling onstants in powers of M . The important point is that the faster the propagator deays,the smaller is the ontribution of the integration over internal lines to e�etive oupling onstants. This inturn redues the number of divergent graphs. One an prove that all relevant and marginal graphs are planarfour-leg and two-leg subgraphs with a single external fae, whih must be renormalized by ounterterms. Dueto symmetries there are only four initial onditions whih have to be �xed by �experiments�. All relevant andmarginal ounterterms whih are needed are of Moyal-type, thus of the same form as the initial Lagrangianand an be absorbed in a rede�nition of the oupling parameters Ω, g, µ and a �eld strength renormalization.The theory is renormalizable to all orders in perturbation theory.8.2 PropagatorsWe start the renormalization program by alulating the propagators for the di�erent models. The purposeof the �rst setions is to enhane the formulas given in [GRVT06℄ to the Minkowskian regime. In the followingthe propagators for the general LSZ theorem in generi 2n dimensions in position and in matrix basis willbe given.8.2.1 Position Spae representationThe main theorem, from whih all ausal propagators in Minkowski spae and its Eulidean ounterpartsan be derived, is the following theorem. The oordinates in 2n dimensions are denoted by x = (x0, . . . , xd)and xk = (x2k−2, x2k−1) with k = 1, . . . , n. As in setion 7.1.1 we de�ne the map (·, ·)ϑ : R2 × R2 → Cthrough
(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M , (8.10)where (·, ·)M is the two dimensional Minkowskian and (·, ·)E the two dimensional Eulidean salar produt.In addition we de�ne the map ‖ · ‖ : R2 → C through

‖x‖2ϑ = (x,x)ϑ

= cos(ϑ)‖x‖E + i sin(ϑ)‖x‖M (8.11)with ‖ · ‖E the two dimensional Eulidean and ‖ · ‖M the two dimensional Minkowskian norm. Then we �nd:Theorem 8.1. The propagator of the regularized, general LSZ model in 2n dimensions is given by
∆(ǫ,σ)(x,x′) = − i e− i ϑ E

2π

∫ ∞

0

ds
1

sinh(2sE−ϑ)
exp

{
− sinh(2sẼ−ϑ)

sinh(2sE−ϑ)
i x1 ·E · x′

1

}

× exp

{
−1

2
coth(2sE−ϑ)E(‖x1‖2ϑ + ‖x′

1‖2ϑ) +
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
E(x1,x

′
1)ϑ

}

×
n∏

k=2

Bk

2π

1

sinh(2sBk)
exp

{
− sinh(2sB̃k)

sinh(2sBk)
i xk ·Bk · x′

k

}

× exp

{
−1

2
coth(2sBk)Bk(‖xk‖20 + ‖x′

k‖20) +
cosh(2sB̃k)

sinh(2sBk)
Bk(xk,x

′
k)0

}

(8.12)
with ϑ = π/2− ǫ > 0, Ẽ = (2σ − 1)E and B̃k = (2σ − 1)Bk.The proof is given in appendix I.We an now read o� the ausal propagators of the relevant ases for the four dimensional LSZ and GWmodels. Noting that (·, ·)π/2 = i (·, ·)M and thus ‖ · ‖π/2 = i ‖ · ‖M , one �nds for general σ 79



8 Renormalization of the LS-Covariant ModelsCorollary 8.2. The ausal propagator of the general LSZ model in four-dimensional Minkowski spaetimeis given by
∆M

LSZ(x,x′;σ) = − iEB

(2π)2

∫ ∞

0

ds
1

sin(2sE)

1

sinh(2sB)
exp

{
−sµ2 −A−B

}

× exp

{
− sin(2sẼ)

sin(2sE)
i x1 ·E · x′

1 −
sinh(2sB̃)

sinh(2sB)
i x2 ·B · x′

2

} (8.13)with
A = −1

2
cot(2sE)E

(
‖x1‖2M + ‖x′

1‖2M
)

+
cos(2sẼ)

sin(2sE)
E(x1,x

′
1)

2
M (8.14)and

B =
1

2
coth(2sB)B

(
‖x2‖2E + ‖x′

2‖2E
)
− cosh(2sB̃)

sinh(2sB)
B(x2,x

′
2)

2
E . (8.15)At σ = 1 this redues toCorollary 8.3. The ausal propagator of the four-dimensional LSZ model for σ = 1 in Minkowski spaetimeis given by

∆M
LSZ(x,x′, σ = 1) = − iEB

(2π)2
e− i x1·E·x′

1− i x2·B·x′
2

∫ ∞

0

ds
1

sin(2sE)

1

sinh(2sB)

× exp

{
−sµ2 +

1

2
E‖x1 − x′

1‖2M cot(s2E)− 1

2
B‖x2 − x′

2‖2E coth(s2B)

}
.(8.16)The propagator of the four dimensional Grosse-Wulkenhaar model reads:Lemma 8.4. The ausal propagator of the Grosse-Wulkenhaar model in four-dimensional Minkowski spae-time is given by

∆M
GW(x,x′) = − iEB

(2π)2

∫ ∞

0

ds e−sµ2 1

sin(2sE)

1

sinh(2sB)

× exp

{
1

2
E cot(2sE)

(
‖x1‖2M + ‖x′

1‖2M
)
− E

sin(2sE)
(x1,x

′
1)M

}

× exp

{
−1

2
B coth(2sB)

(
‖x2‖2E + ‖x′

2‖2E
)

+
B

sinh(2sB)
(x2,x

′
2)E

}
.

(8.17)
One should notie that the Eulidean results oinide with those determined in [GRVT06℄. To onformto their notation one has to substitute Ẽ → −B/2 and E → Ω/2 within the hyperboli funtions of the LSZmodel propagators.8.2.2 Propagators in Matrix SpaeTheorem 8.5. The matrix propagator for the 2n-dimensional regularized LSZ model in Minkowski spaetimeis given by

∆
(ǫ,σ)
m,m+α;ℓ+α,ℓ

= − e i ǫ θ

8Ω

∫ 1

0

dz z− i e i ǫ(σα1+1/2)+
Pn

i=2(σαi+1/2)−1+ θµ2

8Ω

× ∆
(ǫ)
n1,n1+α1;ℓ1+α1,ℓ1

n∏

i=2

∆
(E)
ni,ni+αi;ℓi+αi,ℓi (8.18)80



8.2 Propagatorswith Minkowskian part
∆

(ǫ)
m,m+α;ℓ+α,ℓ

=

min(m,ℓ)∑

u=max(0,−α)

z− i e i ǫu(1 − z−i e i ǫ

)m+ℓ−2u

(
1− (1−Ω)2

(1+Ω)2 z
− i e i ǫ

)α+m+ℓ+1

(
4Ω

(1 + Ω)2

)α+2u+1(
1− Ω

1 + Ω

)m+ℓ−2u

A(m, ℓ, α, u)(8.19)and Eulidean part
∆

(E)
m,m+α;ℓ+α,ℓ

=

min(m,ℓ)∑

u=max(0,−α)

zu(1− z)m+ℓ−2u

(
1− (1−Ω)2

(1+Ω)2 z
)α+m+ℓ+1

(
4Ω

(1 + Ω)2

)α+2u+1 (
1− Ω

1 + Ω

)m+ℓ−2u

A(m, ℓ, α, u) , (8.20)where
A(n, ℓ, α, u) =

√(
α+ n
α+ u

)(
α+ ℓ
α+ u

)(
n
u

)(
ℓ
u

)
. (8.21)and α = (α1, . . . , αn) ∈ Z

n and αi = ni −mi.The proof an be found in appendix J. The respetive speial ases, like the four-dimensional Grosse-Wulkenhaar model et., an easily be read o� from this expression.8.2.3 AsymptotisWe have seen that the asymptotis of the propagators play an important role for the renormalization program.But in addition we are also interested in the question whether the matrix basis makes sense at all for thedesription of the perturbative analysis of the LS-ovariant models. Also here do the asymptotis give us theruial information. However, the asymptotis of the Minkowskian part of the propagators are di�ult toinvestigate due to the osillatory behavior of its integrand. Let us onsider the two-dimensional EulideanGW operator
∆E

GW(x,x′) =
B

(2π)

∫ ∞

0

ds
e−sµ2

sinh(2sB)
exp

{
−1

2
B coth(2sB)

(
x2

i + x′2i
)

+
B

sinh(2sB)
x · x′

}
. (8.22)Introduing short variables ui = xi − x′i and long variables vi = xi + x′i and using

1 = cosh2(y/2)− sinh2(y/2)

cosh(y) = cosh2(y/2) + sinh2(y/2) (8.23)
sinh(y) = 2 sinh(y/2) cosh(y/2) ,we an rearrange

−B
2

coth(2sB)
(
x2

i + x′2i
)

+
B

sinh(2sB)
x · x

= −B
4

(
cosh2(sB) + sinh2(sB)

cosh(sB) sinh(sB)

)(
x2

i + x′2i
)

+
B

4

(
cosh2(sB)− sinh2(sB)

cosh(sB) sinh(sB)

)
2x · x′

= −B
4

coth(sB)u2
i −

B

4
tanh(sB)v2

i (8.24)and thus
∆E

GW(u,v) =
1

(2π)

∫ ∞

0

ds
e−s µ2

B

sinh(2s)
exp

{
−B

4
coth(s)u2

i −
B

4
tanh(s)v2

i

}
. (8.25)81



8 Renormalization of the LS-Covariant ModelsThe integral is slied in the usual way
∆E,i

GW(u,v) =
1

(2π)

∫ M−2(i−1)

M−2i

ds
e−s µ2

B

sinh(2s)
exp

{
−B

4
coth(s)u2

i −
B

4
tanh(s)v2

i

} (8.26)with M > 1. This an easily be estimated from above by maximizing eah fator in the integrand on theinterval [M−2i,M−2(i−1)]. The fator e−B
4 tanh(s)v2

i takes its maximum at s = M−2i at whih tanh(s) ≈
M−2i−M−6i/3 < c′M−i for some onstant c′, while e−B

4 coth(s)u2
i takes its maximum at s = M−2(i−1) with

coth(s) < M2(i−1) +M−2(i−1) < c′′M i and some onstant c′′. The sinh(2s)−1 an be estimated from aboveby M2i suh that we get the very rough bound
∆E,i

GW(u,v) ≤ KM2i e−c(Miu2
i +M−iv2

i ) (8.27)for some onstants K and c. This reprodues the �rst bound whih is needed for the renormalization proof.However, the four-dimensional Minkowski propagator in short and long variables reads
∆M

GW(x,x′) = − iB

(2π)2

∫ ∞

0

ds e−s µ2

B
1

sin(2sB)

1

sinh(2sB)

× exp

{
B

4
cot(s)u2

1,µ −
B

4
tan(s)v2

1,µ

}

× exp

{
−B

4
coth(s)u2

2,i −
B

4
tanh(s)v2

2,i

}
, (8.28)where we set E = B. After the sliing we an estimate the Eulidean part from above exatly as before:

|∆M,i
GW (x,x′)| ≤ KM2i

∫ M−2(i−1)

M−2i

ds
e−s µ2

B

sin(2sE)
exp

{
B

4
cot(s)u2

1,µ −
B

4
tan(s)v2

1,µ

}
e−c(Miu2

i +M−iv2
i ) ,(8.29)but the behavior of the propagator remains unlear. The Minkowskian part of the integrand is osillatingsuh that more sophistiated methods have to be used to estimate this integral.There is a speial ase for whih we an dedue the qualitative behavior. The propagator of the regularized,massless LSZ model in two dimensions for σ = 1 an be written as

∆(ǫ,σ=1)(x,x′) = − iE

2π

∫ ∞

0

ds
1

sinh(2sE)
e− i x·E·x′

exp

{
− coth(2sE)

E

2
(‖x− x′‖2ϑ)

}
, (8.30)where the integration ontour has been rotated as s → s e i ϑ. Substituting u =

E‖x−x′‖2
ϑ

2 (coth(2sE)− 1) ,we get
− i

4π

∫ ∞

0

du e− i x·E·x′ e−u−E
2 ‖x−x′‖2

ϑ

√
u2 + Eu‖x− x′‖2ϑ

= − i

4π
e− i x·E·x′

K0

(
E

2
‖x− x′‖2ϑ

)
, (8.31)with K0 the modi�ed Bessel funtion of the seond kind of order 0. This implies that there is still a UVsingularity at x = x′ due to the singular behavior of K0(z) at z = 0. Using the identity 9.7.2 of [AS70℄

K0(z) ∼
√

π

2z
e−z

(
1 +O(z−1)

)
, (8.32)we also see that ∆

(ϑ)
LSZ has an exponential deay in the short variable |x− x′| → ∞ only for

Re
(
‖x− x′‖2ϑ

)
> 0 , (8.33)and thus only for |ϑ| < π/2.2 We are thus tempted to onjeture that for σ < 1 the exponential deay in

|x + x′| → ∞ also persists as long |ϑ| < π/2. We onlude that the propagator has a worse behavior in2Note that ‖ · ‖π/2 = i ‖ · ‖M .82



8.2 PropagatorsMinkowski spaetime than in Eulidean spaetime, but, we an ontrol its asymptoti behavior with helpof the parameter ϑ. Considering the assumption |ϑ| < π/2 as part of the regularization, one ould try torenormalize the Minkowskian LS-ovariant models.Conerning the matrix representation we have a similar problem, sine the integrand in the expression(8.18) is osillating. Thus estimating the absolute value of the integral through an integral over the absolutevalue of the integrand possibly produes a big error and might lead to bad estimates on the asymptotis.Indeed, one an use this approximation to show that the Minkowskian GW propagator at |ϑ| = π/2 has anexponential deay in eah index separately. To �nd the other bounds, however, one has to take are of theosillating behavior of the integrand. At least the asymptotis of the speial ase (8.32) for |ϑ| < π/2 raisesthe hope that the propagators at hand may have suh an asymptoti behavior in position spae suh thatthe matrix basis is appliable.3We summarize that the questions whether the matrix representations of LS-ovariant NCQFTs in termsof generalized Landau funtions are well-de�ned and whether they are renormalizable are still open issues,but deserve a thorough investigation.

3Note that these propagators are LS-ovariant, whih implies a similar deay in momentum spae. 83



8 Renormalization of the LS-Covariant Models
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Conlusion and OutlookThe goal of this thesis was to de�ne LS-ovariant models on Minkowski spaetime, �nd their renormalizationproperties and disuss the unitarity of the S-matrix. We brie�y introdued these models on Eulideanspae and showed, how the Weyl-Wigner orrespondene an be used to relate their wave operators to theharmoni osillator. Using their well-known eigenfuntions we were able to derive the eigenfuntions of thewave operators and map the Eulidean LS-ovariant models onto matrix models. On Minkowski spaetime,the additional bakground �eld, whih was supposed to render the models LS-ovariant, spoils the vauumpersistene with respet to pair reation. Contrary to the harmoni osillator in the Eulidean ase, theMinkowskian models orrespond to an inverted harmoni osillator, implying that the wave operators donot possess a ountable in�nite set of eigenfuntions, whih ould be used to map the models onto a matrixmodel, but a ontinuously parameterized eigenbasis.We derived the eigenfuntions of the inverted harmoni osillator and disovered a ountable in�nite set ofpoles through an analytially ontinuation of these funtions to the omplex energy plane. The orrespondingresidues were identi�ed as resonane states of the model. In order to employ an expansion of the ations interms of these resonanes we regularized the models suh that the resonanes turn into genuine eigenfuntionsof the regularized wave operators. These operators orrespond to the omplex harmoni osillator, whihmediates between the ordinary to the inverted harmoni osillator and thus between the Eulidean withthe Minkowskian models, unifying both theories into one formulation related by a single parameter ϑ. Wehave shown that this regularized matrix basis is a bi-orthogonal system whih spans the spae of square-integrable funtions and derived upper bounds on the asymptotis of the orresponding Hermite oe�ientsfor tempered distributions and Gel'fand-Shilov funtions. At the quantum level and in the limit of vanishingbakground, this regularization turned into the usual i ǫ-presription. For the speial ase of a Klein-Gordon theory in a onstant, external �eld, where the di�erent propagators are known, we realulated thepropagator using the matrix basis and veri�ed that the ϑ-regularization leads to Feynman propagators andthus on�rmed the equivalene to the i ǫ-presription.We gave a short overview of the unitarity problem for models with unstable vauum and disussed thesteps whih are needed to deide whether the S-matrix is unitary or not. The matrix basis was also omparedto the ontinuous basis approah. Speial divergenes whih are present in the ontinuous approah at Ω = 1are absent in the matrix representation. In turn, using the ϑ-regularization we showed that a uto� ouldbe employed to render the LS-ovariant NCQFT �nite at every step in perturbation theory and at the sametime keep the LS-ovariane manifestly. We derived the propagators for the regularized LS-ovariant modelswhih inluded the Eulidean propagators and the Minkowskian ausal propagators as speial ases. Due tothe osillatory behavior of the ourring integrands in Minkowski spaetime the orresponding asymptotisare muh more di�ult to derive than in the Eulidean ase. For the speial ase of the massless LSZ modelat σ = 1 we found that the exponential deay of the short variable in the Eulidean spae vanishes if onegoes to Minkowski spaetime, however persists in the near neighborhood of this ase. The ϑ-regularizationthus gives us a mean to ontrol the deay behavior of the propagators. The appliability of the matrix basisin this ase, however, is still in question.We propose the following interesting perspetives for future researh:
• The onstrution of a renormalizable and non-trivial quantum �eld theory in four-dimensional Minkowskispaetime is yet an unsolved problem. Enouraged by the results in Eulidean spae we onlude thatthe LS-ovariant theories in Minkowski spaetime are natural andidates and deserve a loser inves-tigation. To probe their renormalization properties, the derivation of the exat asymptotis of thepropagators is indispensable. Therefore the appliability of the matrix basis is of speial interestand deserves a thorough and systemati inquiry. But, even if the matrix basis turns out to be in-adequate for the investigation of these theories, tehniques for the renormalization in position spaeare available and have already been suessfully applied to LS-ovariant theories in Eulidean spae[GMRVT06, RVTW06, RT08℄. The ϑ-regularization ould then turn out to be a ruial ingredient.85



Conlusion and Outlook
• The question whether LS-ovariant theories have a unitarity S-matrix has not been deided yet. Alongthe lines explained in setion 7.4 one ould try to give an answer to this question. Even if the unitarity isviolated, the possibility to extend these models suh as to retain unitarity is an interesting perspetive,whih ould shed light on the onstrution of unitary NCQFTs in the framework of modi�ed Feynmanrules.
• The possible appliations of the matrix basis are not restrited to the nonommutative LS-ovarianttheories. Comparing to analog alulations in a ontinuous eigenbasis [Rit78℄, alulations in thematrix basis are surprisingly simple and an thus be seen as a omputational tool simplifying otherwiseumbersome alulations. It may �nd an appliation in QED and NCQED in strong external �elds[Rin01, HI09, Dun09, ILM10℄. The former is of fundamental theoretial interest, sine the experimentalobservation of pair reation or other strong �eld phenomena would verify the validity of QED in thesuperstrong �eld domain beyond perturbation theory. There has been a resurgene of interest in theseissues aused by new experiments as the �Extreme Light Infrastruture� (ELI) projet 4, whih willprovide lasers with eletromagneti �elds with unpreedented intensity, and may thus provide newinsights in the non-perturbative regime of QED and QFT in general. Theoretially new tehniques willbe needed to realistially represent the experimental laser on�gurations. In this respet the e�etiveation plays a entral role, whih for the onstant �eld ase has been alulated using the matrix basisin appendix F. The appliation to realisti experiments inludes varying �eld on�gurations, whihould be handled perturbatively around the onstant �eld, whih might turn out to be omputationalfeasable with help of the ϑ-regularization and the matrix basis. For this a knowledge of the generalappliability of the generalized Landau basis would be desirable.

4http://www.extreme-light-infrastruture.eu/86
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Appendix AProof of Lemma 3.1Lemma (3.1). The multiple star produt of funtions fk ∈ S(RD) for k = 1, . . . 4 we have the followingmomentum and position spae representations
∫

dDx (f1 ⋆ f2 ⋆ f3 ⋆ f4) (x) =

4∏

a=1

(∫
d2nxa

(2π)n

)
f(x1) f(x2) f(x3) f(x4)V (x1,x2,x3,x4)

=

4∏

a=1

(∫
d2nka

(2π)n

)
f̂(k1) f̂(k2) f̂(k3) f̂(k4) V̂ (k1,k2,k3,k4) (A.1)with vertex funtions

V (x1,x2,x3,x4) =
(2π)2n

| det(Θ/2)|δ
2n(x1 − x2 + x3 − x4) e−2 i (Θ−1)ij [(x1)i(x2)j+(x3)i(x4)j ] (A.2)

V̂ (k1,k2,k3,k4) = (2π)2nδ2n(k1 + k2 + k3 + k4) e− i
2 Θij [(k1)i(k2)j+(k3)i(k4)j ] . (A.3)Proof: Using the Fourier transformation

f̂(k) =

∫

RD

dDx

(2π)D/2
e− i kxf(x) (A.4)we obtain the momentum spae representation

∫
dDx (f1 ⋆ f2 ⋆ f3 ⋆ f4) (x)

=

4∏

a=1

(∫
d2nka

(2π)D/2

)
f̂1(k1) f̂2(k2) f̂3(k3) f̂4(k4)

∫
d2nx

(
e− i k1·x ⋆ e− i k2·x) ( e− i k3·x ⋆ e− i k4·x)

=

4∏

a=1

(∫
d2nka

(2π)D/2

)
f̂(k1) f̂(k2) f̂(k3) f̂(k4) V̂ (k1,k2k3k4) (A.5)with vertex funtion

V̂ (k1,k2k3k4) = (2π)2nδ2n(k1 − k2 + k3 − k4) e
i
2 Θµν [(k1)µ(k2)ν+(k3)µ(k4)ν ] . (A.6)In position spae the star-produt takes the same form

∫
dDx f1 ⋆ f2 ⋆ f3 ⋆ f4(x) =

4∏

a=1

(∫
d2nxa

(2π)n

)
f1(x1) f2(x2) f3(x3) f4(x4)V (x1,x2,x3,x4) , (A.7)but with vertex funtion given by the inverse Fourier transform

V (x1,x2,x3,x4) =
4∏

a=1

∫
d2nka

(2π)n
e i (k1·x1+k2·x2+k3·x3+k4·x4)V̂ (k1,k2,k3,k4) . (A.8)This is just a Gaussian integral and an easily be omputed. Combining the ka and xa for a = 1, . . . , 4 into8n-omponent vetors

K = (k1,k2,k3,k4) , X = (x1,x2,x3,x4) , (A.9)89



Appendix A Proof of Lemma 3.1de�ning the skew-symmetri 8n× 8n matrix
AΘ = −1

2




0 i Θ 0 0
− i Θ 0 0 0

0 0 0 i Θ
0 0 − i Θ 0


 (A.10)and using the representation (2π)2nδ2n(k1 + k2 + k3 + k4) =

∫
d2nt exp( iK · T ) with T = (t, t, t, t) ∈ R

8nthe integral beomes
V (X) =

∫
d2nt

∫
d8nK

(2π)4n
e i K(T+X)− 1

2K·AΘ·K = det(Θ/2)−2

∫
d2nt e− 1

2 (T+X)·(AΘ)−1·(T+X) , (A.11)where the relation det(AΘ) = det(Θ/2)4 has been used. Sine T · (AΘ)−1 · T = 0 and T · (AΘ)−1 · X =
X · (AΘ)−1 · T = − i (x1 − x2 + x3 − x4) · (Θ/2)−1 · t, the t-integral yields

V (x1,x2,x3,x4) =
(2π)2n

| det(Θ/2)|δ
2n(x1 − x2 + x3 − x4) e

1
2X·(AΘ)−1·X

=
(2π)2n

| det(Θ/2)|δ
2n(x1 − x2 + x3 − x4) e−2 i (Θ−1)µν [(x1)µ(x2)ν+(x3)µ(x4)ν ] . (A.12)whih proves the lemma.
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Appendix BTransition Matrix and its AsymptotisIn order to alulate the asymptotis of the generalized Hermite oe�ients in appendix C and to show thatthe generalized osillator funtions and generalized Landau funtions span the spae of square-integrablefuntions in appendix D, we need to derive the transition matrix
h(γ,β)

mn =

∫

q

f (γ)
m (q) f (β)

n (q) (B.1)and to �nd its asymptotis.B.1 Expression for the Generalized Osillator FuntionsWe start with proving a onvenient representation for the generalized osillator funtions de�ned in equation(6.17) by
f (γϑ)

n (q) =

( √
γϑ

2nn!
√
π

)1/2

e−γϑ
2 q2

Hn(
√
γϑq) (B.2)We will need:Proposition B.1. The generalized harmoni osillator funtions f (γ)

n (q) an be represented as
f (γ)

n (q) =

( √
γ

2nn!
√
π

)1/2

(2 i )
n
2

∫ ∞

−∞
da (−1)nδ(n)(a) e i S(γ)(q,a) (B.3)with S(γ)(q, a) = i γ

2 q
2 −√2 i γqa+ a2

2 .Proof: We will show the identity
∫ ∞

−∞
da (−1)nδ(n)(a) e i S(ϑ)(q,a) =

(
− i

2

)n/2

e−γ
2 q2

Hn (
√
γq) (B.4)with S(γ)(q, a) = i γ

2 q
2 −√2 i γqa+ a2

2 from whih the lemma follows immediately. De�ning
y :=

√
− i /2a−√γq

∂a =
√
− i /2∂y

(B.5)we get
iS(γ)(q, a) = i

(
i γ

2
q2 −

√
2 i γqa+

a2

2

)

= −
(
γ

2
q2 +

√
−2 i γqa− i a2

2

)

= −
(√
− i /2a−√γq

)2

+
γ

2
q2

=: −y2 +
γ

2
q2 . (B.6)91



Appendix B Transition Matrix and its AsymptotisUsing the de�nition for the Hermite polynomials
Hn(z) = (−1)n e z2

∂n
z e−z2 (B.7)and noting that

y|a=0 = −√γq
Hn(−z) = (−1)nHn(z)

(B.8)we get
∫ ∞

−∞
da (−1)nδ(n)(a) e i S(q,a)

=

∫ ∞

−∞
da δ(a)

(
− i

2

)n/2

∂n
y e−y2+ γ

2 q2

=

(
− i

2

)n/2 ∫ ∞

−∞
da δ(a) e

γ
2 q2−y2

(−1)nHn (y)

=

(
− i

2

)n/2

e− γ
2 q2

Hn (
√
γq) (B.9)whih proves the lemma.B.2 Expression for the Transition MatrixTo swith between two sets of generalized osillator funtions (f

(β)
n )n∈N and (f

(γ)
n )n∈N we need the transitionmatrix, whose expliit form will be derived in the next proposition:Proposition B.2. Let β, γ ∈ C−{0} be two di�erent omplex numbers with Re(β+ γ) > 0. The transitionmatrix

h(γ,β)
nm :=

∫ ∞

−∞
dx f (γ)

n (x)f (β)
m (x) (B.10)is given by

h(γ,β)
nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

γ + β

√(
γ − β
γ + β

)m+n

×
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(γ − β)2

m−2k

×
{

1 , |m−n|
2 ∈ N

0 , |m−n|
2 ∈ N + 1

2

. (B.11)Proof: Using proposition B.1 we have
h(γ,β)

nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2

(2 i )
n+m

2

×
∫

x

∫

a

∫

a′

(−1)nδ(n)(a)(−1)mδ(m)(a′) e i S(γ)(x,a)+ i S(β)(x,a′) (B.12)with S(γ)(x, a) = i γ
2 x

2 −√2 i γxa+ a2

2 . The exponential an then be rearranged to92



B.2 Expression for the Transition Matrix
iS(γ)(x, a) + iS(β)(x, a′)

= −γ
2
x2 − β

2
x2 − i

√
2 i γx a− i

√
2 iβxa′ +

i

2
a2 +

i

2
a′2

= −1

2
(γ + β)

(
x+ i

√
2 i γ a+

√
2 iβ a′

γ + β

)2

︸ ︷︷ ︸
−bx̃2

+
i

2

(a2 + a′2)(γ + β)− 2(
√
γa+

√
βa′)2

γ + β

= −bx̃2− i

2

(
γ − β
γ + β

)[
a+

2
√
γβ a′

γ − β

]2

︸ ︷︷ ︸
=:−y2

+
i

2

(
γ − β
γ + β

)[
4γβ

(γ − β)2
+ 1

]
a′2

= −bx̃2 − y2 +
i

2

(
γ + β

γ − β

)
a′2 . (B.13)Sine we assumed Re(γ + β) > 0 for i = 1, 2 we an perform the x̃-integration giving

∫
dx e−b x̃2

=

√
2π

γ + β
. (B.14)With the de�nition

y2 :=
i

2

(
γ − β
γ + β

)[
a+

2
√
γβ a′

γ − β

]2 (B.15)one gets
∂a =

√
i

2

(
γ − β
γ + β

)
∂y

y2|a=0 =
i

2

(
γ − β
γ + β

)[
2
√
γβ a′

γ − β

]2
=

2 i γβ

γ2 − β2
a′2 .

(B.16)We see that the a-integration leads to another Hermite polynomial
∫

a

δ(a)∂n
a exp

{
− i

2

(
γ − β
γ + β

)[
a− 2

√
γβ a′

γ − β

]2
+

i

2

(
γ + β

γ − β

)
a′2
}

=

√
i

2

(
γ − β
γ + β

)n

exp

{
i

2

(
γ + β

γ − β

)
a′2
}

e−y2

e y2

∂n
y e−y2

∣∣∣
a=0

=

√
i

2

(
γ − β
γ + β

)n

exp

{
i

2

(
γ + β

γ − β

)
a′2 − 2 i γβ

γ2 − β2
a′2
}

(−1)nHn

(√
2 i γβ

γ2 − β2
a′
)

=

√
i

2

(
γ − β
γ + β

)n

exp

{
i

2

(
γ − β
γ + β

)
a′2
}
Hn

(
−
√

2 i γβ

γ2 − β2
a′
)
. (B.17)and our intermediate result is

(2 i )
m+n

2

√
2π

γ + β

√
i

2

(
γ − β
γ + β

)n ∫

a′

δ(a′)∂m
a′

[
exp

{
i

2

(
γ − β
γ + β

)
a′2
}
Hn

(
−
√

2 i γβ

γ2 − β2
a′
)]

. (B.18)In the following we will perform the derivatives
∂m

a′

[
e Aa′2

Hn(Ba′)
]

a′=0

=

m∑

k=0

(
m

k

)(
e Aa′2

)(k)
∣∣∣∣∣
a′=0

H(m−k)
n (Ba′)

∣∣∣
a′=0

. (B.19)93



Appendix B Transition Matrix and its AsymptotisUsing the expliit formula for the Hermite polynomials [AS70℄
Hn(z) =

⌊n/2⌋∑

k=0

(−1)kn!

k!(n− 2k)!
(2z)n−2k . (B.20)one an derive the derivatives of the respetive fators:

(
e Aa′2

)(k)
∣∣∣∣
a′=0

= Ak/2 k!

(k/2)!

{
1 , for k even
0 , for k odd

} (B.21)and
∂m−k

a′




⌊n/2⌋∑

ℓ=0

n!(−1)ℓ

ℓ!(n− 2ℓ)!
(2Ba′)n−2ℓ



∣∣∣∣∣∣
a′=0

= (2B)m−k




⌊n/2⌋∑

ℓ=0

n!(−1)ℓ

ℓ!(n− 2ℓ−m+ k)!
(2Ba′)n−2ℓ−m+k



∣∣∣∣∣∣
a′=0

{
1 , for n ≥ m− k
0 , for n < m− k

}

= (2B)m−k(−1)
n−m+k

2
n!(

n−m+k
2

)
!

{
1 , for n−m+ k even and n ≥ m− k
0 , for n−m+ k odd or n < m− k

}
. (B.22)Taking are of the three onditions for non-vanishing derivatives, k even, m ≥ n− k and m−n+ k even, weget

∂m
a′

[
e Aa′2

Hn(Ba′)
]

a′=0

=

m∑

k=0

(
m

k

)(
e Aa′2

)(k)
∣∣∣∣∣
a′=0

H(m−k)
n (Ba′)

∣∣∣
a′=0

=

⌊m/2⌋∑

k=0

(
m

2k

)
(−1)

n−m+2k
2 (2k)!n!

k!
(

n−m+2k
2

)
!

Ak(2B)m−2k

{
1 , for n−m+ 2k even and n ≥ m− 2k
0 , for n−m+ 2k odd or n < m− 2k

}

=

⌊m/2⌋∑

k=max(0, m−n
2 )

(−1)
n
2 (−1)−

m
2 (2B)mn!m!

k! (m− 2k)!
(
k + n−m

2

)
!

(
− A

4B2

)k {
1 , n−m even
0 , n−m odd }

. (B.23)Putting this into (B.18) with
A =

i

2

(
γ − β
γ + β

)

2B = −
√

8 i γβ

γ2 − β2
(B.24)

− A

4B2
= − i

2

(
γ − β
γ + β

)(
γ2 − β2

8 i γβ

)
= − i

2

(
(γ − β)2

8 i γβ

)
= −

(
γ − β
4
√
γβ

)2and assuming �even n−m� we get
(2 i )

m+n
2

√
2π

γ + β

√
i

2

(
γ − β
γ + β

)n√
8 i γβ

γ2 − β2

m ⌊m/2⌋∑

k=max(0, m−n
2 )

i nn! i mm!

k! (m− 2k)!
(

n−m+2k
2

)
!
(−1)k

(
γ − β
4
√
γβ

)2k

=

√
2π

γ + β

√(
γ − β
γ + β

)m+n ⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16γβ

(γ − β)2

m−2k

. (B.25)94



B.3 Asymptotis of the Transition MatrixPutting this into (B.12) one �nds
h(γ,β)

nm =

( √
γ

2nn!
√
π

)1/2 ( √
β

2mm!
√
π

)1/2√
2π

γ + β

√(
γ − β
γ + β

)m+n

×
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(γ − β)2

m−2k (B.26)for �m− n even� and 0 otherwise.B.3 Asymptotis of the Transition MatrixWe need the asymptoti behavior of the transition matrix to determine estimations on the asymptotis ofthe generalized Hermite oe�ients. To prove the asymptotis we bring (B.11) into a more ompat form.Lemma B.3. The generalized transition matrix h(γ,β)
nm with β, γ ∈ C−{0} and Re(β+γ) > 0 an be broughtinto the form

h(γ,β)
nm =

(
4βγ

(β + γ)2

)1/4
√
m!

n!
P

n−m
2

n+m
2

[√
4βγ

(γ + β)2

]{
1 , |m−n|

2 ∈ N

0 , |m−n|
2 ∈ N + 1

2

(B.27)where P is the Legendre funtion of �rst kind.Proof: We start with
h(γ,β)

nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

β + γ

√
γ − β
β + γ

m+n

×
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(β − γ)2

m−2k

. (B.28)It is not self-evident, but this result is invariant under exhange of (m,β) ↔ (n, γ), as it should be. Thefollowing table shows, whih values the di�erent fators an depending on k and on whether we have m < nor m ≥ n:
m < n m ≥ n

k 0, 1, . . . , ⌊m/2⌋ m−n
2 , m−n

2 + 1, . . . , ⌊m/2⌋
m− 2k m,m− 2, . . . ,m− ⌊m⌋ n, n− 2, . . . , n− . . . ,m− ⌊m⌋
k + n−m

2
n−m

2 , n−m
2 + 1, . . . , ⌊n/2⌋ 0, 1, . . . , ⌊n/2⌋Thus in terms of a new variable k̄ de�ned bȳ

k = k +
n−m

2
(B.29)the sum gets an extra fator (−1)

m−n
2 :

⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(β − γ)2

m−2k

=

⌊n/2⌋∑

k̄=max(0, n−m
2 )

n!m!(−1)
m−n

2 (−1)k̄

k̄!
(
n− 2k̄

)
!
(
k̄ + m−n

2

)
!

√
16βγ

(β − γ)2

n−2k̄

. (B.30)95



Appendix B Transition Matrix and its AsymptotisThe exhange of β and γ has the onverse e�et. The two fators depending on β − γ earn extra fators
√
−
(
β − γ
β + γ

)m+n√
16βγ

(β − γ)2

m−2k̄

= (−1)
n−m

2

√
−
(
β − γ
β + γ

)m+n√
16βγ

(β − γ)2

m−2k̄ (B.31)whih anel exatly the ontribution of the rede�nition in terms of k̄. We an use equation (B.30) to rewritethe sum as
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)−
m
2

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

( i γ − iβ)2

m−2k

=

⌊min(m,n)/2⌋∑

k=0

n!m!(−1)−
min(m,n)

2

k! (min(m,n)− 2k)!
(
k +

∣∣n−m
2

∣∣)!

√
16βγ

( i γ − iβ)2

m−2k

. (B.32)Using
⌊p/2⌋∑

k=0

p!

k! (p− 2k)! (ℓ+ k)!
Ck =

1

ℓ!
2F1

(
−p

2
,
1− p

2
, 1 + ℓ, 4C

) (B.33)one gets
h(γ,β)

n,m =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

β + γ

√
γ − β
β + γ

m+n√
16βγ

( i γ − iβ)2

min(m,n) (B.34)
× (−1)−

min(m,n)
2 max(m!, n!)∣∣n−m

2

∣∣! 2F1

(
−min(m,n)

2
,
1−min(m,n)

2
, 1 +

∣∣∣∣
n−m

2

∣∣∣∣ ,
( i γ − iβ)2

4βγ

)whih is totally symmetri in m and n.Now we want to get rid of the minimum and maximum funtions by relating the hypergeometri funtionsto Legendre funtions Pµ
ν . The following formulas will be of use for us:
Pµ
−ν−1(z) = Pµ

ν (z)

P−µ
ν = (−1)µ (ν − µ)!

(ν + µ)!

[
Pµ

ν (z)− 2π

e

− i µπ

sin(µπ)Qµ
ν (z)

] (B.35)with Qµ
ν Legendre funtions of the seond kind. However, sine in the following we will have �µ = m−n

2even� the seond equation will simplify to
P−µ

ν = (−1)µ (ν − µ)!

(ν + µ)!
Pµ

ν (z) . (B.36)The important identity relating our hypergeometri funtion to a Legendre funtion is (15.4.10) of [AS70℄1
2F1(a, a+

1

2
; c; z) = 2c−1Γ(c)(−z) 1

2− 1
2 c(1− z) 1

2 c−a− 1
2P 1−c

2a−c

[
(1− z)−1/2

]
. (B.37)The fators of (B.34) depending on minimum and maximum funtions are

2min(m,n)(−z)−min(m,n)
2

max(m!, n!)(∣∣m−n
2

∣∣)! 2F1

(
1−min(m,n)

2
,−min(m,n)

2
, 1 +

∣∣∣∣
m− n

2

∣∣∣∣ , z
)
. (B.38)1In [AS70℄ is a fator (−1)

1
2
− 1

2
c missing whih I inluded. This an also be seen from equation (15.4.11) in [AS70℄, whih isexatly the same formula for real z, where this fator is present.96



B.3 Asymptotis of the Transition Matrixwith
z =

( i γ − iβ)2

4βγ
. (B.39)For m < n we identify

a = −m
2

, c = 1 +
n−m

2
c− 1

2
− a =

n+m

4
, 2a− c = −1− n

2
− m

2

(B.40)and use equation (B.37) to get
2m(−z)−m

2
n!(

n−m
2

)
!
2F1

(
−m

2
,
1−m

2
, 1 +

n−m
2

, z

)

= 2m(−z)−m
2

n!(
n−m

2

)
!
2

n−m
2

(
n−m

2

)
!(−z)m−n

4 (1− z)n+m
4 P

m−n
2

−1−n
2 −m

2

[
(1− z)−1/2

]

= n!2
n+m

2

(
z − 1

z

)m+n
4

P
m−n

2
n+m

2

[
(1 − z)−1/2

]
. (B.41)For m ≥ n we have

a = −n
2

, c = 1 +
m− n

2
c− 1

2
− a =

n+m

4
, 2a− c = −1− n

2
− m

2

(B.42)and thus
2n(−z)−n

2
m!(

m−n
2

)
!
2F1

(
−n

2
,
1− n

2
, 1 +

m− n
2

, z

)

= 2n(−z)−n
2

m!(
m−n

2

)
!
2

m−n
2

(
m− n

2

)
!(−z)n−m

4 (1− z)n+m
4 P

n−m
2

−1−n
2 −m

2

[
(1− z)−1/2

]

= m!2
n+m

2

(
z − 1

z

)m+n
4

P
n−m

2
n+m

2

[
(1− z)−1/2

]
. (B.43)Now we an use equation (B.36) with

−µ =
m− n

2
, ν =

m+ n

2
(ν − µ)! = m! , (ν + µ)! = n!

(B.44)to see that that the expressions in terms of Legendre funtion oinide. Inserting the expliit expression for
z and

z − 1

z
=

( i γ− i β)2

4βγ − 1

( i γ− i β)2

4βγ

=

(
γ + β

γ − β

)2

1− z =
(γ + β)2

4βγ

(B.45)we get
(−1)−

min(m,n)
2

√
16βγ

( i γ − iβ)2

−min(m,n)
2

max(m!, n!)(∣∣m−n
2

∣∣)!

× 2F1

(
1−min(m,n)

2
,−min(m,n)

2
, 1 +

∣∣∣∣
m− n

2

∣∣∣∣ ,
( i γ − iβ)2

4βγ

)

= m!2
n+m

2

√
γ + β

γ − β

m+n

P
n−m

2
n+m

2

[√
4βγ

(γ + β)2

] (B.46)97



Appendix B Transition Matrix and its AsymptotisThis simpli�es the matrix h(γ,β)
nm :

h(γ,β)
nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

β + γ

√
γ − β
β + γ

m+n

m!2
n+m

2

√
γ + β

γ − β

m+n

P
n−m

2
n+m

2

[√
4βγ

(γ + β)2

]

=

(
4βγ

(β + γ)2

)1/4
√
m!

n!
P

n−m
2

n+m
2

[√
4βγ

(γ + β)2

] (B.47)and proves the lemma.It is easy to see that the argument of the transition matrix takes values between 1 and √2, with itsminimum at β = γ and its maximum at |γ| = |β| and γ/β = ± i . Below √2, the transition matrix deaysexponentially in eah index, as will be shown in the next lemma:Lemma B.4. Let β, γ ∈ C− {0}. Then for large n the transition matrix behaves as
h(γ,β)

nm ∼ n−1/2

∣∣∣∣
β − γ
β + γ

∣∣∣∣
n

. (B.48)Proof: The Legendre funtion has the following integral representation (equation 14.12.8 of [OLBC10℄)
Pµ

ν (x) =
2µµ!(ν + µ)!(x2 − 1)µ

(2µ)!(ν − µ)!π

∫ π

0

dφ
(
x+

√
x2 − 1 cosφ

)ν−µ

(sinφ)2µ

=
2

n−m
2

(
n−m

2

)
!n!(x2 − 1)

n−m
2

(n−m)!m!π

∫ π

0

dφ
(
x+

√
x2 − 1 cosφ

)m

(sinφ)n−m , (B.49)where in our ase 2µ = n−m and 2ν = n+m and
x :=

√
4βγ

(β + γ)2
. (B.50)The integral an be estimated via the saddle point method for large n. Writing the integral in the form

∫ π

0

dφ
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√
x2 − 1 cosφ

)m

(sinφ)n−m

=

∫ π

0

dφ e n ln(sin φ)

(
x+
√
x2 − 1 cosφ
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)m

=

∫ π/2

0

dφ e nω(φ)ϕ(φ) . (B.51)the exponential has one saddle point at φ = π/2. Expanding around π/2 gives ω(φ) = 1− 1
2!(sin(π/2))−2(φ−

π/2)2 + . . . = 1− 1
2 (φ− π/2)2 + . . ., whih gives the saddle point approximation [Cop65℄
∫ π/2

0

dφ e nω(φ)ϕ(φ) = ϕ(π/2) e nω(π/2)

( −2π

nω′′(π/2)

)1/2 (
1 +O(n−ǫ)

)

= xm

(
2π

n

)1/2 (
1 +O(n−ǫ)

) (B.52)for some 0 < ǫ < 1
2 and n large enough. We thus �nd for x as in (B.50)

h(γ,β)
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√
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m!
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n−m

2
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n−m
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)
!(x2 − 1)

n−m
2

(n−m)!π
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√
2π
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B.3 Asymptotis of the Transition MatrixStirling's formula n! ∼ nn e−n an be used yielding
√
n!

2
n−m

2

(
n−m

2

)
!

(n−m)!

∼ exp

(
n−m

2
ln(n−m)− (n−m) ln(n−m)− n−m

2
+ (n−m) +

n

2
ln(n)− n

2

)

∼ 1 (B.54)whih gives us the �nal result
h(γ,β)

nm ∼ (x2 − 1)n/2

√
n

∼ n−1/2

∣∣∣∣
β − γ
β + γ

∣∣∣∣
n

. (B.55)The transition matrix possesses an exponential deay unless the angle between β and γ is less than π/2.Note that this ensures the pointwise onvergene of the sum ∑∞
n=0 f

(γ)
n (q)h

(γ,β)
nm in these ases sine

f (γ)
n (q) ∼

√
n!

2n/2(n/2)!
Hn(
√
γ q)

∼ e
√

2n|Im(
√

γ q)| (B.56)due to Stirling's formula and the asymptoti behavior of the Hermite polynomial (see equation (5.50)).
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Appendix CAsymptotis of Generalized HermiteCoe�ientsIn the following we will determine the asymptotis of the generalized Hermite oe�ients of various lassesof objets, as presented in setion 6.2. We �rst introdue Gel'fand-Shilov spaes, whose asymptotis will beestimated from above afterwards. Tempered distributions are onsidered afterwards.C.1 Gel'fand-Shilov SpaesIn the following we will give a brief aount on Gel'fand-Shilov spaes. The Gel'fand-Shilov spae Sβ
α(R) forsome α, β ∈ R+ is de�ned to be the spae of smooth funtions ϕ(x) ∈ C∞(R), whih obey the inequalities[GS64℄

|xkϕ(q)(x)| ≤ CAkBqkkαqqβ (C.1)for all x ∈ R with onstants A,B,C > 0 depending on ϕ and k, q = 0, 1, 2, . . . .1 The onditions poserestritions on the behavior of the funtions and its derivatives for |x| → ∞. The smaller the parameters αand β are, the faster do the funtions and their derivatives deay for |x| → ∞. These spaes are non-trivialonly for
α > 0 , β > 0 , α+ β ≥ 1

α = 0 , β > 1 (C.2)
α > 1 , β = 0 .They are invariant under multipliation with polynomials and di�erentiation, while Fourier transformationinterhanges α and β. For β < 1 the funtions possess analytial ontinuations into the whole omplex plane.A haraterization whih is equivalent to (C.1) is

|ϕ(x + i y)| ≤ C e−a|x|1/α+b|y|1/(1−β) (C.3)where a = α
e A1/α and b > 1−β

e (B e )
1

1−β .A topology is given through the subspaes Sβ,B
α,A (R) ⊂ Sβ

α(R) onsisting of all those funtions whih obey
|xkϕ(q)(x)| ≤ CĀkB̄qkkαqqβ (C.4)for all Ā > A and B̄ > B. One then de�nes the set of norms on Sβ,B

α,A (R)

‖ϕ‖δ,ρ = sup
x∈R,k,p∈N0

|ϕ(x)|
(A+ δ)k(B + ρ)qkαkqβq

, δ, ρ = 1,
1

2
,
1

3
, . . . (C.5)whih de�nes a topology on these spaes. For A1 < A2 and B1 < B2 we have Sβ,B1

α,A1
(R) ⊂ Sβ,B2

α,A2
(R) and if

{ϕn(x)} is a onvergent series in Sβ,B1

α,A1
(R) it is also onvergent in Sβ,B2

α,A2
(R). The spae Sβ

α(R) an then be1The generalization to higher dimensions is straightforward but not important for us. 101



Appendix C Asymptotis of Generalized Hermite Coe�ientsde�ned as the ountable-in�nite onjuntion of all Sβ,B
α,A (R) with A,B = 1, 2, . . ., and the topology on Sβ

α(R)is the indued limit topology. For α > 0, β > 0 and α+ β = 1 these spaes are nontrivial only if AB > γ forsome γ > 0, where the admissible values for A and B are bounded from below by the hyperbola AB = γ.One an show that if ϕ(x) ∈ Sβ,B
α,A (R) then ϕ(λx) ∈ Sβ,λB

α,A/λ(R). Thus if the former spae is nontrivial thenalso the latter.Of speial interest is the ase α = β with α ∈ [1/2, 1] of quasi-analyti funtions, whih are subspaes ofthe spae of entire funtions on C restrited to R. They are losed under Fourier transformation and forman algebra under the star-produt, and might thus be a suitable test funtion spae for nonommutativequantum �eld theories [Sol07b, Sol07a℄. In [Sol10℄ it has been shown that every element in the multiplieralgebra of Sα
α (R) an be approximated by funtions in Sα

α (R) in the operator topology.2The spae Sα
α (R) have been haraterized in terms of their Hermite oe�ients [LCP07℄. A funtion ϕwith Hermite oe�ients {ϕn} is in Sα

α (R) i�
‖{ϕn}‖θ =

( ∞∑

n=0

|ϕn|2 exp
{

2
α

e
n

1
2α θ

1
α

})1/2

<∞ (C.6)for some θ > 0.3 One de�nes the spaes sα,θ̄, whih onsists of those sequenes {ϕn} with �nite norm withrespet to (C.6) for all θ > θ̄. The sequenes of ultrafast fall-o� sα are then de�ned as the indutive limitof the family of spaes {sα,θ, θ ∈ R+}.The dual spae Sα
α (R)′ has a similar haraterization in terms of Hermite oe�ients. A distribution T isin Sα

α (R)′ i� its Hermite oe�ients Tn = 〈T |φn〉 obey the relation
|Tn| < exp

{
2
α

e
n

1
2α θ

1
α

} (C.9)for all θ > 0. In the following we will use these asymptotis to estimate the asymptoti behavior of thegeneralized Hermite oe�ients, i.e. the oe�ients in the generalized matrix basis.C.2 Asymptotis for Generalized Hermite Coe�ients ofGel'fand-Shilov FuntionsFor a general appliation of the generalized matrix basis it is important to know, how the asymptotis of thegeneralized Hermite funtions for various lasses of funtions and distributions look like. As an example, wepik the Gel'fand-Shilov spae of type Sα
α (R) with α = 1/2, whih is dense in Shwartz spae. We will showthat (at least) the funtions of a subset of it have Hermite oe�ients with an exponential deay.We determine bounds on the asymptoti behavior of the generalized Hermite oe�ients ψ(ϑ)

m = 〈f (ϑ)
m |ψ〉for ψ ∈ S1/2

1/2 (R) and ψ ∈ S′(R). Their orresponding Hermite oe�ients ψm are haraterized by theexistene of a parameter θ > 0 suh that [LCP07℄
∞∑

m=0

|ψm| e mθ <∞ . (C.10)2This is atually true for all Sβ
α(RD) with β ≥ α.3In [LCP07℄ the norm for any Gel'fand-Shilov spae of Romieu type S{Mp}, where Sα

α is a speial ase of, is de�ned to be
‖{ϕn}‖θ =

 

∞
X

n=0

|ϕn|2 exp
˘

2M(θ
√

n)
¯

!1/2 (C.7)with M the funtion
M(θ

√
n) = sup

p∈N0

log

„

(θ
√

n)

Mp

«

. (C.8)In the ase Sα
α (R) one has (Mp)p∈N0

= (pαp)p∈N0
and one an show that M(θ

√
n) = α

e
n

1
2α θ

1
α .102



C.2 Asymptotis for Generalized Hermite Coe�ients of Gel'fand-Shilov FuntionsWe use the representation (B.11) of the transition matrix
h(γ,β)

nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

γ + β

√(
γ − β
γ + β

)m+n

×
⌊n/2⌋∑

k=max(0, n−m
2 )

n!m!(−1)
m−n

2 (−1)k

k! (n− 2k)!
(
k + m−n

2

)
!

√
16βγ

(β − γ)2

n−2k

×
{

1 , |m−n|
2 ∈ N

0 , |m−n|
2 ∈ N + 1

2

=

⌊n/2⌋∑

k=max(0, n−m
2 )

G(m, k, n) . (C.11)for whih in our ase β ∈ R+. We give a bound on the generalized Hermite oe�ient by the followingestimation
|ψ(γϑ)

n | = |
∞∑

m

′h(γ,β)
nm ψm| (C.12)

≤
∞∑

m

′
⌊n/2⌋∑

k=max(0, n−m
2 )

|G(m, k, n)ψm| (C.13)where∑∞
n

′ denotes the sum over even or odd m ≥ 0 depending on whether n is even or odd. This estimationa�ets the auray of the resulting bounds, sine the k-sum of h(γ,β)
mn onsists of terms with alternating sign.Better bounds might be found by keeping the k-sum within the modulus of h(γ,β)

mn . We have to swap thesummations. The following table should make lear whih ombinations (k, n) orrespond to non-vanishingterms:
k m0 � � . . . � � n n+ 2 n+ 4 . . .1 � � . . . � n− 2 n n+ 2 n+ 4 . . .... . . .
⌊n/2⌋ n− 2k n− 2k + 2 . . . n− 4 n− 2 n n+ 2 n+ 4 . . .For given k we an thus haraterize the non-vanishing terms by m = 2p+ n − 2k and all integers p ∈ N0.For the ase at hand, the sum over the di�erent fators depending on n beome

∞∑

m

′
⌊n/2⌋∑

k=max(0, n−m
2 )

|G(m, k, n)ψm| =
⌊n/2⌋∑

k=0

∞∑

p=0

|G(2p+ n− 2k, k, n)ψ2p+n−2k| . (C.14)In the following we denote z = γ−β
γ+β and r = |z|. For simpliity we set |β| = |γ| whih implies z = i tan(ϑ/2)and thus

16βγ

(β − γ)2 = 4(1− z−2) = 4
1 + r2

r2
. (C.15)103



Appendix C Asymptotis of Generalized Hermite Coe�ientsWe then have
|G(m, k, n)ψm|

=

∣∣∣∣∣∣
C

(
n!

2n

)1/2√
z

m+n

√
4
1 + r2

r2

n−2k
2−m/2

√
m!(−1)

m−n
2 (−1)k

k! (n− 2k)!
(
k + m−n

2

)
!
ψm

∣∣∣∣∣∣

m→2p+n−2k
= C

(
n!

2n

)1/2√
r

n+2p+n−2k

√
4
1 + r2

r2

n−2k
2−p+k−n/2

√
(2p+ n− 2k)!

k! (n− 2k)!p!
|ψ2p+n−2k|

k→k̄=n/2−k
= C

(
n!

2n

)1/2√
r

n+2p+2k̄

√
4
1 + r2

r2

2k̄
2−p−k̄

√
(2p+ 2k̄)!(−1)p

(2k̄)!
(

n−2k̄
2

)
!p!

|ψ2p+2k̄| (C.16)for some onstant C. Sine
π1/2Γ(2x) = 22x−1Γ(x)Γ(x + 1/2) (C.17)we have

√
(2p+ n− 2k)!

p!
< π−1/22p+n/2−k (p+ k̄)!

p!
= π−1/22p+n/2−k(p+ 1)k̄ . (C.18)with (p + 1)k̄ the Pohhammer symbol. The Hermite oe�ients of the Gel'fand-Shilov funtion may notshow a deay already at m > 0 but only at m > N for some �nite N . Sine for any given m the transitionmatrix deays exponentially for n→∞ these �rst N/2 terms of (C.12) an be negleted and we an safelyassume |ψ2p+2k̄| ∼ e−θ(2p+2k̄) for some θ > 0. We thus �nd

|ψ(γϑ)
n | < C

(
n!

2n

)1/2

rn/2

⌊n/2⌋∑

k=0

1

(2k̄)!
(

n−2k̄
2

)
!

(
4 e−2θ 1 + r2

r

)k̄

×
∞∑

p=0

(p+ 1)k̄(r e−2θ)p . (C.19)Using
∞∑

p=0

(p+ 1)k̄(r e−2θ)p = (1− r e−2θ)−k̄k̄! . (C.20)and
⌊n/2⌋∑

k̄

k!(4y)k

(2k)!(n−2k̄
2 )

=
1

(n/2)!
2F1

(
−n

2
, 1;

1

2
,−y

) (C.21)we �nd
|ψ(γϑ)

n | ∼ 2−n/2
√
n!

(n/2)!
rn/2

2F1

(
−n

2
, 1;

1

2
,−y

)

∼ rn/2
2F1

(
−n

2
, 1;

1

2
,−y

) (C.22)with
y =

1 + r2

r( e 2θ − r) . (C.23)Using 15.8.6 and 15.8.1 of [OLBC10℄, we �nd
rn/2

2F1

(
−n

2
, 1;

1

2
,−y

)
=

(1)n/2

(1/2)n/2
rn/2(1 + y)n/2

2F1

(
−n

2
,−1

2
;−n

2
,

y

1 + y

)

=
(1)n/2

(1/2)n/2
rn/2(1 + y)n/2

(
y

1 + y

)1/2

, (C.24)104



C.3 Asymptotis for Tempered Distributionswhere 2F1(0, b, c) = 1 has been used. The fator (1)n/2/(1/2)n/2 goes as √n/2 for large n. The asymptotibehavior is thus determined by the fator
rn/2(1 + y)n/2 =

(
r +

1 + r2

e 2θ − r

)n/2

=

(
1 + e 2θr

e 2θ − r

)n/2

. (C.25)Note that for r = 0 we get bak the exponential deay of the original Hermite oe�ients. Though, in orderto have a deay for a given r ∈ [0, 1], we have to restrit on those Gel'fand-Shilov funtions for whih
2θ > ln

(
1 + r

1− r

) (C.26)In the notation of setion C.1 these funtions form the spae s1/2,θ̄ for some θ̄ proportional to the rhs of(C.26). The larger we hoose r the more do we have to restrit to Gel'fand-Shilov spae. We emphasize thatthese bounds are not exat but rely on the estimation (C.13). The spae of �good� funtions might be largerthan the one we found.One should note that this estimation an not diretly be applied to the dual spae (S1/2
1/2 (R))′, whih obeysequation (C.10) for all θ < 0. A ase whih an be handled analogously is the spae of tempered distribution,whih will investigated in the next setion.C.3 Asymptotis for Tempered DistributionsNow we onsider a tempered distributions T ∈ S(R)′. We know that its Hermite oe�ients Tm are boundedby

|Tm| < C(m+ 1)q (C.27)for some onstant C and all q ∈ N. For tehnial reasons we will substitute (m + 1)q by (m+ 1)q, whih isthe Pohhammer symbol de�ned by
(m+ 1)q =

Γ(m+ q + 1)

Γ(m+ 1)
. (C.28)We an then start at equation (C.20) in the previous setion by substituting (2p+ 2k + 1)qr

p for (r e−2θ)p,where again m = 2p+ 2k̄ with p ∈ N0. The sum over p then gives
∞∑

p=0

(p+ 1)k̄(2p+ 2k̄ + 1)qr
p ∼ 2q

∞∑

p=0

(p+ 1)k̄(p+ k̄ + 1)qr
p

= 2q(1− r)−k̄−qk!(k + 1)q , (C.29)whih leads to the k̄-sum
⌊n/2⌋∑

k̄=0

k̄!(k + 1)q

(2k̄)!(n−2k̄
2 )!

(4y′)k̄ =
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(n/2)!
2F1

(
−n

2
, 1 + q;

1

2
;−y′

)
. (C.30)with y′ = (1 + r2)/(r − r2). Using 15.8.6 of [OLBC10℄ we �nd
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;−y′

)

=
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2F1
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2
;

1

1− y′/4

)

=
(1 + q)n/2
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(1 + y′)n/2

(
y′

1 + y′

)1/2+q

2F1

(
−q,−1

2
− q;−q − n

2
;−1/y′

) (C.31)105



Appendix C Asymptotis of Generalized Hermite Coe�ientsThe Hypergeometri funtion approahes 1 for large n and the asymptoti behavior is given by
(1 + q)n/2

(1/2)n/2
rn/2 (1 + y′)

n/2 ∼ (n/2 + q)q+1/2

(
1 + r

1− r

)n/2 (C.32)whih diverges exponentially for all r ∈ (0, 1). For r = 0 we get bak the usual polynomial divergene oftempered distributions.One ould now ask the question, for whih r = tan(ϑ/2) it is still possible to �nd Gel'fand-Shilov funtions
ψ ∈ S1/2

1/2 (R) suh that the series
∞∑

n=0

ψ(ϑ)
n ϕ(ϑ)

n (C.33)onverges for all tempered distributions ϕ ∈ S′(R). Convergene requires
ψ(ϑ)

n ϕ(ϑ)
n ∼

(
1 + r

1− r

)(
1 + e 2θr

e 2θ − r

)
< 1 (C.34)whih an be rearranged to

e 2θ >
1 +

(
1−r
1+r

)
r

(
1−r
1+r

)
− r

=
2− (r − 1)2

2− (r + 1)2
. (C.35)This is only possible for r+ 1 <

√
2 and thus for ϑ < π/4. Again these results are only approximately, sinethe bounds on the asymptotis are only upper bounds and might not re�et the true asymptoti behaviorof the orresponding Hermite sequenes.
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Appendix DExpansion Theorem for Generalized OsillatorStatesUsing the results of appendix B we an now proveTheorem D.1. The linear span of the generalized osillator funtions (f
(γϑ)
n )n∈N0 is dense in L2(R).Proof: We will use the usual osillator basis (φn)n∈N0 as an intermediate basis. Eah ψ ∈ L2(R) an beapproximated pointwise by the limit limN→∞

∑N
n=0 φn(q)ψn, whih means that the linear span of the usualosillator funtions is dense in L2(R). In turn, eah osillator funtion an be expanded in the f (γ)

n -basis for
Re(γ) > 0, whih is a orollary of the next lemma and proves that their span is also dense in L2(R).More generally we prove thatLemma D.2. Let α, β ∈ C− {0} with Re(α+ β) > 0 and

0 <

∣∣∣∣
α− β
α+ β

∣∣∣∣ < 1 . (D.1)Then any funtion f (β)
m an be expanded in terms of f (α)

n , i.e. the following sum
f (β)

m (q) =

∞∑

n=0

f (α)
n (q)h(α,β)

nm (D.2)onverges pointwise for every q ∈ R, with transition matrix given by
h(α,β)

nm =

∫

q

f (α)
n (q) f (β)

m (q) . (D.3)Proof: Due to proposition B.2 we are able to do the sum∑n f
(γ)
n (x)h

(γ,β)
nm expliitly. Keeping in mind thateah term with �n−m odd� is zero we �nd

∞∑
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f (γ)
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( √
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( √
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=

( √
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√
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Hn (
√
γx) (D.4)107



Appendix D Expansion Theorem for Generalized Osillator Stateswhere ∑∞
n

′ denotes the sum over even or odd n ≥ 0 depending on whether m is even or odd. We have toswap the summations. The double sum
∞∑

n

′
⌊m/2⌋∑

k=max(0, m−n
2 )

. (D.5)an be rearranged suh that k runs from 0 to ⌊m/2⌋. The following table should make lear whih ombina-tions (k, n) orrespond to non-vanishing terms:
k n0 � � . . . � � m m+ 2 m+ 4 . . .1 � � . . . � m− 2 m m+ 2 m+ 4 . . .... . . .

⌊m/2⌋ m− 2k m− 2k + 2 . . . m− 4 m− 2 m m+ 2 m+ 4 . . .For given k we an thus haraterize the non-vanishing terms by n = 2ℓ +m − 2k and all integers ℓ ∈ N0.For the ase at hand, the sum over the di�erent fators depending on n beome
∞∑

n

′
⌊m/2⌋∑

k=max(0, m−n
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ℓ!
G2l+m−2k(x) . (D.6)For (D.4) this means
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=
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√
γx) (D.7)Here we an use equation (49.4.4) [Han75℄

∞∑

k=0

tk

k!
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, |t| < 1/4 (D.8)with the identi�ation
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) (D.9)and thus
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√
2γ

β + γ

∞∑

ℓ=0

1

ℓ!

√
1

4

(
γ − β
β + γ

)2ℓ

e− γ
2 x2

H2ℓ+m−2k (
√
γx)

=

√
2γ

β + γ

−m+2k

e− β
2 x2

Hm−2k

(√
1

2
(β + γ)x

)
. (D.11)108



and (D.7) thus beomes
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n=0
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( √
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) (D.12)Now we have to make a ase study. For �m even� we will use equation (49.4.12) from [Han75℄1
n∑
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(2k)!(n− k)! (−t)
kH2k(z) = (−1− t)nH2n
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1

t
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, (D.14)for �m odd� equation (49.4.14) from [Han75℄
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) (D.15)m even: Substituting in (D.12)

ℓ := m/2− k
k! → (m/2− ℓ)! (D.16)

(m− 2k)! → (2ℓ)!we get
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) (D.17)Comparing to (D.14) we identify
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(D.19)1The formulas (49.4.12) and (49.4.14) given in [Han75℄ are expressed in terms of the Pohhammer symbol (−n)k. I used therelation
(−n)k = (−1)k n!

(n − k)!
(D.13)to bring them into the given form (D.14) and (D.15). 109



Appendix D Expansion Theorem for Generalized Osillator Statesand we �nd for �even m�
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n=0
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m (D.24)and we �nd for �odd m�
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m (x) . (D.25)whih proves the theorem.
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Appendix EExpression for the Generalized LandauFuntionsTheorem (6.1). The generalized Landau funtions f (Eϑ)
mn (x) with m,n ∈ N0 are given by

f (Eϑ)
mn (t, x) = (−1)min(m,n)

√
E
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√
min(m!, n!)

max(m!, n!)
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2 x
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− (x

(ϑ)
−sgn(m−n))

|m−n| L|m−n|
min(m,n)

(
Eϑ x

(ϑ)
+ x

(ϑ)
−

) (E.1)with x(ϑ)
± = t± i e− i ϑx and Lα

n(z) the generalized Laguerre Polynomials.Proof: The generalized Landau funtions are build on the generalized osillator funtions f (γϑ)
m with γ = E/2and
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mn (x) =
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4π
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m 〉〈f (γ−ϑ)
n |

]
(x) . (E.2)Using the de�nition of the generalized osillator funtions (6.17) we get
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γϑ (t− k/2)) . (E.3)The generating funtion of the Hermite polynomials

e−a2(ξ2−2ξq) =
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(aξ)mHm(aq) . (E.4)will be used to obtain the generating funtion for the generalized matrix basis:
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Appendix E Expression for the Generalized Landau FuntionsThe exponential is a Gaussian. Rearranging it yields
−1

4
γϑ

[
k2 + 4k(η − ξ − i e− i ϑx) + 4(t2 + ξ2 + η2 − 2ξt− 2ηt)

]

= −1

4
γϑ

[
k + 2(η − ξ − i e− i ϑx)

]2

+ γϑ

[
(η − ξ − i e− i ϑx)2 − (t2 + ξ2 + η2 − 2ξt− 2ηt)

]

= −1

4
γϑ

[
k + 2(η − ξ − i e− i ϑx)

]2

+ γϑ

[(
i e− i ϑx

)2 − t2 + 2η i e− i ϑx− 2ξ i e− i ϑx+ 2ξt+ 2ηt− 2ηξ
]

= −1

4
γϑ

[
k + 2(η − ξ − i e− i ϑx)

]2
+ γϑ [−x+x− + 2ξx− + 2ηx+ − 2ηξ] . (E.6)where we redisover the generalized light one oordinates x(ϑ)

± = t ± i e− i ϑx of setion 6.3. One an seehow the omplex ombinations t± ix used in the Eulidean setting for ϑ = 0 beome light one oordinates
t ± x for ϑ = ±π/2. In the following we will simply write x± for the x(ϑ)

± . The k integration anels theonstant prefator up to a fator of 2 leading to
K(γϑ)(ξ, η; t, x) = 2 e γϑ(−x+x−+2ξx−+2ηx+−2ηξ)

= 2 e−γϑx+x−

∞∑

k,ℓ,p

1

k!ℓ!p!
(2γϑx−ξ)

k
(2γϑx+η)

ℓ
(−2γϑηξ)

p
. (E.7)The generalized matrix funtions an now be obtained by taking suitable derivatives with respet to thevariables ξ and η:

f (Eϑ)
mn (t, x) =

√
|γϑ|
2π

1√
m!n!

(
1

2γϑ

)m+n
2 ∂m

∂ξm

∂n

∂ηn
K(γϑ)(ξ, η; t, x)

∣∣∣∣
ξ=η=0

. (E.8)Let m ≥ n. Then the derivatives of K are of the following form
∂m

∂ξm

∂n

∂ηn

∑

k,ℓ,p

1

k!ℓ!p!
akbℓcpξk+pηℓ+p

∣∣∣∣∣∣
ξ=η=0

=
∑

k,ℓ,p

1

(m− p)!(ℓ− p)!p!a
kbℓcp

(k + p)!

(k + p−m)!

(ℓ + p)!

(ℓ+ p− n)!
δ0,k+p−mδ0,ℓ+p−n

=

n∑

p

am−pbn−pcp
m!n!

(m− p)!(ℓ− p)!p! (E.9)with a = 2γϑx−, b = 2γϑx+ and c = −2γϑ. This leads to
f (Eϑ)

mn (t, x) =

√
2γ

π

√
m!n! (2γϑ)

m−n
2 e−γϑx+x−xm−n

−

×
n∑

p=0

(2γϑx+x−)n−p (−1)p

(m− p)!(ℓ− p)!p! . (E.10)This last sum an be identi�ed with the assoiated Laguerre funtion by substituting p→ n− p and
Lk

n(y) =

n∑

q=0

(n+ k)!(−1)qyq

(n− q)!(k + q)!q!
. (E.11)We �nally get

f (Eϑ)
mn (t, x) = (−1)n

√
2γ

π

√
n!

m!
(2γϑ)

m−n
2 e−γϑx+x−xm−n

− Lm−n
n (2γϑx+x−) (E.12)112



A similar alulation for n ≥ m leads to this result with +↔ − and m ↔ n. Substituting γ → E/2 solvesthis lemma.The generalized Landau funtions have ertain symmetries whih will be useful in appendix H.Corollary E.1. The generalized Landau funtions given by equation (E.1) ful�ll the relations
f (Eϑ)

mn (E−1t, E−1x) = Ef (1/E−ϑ)
mn (t, x) (E.13)

f (Eϑ)
mn (−t, x) = (−1)m−nf (Eϑ)

nm (t, x) (E.14)
f (Eϑ)

mn (t,−x) = f (Eϑ)
nm (t, x) (E.15)

f (Eϑ)
mn (x, t) = (− i )m−nf (E−ϑ)

nm (t, x) . (E.16)Proof: Equation (E.13) follows diretly from the expliit expression (E.1) by noting that E and x(ϑ)
± onlyour in the ombination √Ex(ϑ)

± and Ex
(ϑ)
+ x

(ϑ)
− . The inversion of time t → −t only a�ets the term

x
(ϑ)
−sign(m−n) with

x
(ϑ)
−sign(m−n) → −x

(ϑ)
+sign(m−n) = −x(ϑ)

−sign(n−m) , (E.17)suh that
f (Eϑ)

mn (−t, x) = (−1)m−nf (Eϑ)
nm (t, x) . (E.18)The transformation x→ −x yields

x
(ϑ)
−sign(m−n) → x

(ϑ)
+sign(m−n) = x

(ϑ)
−sign(n−m) , (E.19)whih shows equation (E.15). Under the exhange of t and x we �nd

x
(ϑ)
± = t± i e− i ϑx→ ± i e− i ϑ(t∓ i e i ϑx) = ± i e− i ϑx

(−ϑ)
∓ (E.20)and thus √

Eϑx
(ϑ)
± →

√
E−ϑ(± ix

(−ϑ)
∓ )

Eϑx
(ϑ)
+ x

(ϑ)
− → E−ϑx

(−ϑ)
+ x

(−ϑ)
− .

(E.21)Putting these into the expression of the generalized Landau funtion we �nd
f (Eϑ)

mn (E−1x,E−1t) = (−1)min(m,n)

√
E

π

√
min(m!, n!)

max(m!, n!)

√
E−ϑ

|m−n|
e−E−ϑ

2 x
(−ϑ)
+ x

(−ϑ)
−

×
(
−sgn(m− n) ix

(−ϑ)
+sgn(m−n)

)|m−n|
L
|m−n|
min(m,n)

(
E−ϑ x

(−ϑ)
+ x

(−ϑ)
−

)

= (− i )m−nf (E−ϑ)
nm (t, x) (E.22)whih proves the orollary.
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Appendix FRelative Probability to Create a PairWe will now reonstrut a lassial result in QED using the ϑ-regularization and the generalized Landaubasis, namely the e�etive ation for a omplex KG �eld and a Dira spinor in a lassial external eletri�eld. In his seminal paper [Sh51℄ Shwinger alulated the e�etive ation for a Dira �eld and a Klein-Gordon �eld in a onstant, uniform, external eletromagneti bakground in 4 spaetime dimensions. In apure eletri �eld the one-loop orretion to the Klein-Gordon �eld (before harge renormalization) is givenby
L(1)

KG =
1

16π2

∫ ∞

0

ds s−3 e−µ2s

[
eEs

1

sin(eEs)
− 1

]
, (F.1)while the Dira ase reads

L(1)
D = − 1

8π2

∫ ∞

0

ds s−3 e−µ2s [eEs cot(eEs)− 1] . (F.2)By shifting the ontour above the real axis one piks up the poles s = sn = nπ/eE by the residue theorem.The probability per unit time and unit volume to reate a pair in the salar theory is given by
2ImL(1)

KG =
α2

2π2
E2

∞∑

n=1

(−1)n−1

n2
exp

(
−nπµ

2

eE

) (F.3)and for the fermioni ase
2ImL(1)

D =
α2

π2
E2

∞∑

n=1

n−2 exp

(
−nπµ

2

eE

)
. (F.4)We will now show that the regularized matrix basis approah leads to the same result quite e�ortless.The generating funtional of onneted graphs W [J, J∗] is de�ned via the vauum-to-vauum amplitudein presene of a soure J

〈Ω, out|Ω, in〉[J, J∗] = e i W [J,J∗] , (F.5)with |Ω, in〉 and |Ω, out〉 the in- and out- vaua of the theory in presene of the external soures J and J∗.We �rst investigate the bosonin ase. In [Sh51℄ the following expression has been derived
WKG[J, J∗] =

∫∫
J∗∆cJ − i ln det

(
∆−1

F ∆c

)
. (F.6)with ∆F = ∆c|E=0 the usual Feynman propagator. Thus using the ϑ-regularization we an write

WKG[J, J∗] =

∫∫
J∗∆cJ − i ln det

(
∂2

µ − µ2P2
µ − µ2

)

ǫ

, (F.7)whih has to be understood in the limit ǫ→ 0 with
(
∂2

µ − µ2P2
µ − µ2

)

ǫ

=

(
∂2

µ − e− i ǫµ2

e i ǫP2(π/2 − ǫ)− e− i ǫµ2

)
. (F.8)115



Appendix F Relative Probability to Create a PairThe e�etive ation is now de�ned as the Legendre transformed of WKG[J, J∗] with respet to the lassial�elds φcl(x) and φ∗cl(x)

ΓKG[φc, φ
∗
c ] = WKG[J, J∗]−

∫
Jφ∗c −

∫
J∗φc , (F.9)where φcl(x) and φ∗cl(x) are given by

φcl(x) =
δW [J, J∗]

δ J∗(x)
=

∫

x′

∆c(x,x
′)J(x′)

φ∗cl(x) =
δW [J, J∗]

δ J(x)
=

∫

x′

J∗(x′)∆c(x
′,x) .

(F.10)These may be inverted to give
J(x) = (P2

µ − µ2)ǫφcl(x) and J∗(x) = −(P2
µ − µ2)ǫφ

∗
cl(x) , (F.11)and inserting into (F.9) yields

ΓKG[φcl, φ
∗
cl] =

∫∫
(P2

µ − µ2)ǫφ
∗
cl(x)∆(x,x′)(P2

µ − µ2)ǫφcl(x)− i ln det

(
∂2

µ − µ2P2
µ − µ2

)

ǫ

−
∫

[(P2
µ − µ2)ǫφcl]φ

∗
cl +

∫
[(P2

µ − µ2)ǫφ
∗
cl]φcl

= S0[φcl, φ
∗
cl] + i ln det

(P2
µ − µ2

∂2
µ − µ2

)

ǫ

(F.12)This is the full e�etive ation of the theory, whih means that the quantum ontent is ompletely given bythe one-loop orretion
i ln det

(P2
µ − µ2

∂2
µ − µ2

)

ǫ

= WKG[0, 0] . (F.13)The one-loop orretion in the Dira ase is given by inverting the funtional determinant
i ln det

(
∂2

µ − µ2P2
µ − µ2

)

ǫ

= WD[0, 0] . (F.14)In the following we will de�ne WKG/D[0, 0] =: Wkg/D =:
∫

d4xL(1)
KG/D

, with L(1)
KG/D

the one-loop e�etiveLagrangian. The probability that no pair gets produed out of the vauum is given by
|〈0, out|0, in〉J=0|2 = e−2ImWKG/D ∼ 1− 2ImWKG/D , (F.15)and the relative probability to reate a pair per unit time and unit volume is thus approximately given by

2ImLKG/D.1 Sine perturbation theory will always give real ontributions, we see that pair prodution is anon-perturbative e�et, given by the imaginary part of the generating funtional.Starting with the 4-dimensional regularized bosoni ase, the e�etive ation is given by
WKG = i ln det

(P2
µ − µ2

∂2
µ − µ2

)

ǫ

= i tr ln

(P2
µ − µ2

∂2
µ − µ2

)

ǫ

. (F.16)1Of ourse in in�nite time and in in�nite volume there will be in�nitely many pairs produed and WKG/D will be in�nite.This manifests itself in the x-independene of LKG/D, whih is plausible, sine the probability should not depend on timeor position. Restriting to �nite spae V and a �nite time interval T we have WKG/D = TV LKG/D.116



The operator e i ǫP2(ϑ)− e− i ǫµ2 ful�lls the eigenvalue equation
(
e i ǫP2(ϑ)− e− i ǫµ2

)
f (ϑ)

mn(x) =

(
i 4E

(
m+

1

2

)
− e− i ǫµ2

)
f (ϑ)

mn(x) . (F.17)We will simply write µ2 instead e− i ǫµ2, keeping in mind that µ2 is slightly imaginary. Additionally we willadhere to Shwinger's onvention by substituting E → eE/2. With the identity
ln
(a
b

)
=

∫ ∞

0

ds

s

(
e i sa − e i sb

) (F.18)whih is valid for Im(a) > 0 and Im(b) > 0, the e�etive Lagrangian an be obtained by
L(1)

KG(x) = i 〈x| ln
(P2

µ − µ2

∂2
µ − µ2

)

ǫ

|x〉

= i

∫
ds

s

∫
d2p⊥
(2π)2

e− i sµ2

(∑

mn

f (ϑ)
nm(x)f (ϑ)

mn(x) e−s2eE(m+ 1
2 ) −

∫
d2p‖
(2π)2

e i sp2
‖

)
e i sp2

⊥

= i

∫
ds

s

d2p⊥
(2π)2

e− i sµ2

(∑

mn

f (ϑ)
nm(x)f (ϑ)

mn(x) e−s2eE(m+ 1
2 ) − 1

4πs

)
e i sp2

⊥ (F.19)where we denoted the momentum pµ = (p‖,p⊥) with p⊥ denoting the momentum perpendiular to theeletri �eld, while all salar produts involving p⊥ are understood to be Eulidean and those involving p‖Minkowskian. We an now use orollary 7.2 to obtain
i

∫
ds

s

d2p⊥
(2π)2

e− i sµ2

(
eE

2π
e−seE

∞∑

m=0

e−s2eEm − 1

4πs

)
e i sp2

⊥

=
1

16π2

∫
ds

s2
e− i sµ2

(
eE

sinh(eEs)
− 1

s

)
, (F.20)whih is indeed independent of x. The integral onverges at in�nity sine µ2 has a small imaginary part,and at 0 due to the 1/s subtration of the free ase. By deforming the integration ontour as s 7→ − i s thisoinides with Shwinger's result (F.1).The 4 dimensional spinor ase an now be done in the same way, starting with

WD = − i ln det

(
/P− µ
i /∂ − µ

)

ǫ

= − i tr ln

(
/P− µ
i /∂ − µ

)

ǫ

. (F.21)The trae is understood to run over both spin and spaetime degrees of freedom. One uses
L(1)

D = − i tr〈x| ln (/P− µ)
ǫ
|x〉

= − i tr〈x|1
2

ln
(
/P2 − µ2

)
ǫ
|x〉

= − i tr〈x|1
2

ln

(P2
µ1− µ21+

i

2
σµνeF

µν

)

ǫ

|x〉 (F.22)to boil down the spinor ase to the salar one. Here Fµν = Eǫµν is the eletromagneti �eld tensor and
σµν = i

2 [γµ, γν ]. For the eletri �eld ase the matrix σµνF
µν has the form

eE

2




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (F.23)117



Appendix F Relative Probability to Create a PairEah eigenvalue ±eE/2 is two-fold degenerated, leading to an overall fator of two. Inorporated into ouralulation this leads to
− i

∫
ds

s

∫
d2p⊥
(2π)2

e− i sµ2

(
eE

2π

∞∑

m=0

(
e−s2eE(m+ 1

2+ 1
2 ) + e−s2eE(m+ 1

2− 1
2 )
)
− 1

s

)
e i sp2

⊥

= − i
1

4π

∫
ds

s2
e− i sµ2

(
eE

2π

∞∑

m=0

e−s2eEm
(
e−s2eE + 1

)
− 1

s

)

= − 1

8π2

∫
ds

s2
e− i sµ2

(
eE coth(eEs)− 1

s

)
. (F.24)By deforming the integration ontour s 7→ − i s one obtains Shwinger's result (F.2). This result supportsthe onjeture of the physial relevane of this regularization.The matrix basis provides an easy way of doing the otherwise umbersome alulations.
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Appendix GProof of lemma 7.1Lemma (7.1). Let x ∈ R2 and a ∈ C− {0}. The following identity holds
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an =
E

π
exp

{
−E

2
‖x− x′‖2ϑ + (a− 1)E(x,x′)ϑ − a i x ·E · x′

}

× Lm

(
E‖x− x′‖2ϑ − a(1− a−1)2E(x,x′)ϑ + (a− a−1) i x ·E · x′) ,

(G.1)where
(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M (G.2)with (·, ·)M the Minkowskian and (·, ·)E the Eulidean salar produt and ‖x− x′‖2ϑ = (x− x′,x− x′)ϑ.Proof: In the ase m ≥ n expliit expression for the �rst eigenfuntion is

f (Eϑ)
mn (x) = (−1)n

√
E

π

√
n!

m!
e−Eϑx+x−/2(

√
Eϑ x−)m−n Lm−n

n (Eϑ x+x−) . (G.3)and a similar representation for the seond fator
f (Eϑ)

nm (x′) = (−1)n

√
E

π

√
n!

m!
e−Eϑx′

+x′
−/2(

√
Eϑx

′
+)m−n Lm−n

n

(
Eϑ x

′
+x

′
−
)
. (G.4)with x± = t ± i e− i ϑx and Eϑ = e i ϑE. These representations an also be used for n > m due to theidentity

(−1)nrm−nLm−n
n (r2) = (−1)mrn−mm!

n!
Ln−m

m (r2) . (G.5)The sum over n thus has the form
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an =
E

π

(
Eϑx−x′+

)m

m!
e−Eϑ x+x−/2−Eϑ x′

+x′
−/2

×
∞∑

n=0

n!

(
a

Eϑx−x′+

)n

Lm−n
n (Eϑ x+x−)Lm−n

n (Eϑ x
′
+x

′
−) .

(G.6)and an be done using the identity (48.23.11) from [Han75℄
∞∑

n=0

n!cnLm−n
n (ξ)Lk−n

n (η) = k! e c ξ η(1− η c)m−kcmLm−k
k

(
(1− ξ c)(η c− 1)

c

) (G.7)for k = m, ξ = Eϑ x+x−, η = Eϑ x
′
+x

′
− and c = a/(Eϑ x−x′+). We get

∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an =
E

π
e−ξ/2−η/2 e cξηtmLm

(
η + ξ − cξη − c−1

)
. (G.8)119



Appendix G Proof of lemma 7.1The di�erent ombinations of x± and x′± an be written as
ξ/2 + η/2 = Eϑx+x−/2 + Eϑx

′
+x

′
−/2

=
Eϑ

2
(x+ − x′+)(x− − x′−) +

Eϑ

2
(x+x

′
− + x−x

′
+)

=
E

2
‖x− x′‖2ϑ + E(x,x′)ϑ (G.9)where we de�ned

e i ϑ(x′+ − x+)(x′− − x−) = e i ϑ(t′ − t+ i e− i ϑ[x′ − x])(t′ − t− i e− i ϑ[x′ − x])
= e i ϑ(t− t′)2 + e− i ϑ(x− x′)2
= cos(ϑ)(x− x′)2i + i sin(ϑ)(x − x′)2µ

=: ‖x− x′‖2ϑ (G.10)and
1

2
e i ϑ(x+x

′
− + x−x

′
+) =

1

2
e i ϑ(tt′ + e−2 i ϑxx′ − i e− i ϑ(tx′ − xt′))

+
1

2
e i ϑ(tt′ + e−2 i ϑxx′ + i e− i ϑ(tx′ − xt′))

= cos(ϑ) (tt′ + xx′) + i sin(ϑ) (tt′ − xx′)
=: (x,x′)ϑ . (G.11)In addition we have

cηξ = aEϑx+x
′
−

= aEϑ(tt′ + e−2 i ϑxx′ − i e− i ϑ(tx′ − xt′))
= a (E(x,x′)ϑ − i x ·E · x′) . (G.12)and

c−1 = a−1Eϑx−x
′
+

= a−1Eϑ(tt′ + e−2 i ϑxx′ + i e− i ϑ(tx′ − xt′))
= a−1 (E(x,x′)ϑ + i x ·E · x′) . (G.13)Pieing all parts together gives the desired expression

∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an

=
E

π
exp

{
−E

2
‖x− x′‖2ϑ + (a− 1)E(x,x′)ϑ + a i x′ ·E · x

}

× am Lm

(
E‖x− x′‖2ϑ − a(1− a−1)2E(x,x′)ϑ − (a− a−1) i x′ ·E · x

)
. (G.14)
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Appendix HFourier Transformed Matrix FuntionsWe need the Fourier transformation of the Landau funtions as well as the generalized Landau funtions.Though the ordinary Landau funtions are a speial ase of their generalizations, we have to distinguishboth ases, due to di�erent signatures the Fourier transformation depends on in the di�erent spaes. Webegin with Eulidean Fourier transformation of the ordinary Landau funtions:Theorem H.1. The Eulidean Fourier transformation of f (B)
mn (x) is given by

F [f (B)
mn ](k) = f (1/B)

mn (k) =
i m−n

B
f (B)

mn (k̃) . (H.1)with k̃ = B−1 · k = B−1(−k2, k1).Proof: The Eulidean wave operators are given byP2
i = −(∂2

1 + ∂2
2)− 2 iB(x2∂1 − x1∂2) +B2(x2

1 + x2
2)P̃2

i = −(∂2
1 + ∂2

2) + 2 iB(x2∂1 − x1∂2) +B2(x2
1 + x2

2) .
(H.2)Denoting ∂̂µ = ∂/∂kµ, the operator P2

i has the following form in Fourier spae
∫

x

(P2
iφ)(x) e− i k·x

=

∫

x

φ(x) P̃2
i e− i k·x

=
(
(k2

1 + k2
2) + 2 iB(k1∂̂2 − k2∂̂1)−B2(∂̂2

1 + ∂̂2
2)
)
φ̂(k)

= B2
(
−(∂̂2

1 + ∂̂2
2)− 2 iB−1(k2∂̂1 − k1∂̂2) +B−2(k2

1 + k2
2)
)
φ̂(k)

= B2P2
i (H.3)where P2

i has the same form as P2
i with ∂µ → ∂̂µ, xµ → kµ and B → B−1. On the other hand by substituting

φ = f
(B)
mn we �nd

F [P2
i f

(B)
mn ](k) = 4B

(
m+

1

2

)
F [f (B)

mn ](k) . (H.4)Thus renaming k→ x we �nd
P2

iF [f (B)
mn ](x) = 4B−1

(
m+

1

2

)
F [f (B)

mn ](x) . (H.5)Due to the Parseval equation the Fourier transformed funtions have the same normalization as the originalones, from whih we onlude
F [f (B)

mn ](k) = f (1/B)
mn (k) . (H.6)The relation f (1/B)

mn (k) = i m−n

B f
(B)
mn (k̃) follows from

k̃ = B−1 · k = B−1(−k2, k1) (H.7)and the symmetry relations (E.13)-(E.16) derived in appendix E.Now we ome to the Minkowskian ase: 121



Appendix H Fourier Transformed Matrix FuntionsTheorem H.2. The Fourier transformation of f (Eϑ)
mn (x) is given by

F [f (Eϑ)
mn ](k) = f (1/Eϑ)

nm (k) =
(− i )m−n

E
f (Eϑ)

mn (k̃) . (H.8)with k̃ = E−1 · k = −E−1(k1, k0).Proof: In Minkowski spaetime the wave operators an be written asP2
i = −(∂2

0 + ∂2
1)− 2 iE(x1∂0 + x0∂1) + E2(x2

0 + x2
1) ,P2

µ = −(∂2
0 − ∂2

1)− 2 iE(x1∂0 − x0∂1)− E2(x2
0 − x2

1) ,P̃2
i = −(∂2

0 + ∂2
1) + 2 iE(x1∂0 + x0∂1) + E2(x2

0 + x2
1) ,P̃2

µ = −(∂2
0 − ∂2

1) + 2 iE(x1∂0 − x0∂1)− E2(x2
0 − x2

1) .

(H.9)The regularized wave operators then have the formP2(ϑ) = e i ϑ
(
cos(ϑ)P2

i − i sin(ϑ)P2
µ

)

= e i ϑ
(
−( e− i ϑ∂2

0 + e i ϑ∂2
1)− 2 iE( e−iϑx1∂0 + e iϑx0∂1) + ( e i ϑx2

0 + e− i ϑx2
1)
)
, (H.10)P̃2(ϑ) = e i ϑ

(
cos(ϑ)P̃2

i − i sin(ϑ)P̃2
µ

)

= e i ϑ
(
−( e− i ϑ∂2

0 + e i ϑ∂2
1) + 2 iE( e−iϑx1∂0 + e iϑx0∂1) + ( e i ϑx2

0 + e− i ϑx2
1)
)
. (H.11)In Fourier spae we �nd

∫

x

(P2
µφ)(x) e− i k·x

=

∫

x

φ(x) P̃2
µ e− i k·x

=
(
(k2

0 − k2
1) + 2 iE(k0∂̂1 − k1∂̂0) + E2(∂̂2

0 − ∂̂2
1)
)
φ̂(k)

= −E2
(
−(∂̂2

0 − ∂̂2
1) + 2 iE−1(k1∂̂0 − k0∂̂1)− E−2(k2

0 − k2
1)
)
φ̂(k) (H.12)and

∫

x

(P2
iφ)(x) e− i k·x

=

∫

x

φ(x) P̃2
i e− i k·x

=
(
(k2

0 + k2
1) + 2 iE(k0∂̂1 + k1∂̂0)− E2(∂̂2

0 + ∂̂2
1)
)
φ̂(k)

= E2
(
−(∂̂2

0 + ∂̂2
1) + 2 iE−1(k1∂̂0 + k0∂̂1)− E−2(k2

0 + k2
1)
)
φ̂(k) . (H.13)We thus �nd

F [P2(ϑ)φ](k)

= e i ϑE2
(
−( e i ϑ∂̂2

0 + e− i ϑ∂̂2
1) + 2 iE−1( e iϑk1∂̂0 + e−iϑk0∂̂1) + ( e− i ϑk2

0 + e i ϑk2
1)
)
φ̂(k)

= e 2 i ϑE2P̃2(−ϑ)φ̂(k) , (H.14)where P̃2(−ϑ) has the same form as P̃2(−ϑ) with ∂µ → ∂̂µ, xµ → kµ and E → E−1. On the other hand bysubstituting φ = f
(Eϑ)
mn we �nd

F [P2(ϑ)f (Eϑ)
mn ](k) = 4Eϑ

(
m+

1

2

)
F [f (Eϑ)

mn ](k) . (H.15)thus renaming k→ x we �nd
P̃2(−ϑ)F [f (Eϑ)

mn ](x) = 4(Eϑ)−1

(
m+

1

2

)
F [f (Eϑ)

mn ](x) . (H.16)122



Due to the Parseval equation the Fourier transformed funtions have the same normalization as the originalones, from whih we onlude
F [f (Eϑ)

mn ](k) = f (1/Eϑ)
nm (k) . (H.17)The relation f (1/Eϑ)

nm (k) = (− i )m−n

E f
(Eϑ)
mn (E−1 · k) with

E−1 · k = −E−1(k1, k0) (H.18)follows from the symmetry relations (E.13)-(E.16).
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Appendix IPosition Spae PropagatorTheorem (8.1). The propagator of the regularized, general LSZ model in 2n dimensions is given by
∆(ǫ,σ)(x,x′) = − i e− i ϑ E

2π

∫ ∞

0

ds e−sµ2 1

sinh(2sE−ϑ)
exp

{
− sinh(2sẼ−ϑ)

sinh(2sE−ϑ)
i x1 ·E · x′

1

}

× exp

{
−1

2
coth(2sE−ϑ)E(‖x1‖2ϑ + ‖x′

1‖2ϑ) +
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
E(x1,x

′
1)ϑ

}

×
n∏

k=2

Bk

2π

1

sinh(2sBk)
exp

{
− sinh(2sB̃k)

sinh(2sBk)
i xk ·Bk · x′

k

}

× exp

{
−1

2
coth(2sBk)Bk(‖xk‖20 + ‖x′

k‖20) +
cosh(2sB̃k)

sinh(2sBk)
Bk(xk,x

′
k)0

}
.

(I.1)
with ϑ = π/2− ǫ > 0, Ẽ = (2σ − 1)E, B̃k = (2σ − 1)Bk and

(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M (I.2)with (·, ·)M the Minkowskian and (·, ·)E the Eulidean salar produt and ‖x− x′‖2ϑ = (x− x′,x− x′)ϑ.Proof: The oordinates are denoted by x = (x0, . . . , xd) and xk = (x2k−2, x2k−1) with k = 1, . . . , n. Thepropagator is given by
∆(ǫ,σ)(x,x′) = 〈x|

[
σ e i ǫK2(ϑ) + (1− σ) e i ǫK̃2(ϑ)− e− i ǫµ2

]−1

|x′〉

= e− i ǫ〈x|
[
σP2(ϑ) + (1− σ)P̃2(ϑ) + e 2 i ϑ

n−1∑

k=1

(σP2
i,k + (1− σ)P̃2

i,k) + e 2 i ϑµ2

]−1

|x′〉(I.3)with ϑ = π/2− ǫ > 0, where the regularized wave operators ful�ll the eigenvalue equations
(σP2(ϑ) + (1− σ)P̃2(ϑ))f (Eϑ)

m1n1
(x1) = 4Eϑ

(
σm1 + (1− σ)n1 +

1

2

)
f (Eϑ)

m1n1
(x1)

(σ(P2
i )k + (1− σ)(P̃2

i )k)f (Bk)
mknk

(xk) = 4Bk

(
σmk + (1− σ)nk +

1

2

)
f (Bk)

mn (xk)

(I.4)with f (Bk)
mn (xk) the usual Landau funtions and Bk ∈ R+. We set σ̃ = 1− σ. With the identity

a−1 =

∫ ∞

0

ds e−sa (I.5)whih is valid for Re(a) > 0 we �nd
∆(ǫ,σ)(x,x′)

= − i e− i ϑ

∫ ∞

0

ds

∞∑

m1n1=0

f (Eϑ)
m1n1

(x1)f
(Eϑ)
n1m1

(x′
1) e−sµ2

e−4sE e − i ϑ(σm1+σ̃n1+1/2)

×
n∏

k=2

∞∑

mknk=0

f (Bk)
mknk

(xk)f (Bk)
nkmk

(x′
k) e−4sBk(σmk+σ̃nk+1/2) (I.6)125



Appendix I Position Spae PropagatorUsing lemma (7.1) the sum over nk gives the fator
Bk

π

∞∑

mk=0

e−4sBkσ(mk+1/2) e−4sBkmkσ̃

× exp

{
−Bk

2
‖xk − x′

k‖20 + ( e−4sBkσ̃ − 1)Bk(xk,x
′
k)0 − e−4sBkσ̃ i xk ·Bk · x′

k

}

× Lmk

(
Bk‖xk − x′

k‖20 − e−4sBkσ̃(1− e 4sBkσ̃)2Bk(xk,x
′
k)0 + ( e−4sBkσ̃ − e 4sBkσ̃) i xk ·Bk · x′

k

)

=
Bk

π

∞∑

mk=0

e−4sBk(mk+1/2)

× exp

{
−Bk

2
‖xk − x′

k‖20 + ( e−4sBkσ̃ − 1)Bk(xk,x
′
k)0 − e−4sBkσ̃ i xk ·Bk · x′

k

}

× Lmk

(
Bk‖xk − x′

k‖20 − 4 sinh(2sBkσ̃)2Bk(xk,x
′
k)0 − 2 sinh(4sBkσ̃) i xk ·Bk · x′

k

)
. (I.7)while the sum over n1 gives

E

π

∞∑

m1=0

e−4sE−ϑ(m1+1/2)

× exp

{
−E

2
‖x1 − x′

1‖2ϑ + ( e−4sE−ϑσ̃ − 1)E(x1,x
′
1)ϑ − e−4sE−ϑσ̃ i x1 ·E · x′

1

}

× Lm1

(
E‖x1 − x′

1‖2ϑ − 4 sinh(2sE−ϑσ̃)2E(x1,x
′
1)ϑ − 2 sinh(4sE−ϑσ̃) i x1 ·E · x′

1

)
. (I.8)The sum over m1 and mk an be performed using equation (48.4.1) of [Han75℄

∞∑

n=0

Ln(y)tn =
1

1− t exp

{
yt

t− 1

}
, |t| < 1 (I.9)with t = e−4sBk :

Bk

π
exp

{
−Bk

2
‖xk − x′

k‖20 + ( e−4sBkσ̃ − 1)Bk(xk,x
′
k)0 − e−4sBkσ̃ i xk ·Bk · x′

k

}

× e−2sBk

1− e−4sBk
exp

{
e−4sBk

e−4sBk − 1

(
Bk‖xk − x′

k‖20

−4 sinh(2sBkσ̃)2Bk(xk,x
′
k)0 − 2 sinh(4sBkσ̃) i xk ·Bk · x′

k

)}

=
Bk

2π sinh(2sBk)
exp

{
− cosh(2sBk)

2 sinh(2sBk)
Bk‖xk − x′

k‖20

+

[
( e−4sBkσ̃ − 1) + 2 e−2sBk

sinh(2sBkσ̃)2

sinh(2sBk)

]
Bk(xk,x

′
k)0

+

[
− e−4sBkσ̃ + e−2sBk

sinh(4sBkσ̃)

sinh(2sBk)

]
i xk ·Bk · x′

k

} (I.10)and t = e−4sE−ϑ :
E

2π sinh(2sE−ϑ)
exp

{
− cosh(2sE−ϑ)

2 sinh(2sE−ϑ)
E‖x1 − x′

1‖2ϑ

+

[
( e−4sE−ϑσ̃ − 1) + 2 e−2sE−ϑ

sinh(2sE−ϑσ̃)2

sinh(2sE−ϑ)

]
E(x1,x

′
1)ϑ

+

[
− e−4sE−ϑσ̃ + e−2sE−ϑ

sinh(4sE−ϑσ̃)

sinh(2sE−ϑ)

]
i x1 ·E · x′

1

} (I.11)126



The term proportional to (xk,x
′
k)0 an be simpli�ed using sinh2(a) = 1

2 (cosh(2a)− 1):
( e−4sBkσ̃ − 1) + 2 e−2sBk

sinh(2sBkσ̃)2

sinh(2sBk)

= ( e−4sBkσ̃ − 1) + e−2sBk
cosh(4sBkσ̃)

sinh(2sBk)
− coth(2sBk) + 1

= − sinh(4sBkσ̃) + coth(2sBk) cosh(4sBkσ̃)− coth(2sBk)

=
cosh(2sBk(1− 2σ̃))− cosh(2sBk)

sinh(2sBk)

=
cosh(2sB̃k)

sinh(2sBk)
− cosh(2sBk)

sinh(2sBk)
(I.12)where in the last step the addition theorem cosh(x− y) = cosh(x) cosh(y)− sinh(x) sinh(y) has been appliedand B̃k := (1 − 2σ̃)Bk = (2σ − 1)Bk has been de�ned. We �nd a similar result for terms proportional to

(x1,x
′
1)ϑ:

( e−4sE−ϑσ̃ − 1) + 2 e−2sE−ϑ
sinh(2sE−ϑσ̃)2

sinh(2sE−ϑ)

=
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
− cosh(2sE−ϑ)

sinh(2sE−ϑ)
(I.13)with Ẽ−ϑ := (1−2σ̃)E−ϑ = (2σ−1)E−ϑ. The triangle relation ‖x−x′‖2ϑ = ‖x‖2ϑ +‖x′‖2ϑ−2(x,x′)ϑ allowsus to ombine further terms

− cosh(2sBk)

2 sinh(2sBk)
Bk‖x1 − x′

1‖20 +

(
cosh(2sB̃k)

sinh(2sBk)
− cosh(2sBk)

sinh(2sBk)

)
Bk(x1,x

′
1)0

= − cosh(2sBk)

2 sinh(2sBk)
Bk(‖x1‖20 + ‖x′

1‖20) +
cosh(2sB̃k)

sinh(2sBk)
Bk(x1,x

′
1)0 . (I.14)and

− cosh(2sE−ϑ)

2 sinh(2sE−ϑ)
E‖x1 − x′

1‖2ϑ +

(
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
− cosh(2sE−ϑ)

sinh(2sE−ϑ)

)
E(x1,x

′
1)ϑ

= − cosh(2sE−ϑ)

2 sinh(2sE−ϑ)
E(‖x1‖2ϑ + ‖x′

1‖2ϑ) +
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
E−ϑ(x1,x

′
1)ϑ . (I.15)The terms proportional to i xk ·Bk · x′

k an be rearranged to
− e−4sBkσ̃ + e−2sBk

sinh(4sBkσ̃)

sinh(2sBk)

=
− cosh(4sBkσ̃) sinh(2sBk) + sinh(4sBkσ̃) sinh(2sBk)

sinh(2sBk)

+
cosh(2sBk) sinh(4sBkσ̃)− sinh(2sBk) sinh(4sBkσ̃)

sinh(2sBk)

= − sinh(2sB̃k)

sinh(2sBk)
(I.16)where sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y) has been used, while i x1 ·E ·x′

1 and an be vet in thesame manner giving
− e−4sE−ϑσ̃ + e−2sE−ϑ

sinh(4sE−ϑσ̃)

sinh(2sE−ϑ)
= − sinh(2sẼ−ϑ)

sinh(2sE−ϑ)
. (I.17)127



Appendix I Position Spae PropagatorPutting everything together we �nally get
∆(ǫ,σ)(x,x′) = − i e−2 i ϑ E

2π

∫ ∞

0

ds e−sµ2 1

sinh(2sE−ϑ)
exp

{
− sinh(2sẼ−ϑ)

sinh(2sE−ϑ)
i x1 ·E · x′

1

}

× exp

{
−1

2
coth(2sE−ϑ)E(‖x1‖2ϑ + ‖x′

1‖2ϑ) +
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
E(x1,x

′
1)ϑ

}

×
n∏

k=2

Bk

2π

1

sinh(2sBk)
exp

{
− sinh(2sB̃k)

sinh(2sBk)
i xk ·Bk · x′

k

}

× exp

{
−1

2
coth(2sBk)Bk(‖xk‖20 + ‖x′

k‖20) +
cosh(2sB̃k)

sinh(2sBk)
Bk(xk,x

′
k)0

}
.

(I.18)
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Appendix JMatrix PropagatorTheorem (8.5). The matrix propagator for the 2n dimensional regularized LSZ model in Minkowski spae-time is given by
∆

(ǫ,σ)
m,m+α;ℓ+α,ℓ

= − e i ǫ θ

8Ω

∫ 1

0

dz z− i e i ǫ(σα1+1/2)+
Pn

i=2(σαi+1/2)−1+ θµ2

8Ω ∆
(ǫ)
n1,n1+α1;ℓ1+α1,ℓ1

n∏

i=2

∆
(E)
ni,ni+αi;ℓi+αi,ℓi(J.1)with Minkowskian part

∆
(ǫ)
m,m+α;ℓ+α,ℓ

=

min(m,ℓ)∑

u=max(0,−α)

z− i e i ǫu(1 − z−i e i ǫ

)m+ℓ−2u

(
1− (1−Ω)2

(1+Ω)2 z
− i e i ǫ

)α+m+ℓ+1

(
4Ω

(1 + Ω)2

)α+2u+1(
1− Ω

1 + Ω

)m+ℓ−2u

A(m, ℓ, α, u)(J.2)and Eulidean part
∆

(E)
m,m+α;ℓ+α,ℓ

=

min(m,ℓ)∑

u=max(0,−α)

zu(1 − z)m+ℓ−2u

(
1− (1−Ω)2

(1+Ω)2 z
)α+m+ℓ+1

(
4Ω

(1 + Ω)2

)α+2u+1(
1− Ω

1 + Ω

)m+ℓ−2u

A(m, ℓ, α, u) (J.3)where
A(n, ℓ, α, u) =

√(
α+ n
α+ u

)(
α+ ℓ
α+ u

)(
n
u

)(
ℓ
u

)
. (J.4)and α = (α1, . . . , αn) ∈ Zn and αi = ni −mi.Proof: The 2n dimensional, regularized LSZ wave operator in matrix basis is given by equation 6.94:

G
(ǫ,σ)
mn;kℓ = iG(σ)

m1n1;k1ℓ1
− e− i ǫ

n∑

i=2

G(σ)
mini;kiℓi

− e− i ǫµ2 (J.5)with m = (m1, . . . ,mn),n = (n1, . . . , nn),k = (k1, . . . , kn), ℓ = (ℓ1, . . . , ℓn) ∈ Nn and G(σ)
mn,kℓ the twodimensional, massless, Eulidean LSZ matrix wave operators

G(σ)
mn;kℓ =

(
2
Ω2 + 1

θ
(m+ n+ 1) +

4Ω̃

θ
(n−m)

)
δmℓ δn,k

+2
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1)δm,ℓ−1δn,k−1

) (J.6)129



Appendix J Matrix Propagatorwith frequenies Ω = Eθ1/2 = Biθi/2 and Ω̃ = (2σ − 1)Ω. Eah of these operators are nonzero only for
ni −mi = ki − ℓi =: αi , ∀ i = 1, . . . , n . (J.7)This is due to the SO(1, 1)×SO(2)×(n−1)-symmetry of the ation. We an thus get rid of n parameters andwrite instead

G
(ǫ,σ)
m,m+α;ℓ+α,ℓ = iG(σ)

m1,m1+α1;ℓ1+α1,ℓ1
− e− i ǫ

n∑

i=2

G(σ)
mi,mi+αi;ℓi+αi,ℓi

− e− i ǫµ2δmℓδnk . (J.8)with α ∈ Zn. The n parts ofG are independent and its eigenfuntions are thus a produt of the eigenfuntionsof the individual G's. The mass term is already diagonal and also the terms proportional to Ω̃. Thus forevery α we are searhing for solutions of the equations
∞∑

ℓ=0

Gm,m+α;ℓ+α,ℓ|Ω̃=0U
(α)
ℓv = v U (α)

mv . (J.9)This equation has been solved in [GW05b℄ with the solutions given by
U (α)

mv =

√(
α+m
m

)(
α+ y
y

)(
2
√

Ω

1 + Ω

)α+1(
1− Ω

1 + Ω

)m+y

2F1

(
−m,−y
1 + α

∣∣∣∣ −
4Ω

(1− Ω)2

)
. (J.10)and eigenvalues

v =
4Ω

θ
(2y + α+ 1) . (J.11)for y = 0, 1, 2, . . .. The Ω̃ term has to be added to the eigenvalues

v → v′ =
4Ω

θ
(2y + 2σα+ 1) . (J.12)The omplete matrix operator in 2n dimensions has the representation

G
(ǫ,σ)
m,m+α;ℓ+α,ℓ =

∑

v

U (α)
mv

(
i v′1 − e− i ǫ

n∑

i=2

v′i − e− i ǫµ2

)(
U

(α)
ℓv

)−1 (J.13)where
U (α)

mv =

n∏

i=1

U
(αi)
mi,ℓi

. (J.14)and
i v′1 − e− i ǫ

n∑

i=2

v′i − e− i ǫµ2

= i
4Ω

θ
(2y1 + 2σα1 + 1)− e− i ǫ

n∑

i=2

4Ω

θ
(2yi + 2σαi + 1)− e− i ǫµ2

=
8Ω

θ

(
i y1 + i (σα1 + 1/2)− e− i ǫ

n∑

i=2

yi − e− i ǫ
n∑

i=2

(σαi + 1/2)− e− i ǫµ2 θ

8Ω

)
. (J.15)with yi = 0, 1, 2, . . .. One an show that

(
U (α1)

m1v1
· · ·U (αn)

mnvn

)−1

= U (αn)
mnvn

· · ·U (α1)
m1v1

. (J.16)130



In the following we will use the notation U (αi)
mivi = U

(αi)
mi (yi) where the relation between vi and yi is given by(J.15). Using the Shwinger parameter this yields the propagator

∆
(ǫ)
m+α,m;ℓ+α,ℓ

= −
( ∞∑

y1=0

· · ·
∞∑

yn=0

) ∫ ∞

0

dt exp

{
t( i v′1 − e− i ǫ

n∑

2

v′i − e− i ǫµ2)

}
n∏

i=1

(
U (αi)

mi
(yi)U

(αi)
ℓi

(yi)
)

= − e i ǫ θ

8Ω

∫ ∞

0

dt e i t e i ǫ(σα1+1/2)−t
Pn−1

i=1 (σαi+1/2)−t θµ2

8Ω

×
( ∞∑

y1=0

e i t e i ǫy1U (α1)
n1

(y1)U
(α1)
ℓ1

(y1)

)
n∏

i=2

( ∞∑

yi=0

e−tyiU (αi)
mi

(yi)U
(αi)
ℓi

(yi)

) (J.17)The only di�erene between the Eulidean and Minkowskian part is the additional fator �− i e i ǫ� in theexponent of the y1 part. We will onsider the two fators depending on y1 and yi for i = 2, . . . , n separately.Using the expliit formula for the U 's (J.10) the respetive sums are given by
∞∑

y0=0

e i t e i ǫy1U (α1)
m1
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)(
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)(
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(1 + Ω)2
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(
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e i t e i ǫ
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× 2F1
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) (J.18)and
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)(
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. (J.19)Now following Grosse & Wulkenhaar in [GW05b℄ we use the formula
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α+ y
y

)
2F1
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∣∣∣∣ b
)

2F1

(
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1 + α

∣∣∣∣ b
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(
−m,−l
1 + α
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ab2

(1− (1− b)a)2
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, |a| < 1 , (J.20)131



Appendix J Matrix Propagatorwhih an be applied both for the Eulidean as for the Minkowskian ase, with
a1 =

e i t e i ǫ

(1− Ω)2

(1 + Ω)2
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(1− (1− b)a1)
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a1b
2

(1− (1 − b)a1)2
=

(1− Ω)2

(1 + Ω)2
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(J.21)
and

ai =
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(J.22)
Inserting the above expressions leads to
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. (J.24)Now substituting z = e−t (whih gives a z−1 from the di�erential) and using the expansion of the hypergeo-metri funtions
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and reombining the binomials and faulties
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