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1
Introduction

The first field theory encountered by physicists is probably Maxwells electrody-
namics. It is a gauge theory, which means that the Lagrangian of the theory is
invariant under certain group transformations, in this case the abelian group U(1).
This theory already has a wide area of application, especially in its quantized form.
However, it is not sufficient to describe a complete model of particle physics.

It turned out that in order to accurately describe the experimental results one
needs a theory that has a more complicated gauge group, one that is non-abelian.
Such a theory was first discussed by Yang and Mills in 1954 [1] with the gauge
group SO(3), although their ansatz failed to give results that were consistent with
experimentation; it predicted only massless particles. A few years later, Glashow
formulated a theory combining electromagnetism and the weak nuclear force into a
SU(2)×U(1) gauge theory [2], that was brought into its modern form by Weinberg
and Salam in 1967 [3]. The problem of masslessness was overcome by employing
the Higgs mechanism, where the gauge group is spontaneously broken to U(1)
by introduction of an additional scalar field. In the mid-1970s the standard model
was formulated, giving a unified field theory of electromagnetism and the weak and
strong nuclear forces, with the gauge group SU(2) × U(1) × SU(3). This theory
has had remarkable success, accurately describing the experiments carried out in
particle accelerators up to today.

There is a fourth fundamental force, gravity. It is best described by the general
theory of relativity, first formulated by Einstein in 1915 [4]. The field theories men-
tioned above give equations for the behaviour of fields that live on some background
spacetime. In contrast, general relativity is a theory of spacetime itself. This leads
to complications if one tries to incorporate gravity into the standard model. One
feature of quantum field theories is that they may contain integrals which evaluate
to infinity, which is dealt with by renormalizing the theory, giving these integrals
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2 CHAPTER 1. INTRODUCTION

finite values; the problem is that this procedure fails if one tries to apply it to a
quantum theory of gravity. Therefore, a unified theory of all fundamental forces
remains elusive, although there are some promising candidates.

One of the first approaches to include electrodynamics into general relativity was
made by Kaluza and Klein in 1921 [5] and 1926 [6], respectively. The idea was to
expand spacetime from a four dimensional manifold to a five dimensional manifold,
in such a way that the extra dimension is “compactified”, making it unobservable
to macroscopic experiments. The extra dimension in this model is just the gauge
group of electrodynamics, U(1) ≡ S1. This approach of “gluing” a compact man-
ifold to every spacetime point still appears in many modern theoretical models,
since it allows one to consider higher dimensional spaces with additional fields
while not contradicting the obvious experimental fact that the world appears to
be four dimensional.

One field of study where such compactified spaces arise is string theory [7–9]. The
basic idea is the formulation of a quantum theory for a one dimensional object,
the string, instead of a point particle. The different observed kinds of particles
should then arise as excitations of these strings. This leads to some interesting
mathematical complications, one of which is that spacetime should have 10 di-
mensions. One way to deal with this is by considering a spacetime of the form
M = M4 × X6, where X6 is a six-dimensional compact manifold, similar to the
approach of Kaluza and Klein. It should be mentioned that experiments up to date
failed to show any evidence of such extra dimensions, constricting the possible scale
of these constructions.

This gives a physical motivation to study gauge theories on higher dimensional
compact manifolds. In order to get a consistent physical theory one has to impose
some conditions on the manifold describing the compact space. One approach is to
demand that the manifold carries a G-Structure, meaning that the frame bundle’s
strucure group GL(n) can be reduced to a subgroup G. Such manifolds have
been studied recently in the context of string theory (cf. [10–15]). Among them
are Sasakian manifolds, with the prime example being the the odd dimensional
spheres which can be written as S2n+1 ≡ SU(n+ 1)/SU(n). In fact, many of these
manifolds can be written as coset spaces G/H, where G is a Lie group and H is a
closed subgroup such that G/H is a reductive homogenous space. They have the
unifying feature that the tangent space can be decomposed into the tangent space
of the subgroup H and an orthogonal subspace m, which may itself have preferred
directions.

The goal of this thesis is to find solutions to the Yang-Mills equations on manifolds
of this form, with the additional feature that the generators of the subspace m
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can be decomposed into two distinct sets. More precisely, we will consider spaces
R × G/H equipped with a metric of the form g = e0 ⊗ e0 + gCK , where e0 is
the basis one-form in the R direction and gCK is the Cartan-Killing metric on
G/H. We will further assume that the base manifold carries a non-vanishing,
totally antisymmetric torsion, and will then analyze the torsion-full Yang-Mills
equations with respect to a gauge connection on the trivial principal bundle ((R×
G/H) × G), π,R × G/H). The factor R can either be interpreted as part of the
non-compact manifold M, or be replaced with S1, such that S1 × G/H is again
a compact manifold; this will lead to periodic solutions. This setup encompasses
many different types of manifolds, and we will construct explicit solutions for the
spheres S2n+1 ≡ SU(n+ 1)/SU(n) and S4n+3 ≡ Sp(n+ 1)/Sp(n), both numerically
and analytically.

The first few chapters of this thesis will give a short introduction into the necessary
mathematical tools to accuratly describe higher-dimensional gauge theory. Since
this is a vast field, the presentation given here cannot give justice to the richness
of the underlying mathematics; it is rather a reminder of the most important
definitions and theorems in order to solidify the used notation and conventions.
There will be some hints towards the literature giving a more thorough introduction
into these topics at the beginning of each chapter.

Chapter 2 will deal with the basics of (pseudo)-Riemannian geometry. It will start
with the definition of vector bundles and the construction tangent and cotangent
spaces, as well as forms and give a short list of their most important properties.
The aim of this chapter is the definition of a linear connection and the derived
properties of torsion and curvature.
The third chapter will then give a short overview of the theory of Lie groups
and Lie algebras, in the scope that is needed to describe the theory of principal
fibre bundles, which is the content of chapter 4. Chapter 5 will then give some
context for the field equations appearing in Yang-Mills theory, which concludes the
mathematical introduction.

The rest of the thesis will then deal with the explicit construction of the cases we
are interested in. In chapter 6, I will rewrite the torsion-full Yang-Mills equations
into the classical equations of motion for a particle moving in a two-dimensional
plain. Chapter 7 will then contain some examples where we find new, explicit
solutions to the field equations.
Some information on topics that lay somewhat outside the main scope of this thesis
can be found in the appendix; namely a construction of the Lie algebra of Sp(n),
a notion on G-invariant connections, some remarks on the classical equations of
motion we encountered and some numerical solutions to our final equations.
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2
Differential geometry

We want to construct a field theory on a general, possibly curved space. For
this, the familiar notion of a vector space is insufficient; we need a more general
geometrical object on which we can perform calculations. Such a space is called a
manifold, a topological space that can be locally identified with Rn. Doing calculus
on manifolds requires a considerable mathematical apparatus, some of which will
be derived in this chapter.
Sources include [16–21], and omited proofs can be found therein.

2.1 (Co-)Tangent spaces and bundles
If not noted otherwise,M will always be a n-dimensional manifold1 and all mani-
folds will be C∞2.

Definition 2.1.1. A map γ : I ⊆ R → M is called a curve through the point
p ∈M if γ(0) = p.

Two curves γ1, γ2 through p ∈M are called equivalent if (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0)
for some chart ϕ around p. An equivalence class of curves through a point p is
called a tangent vector at p. The set of all tangent vectors at a point is called the
tangent space and is denoted by TpM. One can write

Yp = γ′(0) = d
dtγ(t)

∣∣∣∣∣
t=0

(2.1)

1A topological Hausdorff space equipped with coordinate charts ϕ : U → V ⊂ Rn for every
open subset U ⊂M.

2Meaning that given two charts ϕ1 : U1 → V1, ϕ2 : U2 → V2, the map ϕ2 ◦ ϕ−1
1 is C∞ in the

usual sense

5



6 CHAPTER 2. DIFFERENTIAL GEOMETRY

for a tangent vector Yp at the point p using a representative γ. In this Notation,

Yp(f) = (f ◦ γ)′(0) (2.2)

is the derivative of f ∈ C∞(M) along Yp.

The cotangent space is the space of all linear functions η : TpM → R, the dual
space to TpM, denoted by T ∗pM.

Remark. The tangent space is a vector space of dimension n. A basis can be derived
from the standard basis of Rn, {ei | i = 1, . . . , n}, by setting

∂i|p = d
dtϕ

−1 (ϕ(p) + tei)
∣∣∣∣∣
t=0

(2.3)

for some coordinate chart ϕ. A general tangent vector can then be expressed as

Yp = ai∂i
∣∣∣
p

(2.4)

Since this definition depends on the choice of ϕ, one also has to require the tran-
formation formula

ãj = ai
∂

∂xi

(
ϕ̃j ◦ ϕ−1

)∣∣∣∣∣
ϕ(p)
≡ ai

∂x̃j

∂xi
(2.5)

for some other representation Yp = ãi∂̃i
∣∣∣
p

Definition 2.1.2. A tripel (E , π,M) where E ,M are manifolds and π : E → M
is a map is called a K-vector bundle if

(i) the fibre Ep ..= π−1(p) is a n-dimensional vector space for every p ∈M

(ii) for every p ∈ M exists an open neighbourhood U ⊆ M around p and a
diffeomorphism

φ =
(
φ1, φ2

)
: π−1(U)→ U × K (2.6)

such that φ1 = π|π−1(U) and that φ2
Eq

: Eq → Kn is K-linear for every q ∈M

Example 2.1.3. Both TM = ⋃
p∈M TpM and T ∗M = ⋃

p∈M T ∗pM are vector
bundles, as well as the tensor bundle

T pqM ..= TM⊗ · · · ⊗ TM︸ ︷︷ ︸
ptimes

⊗T ∗M⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
qtimes

(2.7)
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Definition 2.1.4. A smooth map σ : U ⊆ M → E is called a section of a vector
bundle (E , π,M) if π(σ(p)) = p for all p ∈ U . σ is called a global section if U =M,
otherwise it is called a local section. The set of global sections of E is denoted by
Γ(E).

Example 2.1.5. The global sections of the tangent space Γ(TM) ≡ X(M) are
called vector fields. Similary to (2.4), any vector field can be written as Yp =
ai(p)∂i|p, now with ai ∈ C∞(M). Equation (2.2) now defines a C∞-map p 7→
Yp(f), simply denoted by Y (f).

For two vector fields X, Y ∈ X(M), one can define the commutator [X, Y ] ∈ X(M)
as

[X, Y ]p(f) = Xp(Y (f))− Yp(X(f)). (2.8)
It is antisymmetric and obeys the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0. (2.9)

Similary, the global sections of the cotangent space Γ(T ∗M) ≡ Ω1(M) are called
one-forms. They can be written as

ηp = ηk(p) dxk
∣∣∣
p

(2.10)

where dxk is the dual basis to ∂i, obeying dxk(∂i) = δki . If Y ∈ X(M) with
Yp = yi(p) ∂i|p, then

(η(Y )) (p) = ηk(p) dxk
∣∣∣
p

(
yi(p) ∂i|p

)
= ηk(p)yk(p) (2.11)

General tensor fields are evaluated analogously: T ∈ T pqM given by

T |p = T b1,...,bp
a1,...,aq

(p) ∂b1|p ⊗ · · · ⊗ ∂bp

∣∣∣
p
⊗ dxa1 |p ⊗ · · · ⊗ dxaq |p (2.12)

results in(
T (η1, . . . , ηp, X1, . . . , Xq)

)
(p) = T b1,...,bp

a1,...,aq
(p)η1

b1(p) . . . ηpbp
(p)Xa1

1 (p) . . . Xaq
q (p).

(2.13)

Remark. The coordinate basis fields ∂i used above obey the commutation relations

[∂i, ∂j] = 0. (2.14)

One could also choose a more general basis {Ei | i = 1 . . . , n}, satisfying
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[Ei, Ej] = fkijEk (2.15)

for TpM (and {ej | j = 1 . . . , n} defined by ej(Ei) = δji for T ∗pM, respectively).

In this case, the Jacobi identity becomes a condition for the structure constants
by applying it to X, Y, Z = Ei, Ej, Ek. It then reads

f lijf
m
kl + f lkif

m
jl + f ljkf

m
il = 0 (2.16)

for all i, j, k,m ∈ 1, . . . , dimM.
This will prove useful later when we consider group manifolds.

2.2 k-forms and derivatives
Definition 2.2.1. A k-form on M is a tensor field η ∈ T 0

kM such that ηp takes
value in the antisymmetric tensor product Λk(T ∗pM) for every p ∈M.
The space of k-forms is denoted by Ωk(M), where Ω0(M) is identified with the
space of C∞-functions on M. If η ∈ Ωk(M) and ω ∈ Ωl(M) then we can define
the wedge product η ∧ ω ∈ Ωk+l(M) by

η ∧ ω(X1, . . . , Xk+l) = 1
k!l!

∑
σ

(−1)ση(Xσ(1), . . . , Xσ(k))ω(Xσ(k+1), . . . , Xσ(k+l)).

(2.17)
Here, ∑σ is the sum over all possible permutations σ.

Any k-form η can be written locally as

η = 1
k!ηa1,...,ak

dxa1 ∧ · · · ∧ dxak (2.18)

where ηa1,...,ak
= η(∂a1 , . . . , ∂ak

)

If (E , π,M) is some vector bundle, a section η ∈ Γ(E ⊗ Λk(T ∗M)) ≡ Ωk(M, E)
is called a k-form with values in E. For example, a tensor T ∈ T 1

kM that is
antisymmetric in the lower indices can be interpreted as a k-form with values in
TM. One can always write η = ξi ⊗ ηi for such a form (using suitable ξ ∈ Γ(E),
ηi ∈ Ωk(M)),meaning that

η(X1, . . . , Xk) = ξiηi(X1, . . . , Xk) (2.19)
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Definition 2.2.2. The exterior derivative can be defined as the unique map d :
Ωk(M)→ Ωk+1(M) satisfying

(i) df(X) = X(f)

(ii) d(df) = 0

(iii) d(η + η′) = dη + dη′

(iv) d(η ∧ ω) = dη ∧ ω + (−1)kη ∧ dω

where f ∈ Ω0(M), η, η′ ∈ Ωk(M), ω ∈ Ωl(M) and X ∈ X(M).

Lemma 2.2.3. In local coordinates, the exterior derivative of a k-form
η = 1

k!ηa1,...,ak
dxa1 ∧ · · · ∧ dxak is given by

dη = 1
k!d(ηa1,...,ak

) ∧ dxa1 ∧ · · · ∧ dxak

= 1
k!∂i(ηa1,...,ak

)dxi ∧ dxa1 ∧ · · · ∧ dxak (2.20)

It satisfies the general relation

dη(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1Xi (η(X1, . . . , Xi−1, Xi+1, . . . , Xk+1))

+
∑

1≤i<j≤n
(−1)i+jη ([Xi, Xj], X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xk+1) (2.21)

or more concisely for η ∈ Ω1(M),

dη(X, Y ) = X(η(Y ))− Y (η(X))− η ([X, Y ]) . (2.22)

Remark. Equations (2.20) and (2.21) are each equivalent to the definition 2.2.2.

Definition 2.2.4. If f :M→N is a map than the differential (or push forward)
of that map f∗p : TpM→ Tf(p)N is defined by

f∗p(Yp) = (f ◦ γ)′(0) (2.23)

where γ is a representative of the vector Yp.

Analogously, the pull-back f ∗η ∈ Ωk(N ) of a k-form η ∈ Ωk(M) is defined by

(f ∗η)p(X1, . . . , Xk) = ηf(p)(f∗pX1, . . . , f∗pXk), (2.24)

for X1, . . . , Xk ∈ TpM. The pull-back has the following properties:
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(i) df ∗η = f ∗dη

(ii) f ∗(η ∧ ω) = f ∗η ∧ f ∗ω

(iii) (f ◦ g)∗η = g∗f ∗η

If f :M→M is a diffeomorphism, one can also define the pull-back of a vector
field X by

f ∗X = f−1
∗ X, (2.25)

or, if T is a mixed tensor of vector and co-vectors, by applying the appropriate
definition for each factor in the tensor product; e.g., if T = η ⊗X, then

f ∗T = f ∗η ⊗ f−1
∗ X (2.26)

Lemma 2.2.5. Suppose {Ea | a = 1, . . . , n} is a general basis of the tangent bun-
dle and {ea | a = 1, . . . , n} is the dual basis, satisfying Ea(eb) = δba and [Ea, Eb] =
f cabEc. Then the exterior derivative of the dual basis satisfies

dea = −1
2f

a
bce

b ∧ ec (2.27)

This is known as the Maurer-Cartan equation.

Remark. This is a simple application of the general formula (2.22) for η = ea,
X = Eb, Y = Ec:

dea(Eb, Ec) = Eb

=δa
c︷ ︸︸ ︷

ea(Ec)︸ ︷︷ ︸
=0

−Ec

=δA
b︷ ︸︸ ︷

ea(Eb)︸ ︷︷ ︸
=0

−ea([Eb, Ec])

= − ea(fdbcEd)
= − fdbcea(Ed) = −fabc
= − 1

2 (fabc − facb) (2.28)

or in other words
dea = −1

2f
a
bce

b ∧ ec (2.29)

Definition 2.2.6. Let Y ∈ X(M) be a vector field such that for every p ∈ M
there exists a curve γp : R→M through p with γ′p(t) = Yγp(t) for all t ∈ R (i.e. Y
is a complete vector field). Then the set

{ϕt :M→M | ϕt(p) = γp(t) ∀t ∈ R} (2.30)

is called the one-parameter group generated by Y. ϕt is a diffeomorphism, and
ϕs ◦ ϕt = ϕs+t for all s, t ∈ R
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Definition 2.2.7. The Lie derivative is the unique map L : X(M)×T lmM→ T lmM
satisfying

(i) LXf = X(f)

(ii) LXY = [X, Y ]

(iii) the map T 7→ LXT is R-linear

(iv) LX(T ⊗ T ′) = LXT ⊗ T ′ + T ⊗ LXT ′

(v) C ◦ LX = LX ◦ C

for all f ∈ C∞(M), X, Y ∈ X(M) and all T ∈ T lmM, T ′ ∈ T l′m′M. Here C denotes
the contraction map, C(η ⊗X) = ıXη = η(X) (see definition 2.3.5).

Remark. This actually defines the Lie derivative for arbitrary tensor fields. For
example, one can calculate that the Lie derivative of a k-form η is given by

LXη = (d ◦ ıX + ıX ◦ d)η. (2.31)

Lemma 2.2.8. The Lie derivative of a tensor field T along a vector Y can also be
defined by

LY T = d
dtϕ

∗
tT

∣∣∣∣∣
t = 0

(2.32)

where {ϕt} is the one-parameter group generated by Y .

2.3 (Pseudo-)Riemannian metrics
Definition 2.3.1. A pseudo-Riemannian metric is a tensor g ∈ T 0

2M such that
for all p ∈M, gp is a smooth map satisfying

(i) gp(X, Y ) = gp(Y,X) (symmetric)

(ii) gp(aX + Y, Z) = agp(X,Z) + gp(Y, Z) (linear)

(iii) gp(X, Y ) = 0 ∀Y ∈ TpM =⇒ X = 0 (non-degenerate)

The signature (s+, s−) of a metric is defined as the maximal dimension of the linear
subspaces of TpM such that gp constrained to the subspace is positive (s+) or neg-
ative (s−) definite. g is called a Riemanian metric if it has signature (dim(M), 0)
and a Lorentzian metric if it has signature (dim(M) − 1, 1) or (1, dim(M) − 1).
Similary, a manifold is M is called Riemannian (Lorentzian) if it carries a Rie-
manian (Lorentzian) metric.
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A metric can also be interpreted as an inner product for every point of the manifold
by setting

〈X, Y 〉|p ..= g|p (X, Y ), (2.33)

with X, Y ∈ TpM.

Remark. Given a metric g and a vector X ∈ X(M), one can define the covariant
vector X[ ∈ Ω1(M) by

X[ = g(X, ·) (2.34)

If {ei} is a local basis for the cotangent space, this reads

X[ = X[
ie
i = gijX

jei ⇐⇒ X[
i = gijX

j, (2.35)

meaning that one can use the metric to pull down the indices of any vector (or,
more generally, any tensor in T l0M). Additionally, one can define the dual metric
as the g−1 ∈ T 2

0M satisfying

gab(g−1)bc = δca. (2.36)

Using this, one can pull up co-vector indices (often denoted by η]). In conjunction
with (2.35), this allows us to pull indices of general tensors T ∈ T lmM up and
down. Note that if we use g−1 to pull up the indices of g, we just get g−1 again,
hence we will use the symbol g for the metric as well as the dual metric.

We will not distinguish between X and X[ or η and η] if we calculate something
using a local basis, since the index positions already indicates if we look at the
vector or the corresponding covector. Note that we will do most calculations using
gab = δab; in this case, one can just write Xa = Xa, implying that this is an
equation for the components of the vector X and the co-vector X[ (or, analogously,
for general tensors).

Definition 2.3.2. We can extend the inner product of vectors and one-forms de-
fined by g and g−1 to an inner product for tensor product spaces by taking the
product slotwise. If for example η, µ ∈ T 0

kM, we can write

〈η, µ〉 =
〈
η1 ⊗ · · · ⊗ ηk, µ1 ⊗ · · · ⊗ µk

〉
..=

k∏
a=1

g−1(ηa, µa). (2.37)

If {ea} is a basis of T ∗M, we can write η = ηa1...ak
ea1⊗· · ·⊗eak and µ = µa1...ak

ea1⊗
· · · ⊗ eak ; The inner product becomes

〈ηa1...ak
ea1 ⊗ · · · ⊗ eak , µa1...ak

ea1 ⊗ · · · ⊗ eak〉 = ηa1...ak
µa1...ak . (2.38)
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In the case where η, µ ∈ Ωk(M), we get

〈η, µ〉 =
〈
η1 ∧ · · · ∧ ηk, µ1 ∧ · · · ∧ µk

〉
..= k!

∑
σ

(−1)σ
k∏
a=1

g−1(ηa, µσ(a)), (2.39)

and hence〈
1
k!ηa1...ak

ea1 ∧ · · · ∧ eak , 1
k!µa1...ak

ea1 ∧ · · · ∧ eak

〉
= ηa1...ak

µa1...ak . (2.40)

When dealing with k-forms, we will use a renormalized inner product by setting

〈η, µ〉∧ = 1
k! 〈η, µ〉 , (2.41)

such that〈
1
k!ηa1...ak

ea1 ∧ · · · ∧ eak , 1
k!µa1...ak

ea1 ∧ · · · ∧ eak

〉
∧

= 1
k!ηa1...ak

µa1...ak . (2.42)

Definition 2.3.3. A (pseudo)-Riemannian n-dimensional manifold M is called
orientable if there exists a nowhere vanishing n-form ε, called the volume form.
Given an orthonormal basis {ea} (with respect to a metric g), we can write

ε ..= e1 ∧ · · · ∧ en. (2.43)

The Hodge-duality map ∗ : Ωk(M)→ Ωn−k(M) (also called the Hodge star opera-
tor) is then defined by

η ∧ ∗µ = 〈η, µ〉∧ ε, (2.44)
where η, µ ∈ Ωk(M)

Lemma 2.3.4. The Hodge dual has the following useful properties: Given a basis
{Ea} of TM and its dual basis {ea} of T ∗M, the Hodge star satisfies

∗ (ea1 ∧ · · · ∧ eak) = 1
(n−k)!ε

a1...ak
ak+1...an

eak+1 ∧ · · · ∧ ean . (2.45)

This implies that for a k-form

η = 1
k!ηa1...ak

ea1 ∧ · · · ∧ eak (2.46)

we get
∗ η = 1

(n−k)!(∗η)b1...bn−k
eb1 ∧ · · · ∧ ebn−k , (2.47)

with
(∗η)b1...bn−k

= 1
k!ηa1...ak

εa1...ak
b1...bn−k

. (2.48)

Furthermore, we have
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(i) ∗ε = 1

(ii) ∗(η ∧ ∗µ) = 〈η, µ〉∧

(iii) ∗ ∗ η = (−1)k(n−k)+s−η

(iv) η ∧ ∗µ = µ ∧ ∗η = (−1)k(n−k) ∗ η ∧ µ

(v) 〈∗η, ∗µ〉∧ = (−1)s− 〈η, µ〉∧

for η, µ ∈ Ωk(M), and s− defined as in 2.3.1.

Definition 2.3.5. Given a vector X ∈ X(M) and a k-form η ∈ Ωk(M) the
contraction of X and η is defined by

(Xyη)(X1, . . . , Xk−1) = η(X,X1, . . . , Xk−1). (2.49)

Notice that the position where we insert X into η only gives a different sign, since
η is totally antisymmetric. The contraction can also be defined as a map ıX :
Ωk(M)→ Ωk−1(M) or as a map C : Ωk(M,X(M))→ Ωk−1(M) by setting

(Xyη) ≡ ıXη ≡ C(X ⊗ η). (2.50)

Similary, given a tensor T ∈ T pqM (p, q 6= 0), one can define the contracted tensor
T̃ ∈ T p−1

q−1M by setting

(T̃ )a1,...,ai−1,ai+1,...,ap

b1,...,bj−1,bj+1,...,bq
= T

a1,...,ai−1,n,ai+1,...,ap

b1,...,bj−1,n,bj+1,...,bq
(2.51)

with a sum over the index n. In this case we have to specify which index gets
contracted, because we did not assume T has any symmetries.

Given a metric, we can use it to contract a purely co- or contravariant tensor. If
for example η = ηabe

a ⊗ eb, we can write η̃ = ηaa = gabηab ∈ C∞(M).

Remark. Using the Hodge star, we have

Xy ∗ η = ∗(η ∧X[). (2.52)

In fact, one can use the Hodge operator to define the contraction of a p-form η
with a q-form µ (for p ≤ q) by setting

ηyµ ..= ∗(η ∧ ∗µ). (2.53)

For p = q, this is just the inner product defined in 2.3.2.
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2.4 Covariant derivatives, torsion and curvature
Definition 2.4.1. Let (E , π,M) be a vector bundle overM. A linear connection
is a map ∇ : Γ(E)→ Ω1(M, E) such that

(i) ∀ ξ, ξ′ ∈ Γ(E) : ∇(ξ + ξ′) = ∇ξ +∇ξ′

(ii) ∀ ξ ∈ Γ(E), f ∈ C∞(M) : ∇(fξ) = ξ ⊗ df + f∇ξ

For Y ∈ X(M), ∇Y ξ ≡ (∇ξ)(Y ) ∈ Γ(E) is called the covariant derivative of ξ
along Y . Condition (ii) then reads

∇Y (fξ) = Y (f)ξ +∇Y ξ (2.54)

If {Ea | a = 1, . . . , n} is a local basis for TM then the covariant derivative of
one of the basis vectors along another satisfies

∇EaEb = ωcabEc, (2.55)

where ωcab ∈ C∞(M) are called the connection components. Using these, the co-
variant derivative of an associated co-basis vector eb is

∇Eae
b = −ωbacec (2.56)

The covariant derivative of an arbitrary tensor in this coordinate basis is then given
by

∇EcT = ∇Ec

(
T b1,...,bp
a1,...,aq

Eb1 ⊗ · · · ⊗ Ebp ⊗ ea1 ⊗ · · · ⊗ eaq

)
=
(
∇EcT

b1,...,bp
a1,...,aq

)
Eb1 ⊗ · · · ⊗ Ebp ⊗ ea1 ⊗ · · · ⊗ eaq , (2.57)

with

∇EcT
b1,...,bp
a1,...,aq

= ∂cT
b1,...,bp
a1,...,aq

+ ωb1
cdT

d,b2,...,bp
a1,...,aq

+ · · ·+ ω
bp

cdT
b1,...,bp−1,d
a1,...,aq

− ωdca1T
b1,...,bp

d,a2,...,aq
+ · · ·+ ωdcaq

T
b1,...,bp

a1,...,aq−1,d. (2.58)

Remark. The connection components can be interpreted as an endomorphism val-
ued one-form:

ω = ωcabe
a ⊗ (Ec ⊗ eb)

≡ ωcbEc ⊗ eb (2.59)

Note that this is not a tensor since it depends on the choice of basis. If we were to
chose a different basis satisfying Ẽa = f baEb and calculated the connection compo-
nents, we would get

ω̃cab = (f−1)ckωkijf iaf
j
b + (f−1)ckẼa(fkb ). (2.60)



16 CHAPTER 2. DIFFERENTIAL GEOMETRY

The first term is what one would expect if ω was in fact a tensor (i.e., the object ω
written in different coordinates). However, we get an additional term, dependent
on the transformation f . If we interpreted f as an endomorphism valued local
function, we could write

ω̃ = ω + f−1df (2.61)
for the new connection one-form, with respect to the new basis. We will encounter
this formula again, when we define the more general notion of a connection on a
principal bundle in chapter 4.

The exterior derivative of the connection one-form can be calculated using equation
(2.22):

(dωab)cd = Ec(ωadb)− Ed(ωacb)− fncdωanb (2.62)

Definition 2.4.2. The torsion of a linear connection ∇ is the tensor T ∈ T 1
2M

defined by
T (X, Y ) = ∇XY −∇YX − [X, Y ]. (2.63)

It is antisymmetric in the lower indices and, given a basis {Ea}, {eb}, can be
expressed as

T = T abcEa ⊗ eb ⊗ ec

= 1
2T

a
bcEa ⊗ eb ∧ ec (2.64)

which means that the torsion can be interpreted as a vector valued two-form. Since
the Ea obey the commutation relation [Ea, Eb] = f cabEc, the torsion components can
be written using the connection components (2.55):

T cab = ωcab − ωcba − f cab (2.65)
⇐⇒ T c = (ωcab − 1

2f
c
ab)ea ∧ eb (2.66)

Using the Maurer-Cartan equations 2.2.5, this can be rewritten into the first Cartan
structure equation:

T c = dec + ωcb ∧ eb (2.67)
Given a metric g, we can define the covariant torsion tensor

Θ(X, Y, Z) = g (X,T (Y, Z)) (2.68)

with the components
Θabc = gcdT

d
ab. (2.69)

This is again antisymmetric in the first two indices, but not necessarily totally
antisymmetric.
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Example 2.4.3. There is a unique linear connection on any Riemanian manifold,
called the Levi-Civita connection. It satisfies
(i) ∇Xg = 0 ∀X ∈ X(M) (metric)

(ii) T ≡ 0 (torsion free)
Its components with respect to a given basis {Ea} satisfying [Ea, Eb] = f cabEc can
be calculated out of the metric coefficients:

ωcab = 1
2g

cd (−Edgab + Eagbd + Ebgda) + 1
2

(
f cab + gcefdeagbd + gcefdebgda

)
(2.70)

If we are given another metric connection which has non vanishing torsion, it will
describe the same geodesics (i.e., curves γ that satisfy ∇γ̇ γ̇ = 0) as the Levi-Civita
connection if and only if the torsion tensor Θ is totally antisymmetric.

Remark. The notion of a geodesic curve is of great importance in general relativity.
∇γ̇ γ̇ = 0 means that the “velocity” of the curve is constant with respect to the
change of coordinates along the way. This in turn means that geodesics are the
equivalent of straight lines in curved spacetime, and they describe the motion of
non-accelerated observers in general relativity.

Definition 2.4.4. The (Riemannian) curvature of a linear connection ∇ is a ten-
sor field R ∈ T 1

3M defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (2.71)

Its components with respect to a basis {Ea} are given by

Ra
bcd = Ec(ωadb) + ωacnω

n
db − Ed(ωacb)− ωadnωncb − fncdωanb. (2.72)

where
R(Ec, Ed)Eb = Ra

bcdEa (2.73)
Alternatively, the curvature can be interpreted as an endomorphism valued two-
form

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ], Ra
b = 1

2R
a
bcde

c ∧ ed (2.74)

since it is always antisymmetric in the first two arguments. Its components can
then be determined from (2.72) by using equation (2.62):

(Ra
b)cd = Ra

bcd = Ec(ωadb)− Ed(ωacb)− fncdωanb︸ ︷︷ ︸
=(dωa

b
)cd

+ ωacnω
n
db − ωadnωncb (2.75)

⇐⇒ Ra
b = dωab + ωac ∧ ωcb (2.76)

⇐⇒ R = dω + ω ∧ ω (2.77)

This last equation is known as the second Cartan structure equation.
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Example 2.4.5. Let (M, g) be a (pseudo-)Riemannian manifold and let Ra
bcd be

the components of the curvature of the Levi-Civita connection. The Ricci-Tensor
is defined by

Ricab = Rc
acb. (2.78)

The manifold is then called Einstein if the Ricci tensor is proportional to the metric
(i.e., Ricab = κgab). These manifolds play a special role in general relativity; the
Einstein field equations are given by

Ricab − gab(1
2R + Λ) = 8πTab, (2.79)

where R = Ricaa is the Ricci scalar, Λ is the cosmological constant and T is the
stress-energy tensor. Saying that a manifold is Einstein then means that the metric
solves the vacuum (i.e., T = 0) Einstein field equations.



3
Lie groups and algebras

In the previous chapter, we interpreted connections as endomorphism valued forms
that have a certain behaviour under coordinate transformations. This idea can be
generalized; for this, it has to be understood that the endomorphisms of a vector
space (i.e., the set of all matrices) can be identified with the infinitesimal action of
the general linear group GL(V ) of that vector space. This can be made precise by
interpreting GL(V ) as a manifold where the group multiplication is a differentiable
map; such a manifold is called a Lie group. The tangent space of this manifold,
called the Lie algebra, is then given by the set of endomorphisms. Given this
structure, one can define a more general notion of a connection as a one-form
taking values in the Lie algebra of an arbitrary group.

The actual definition of a general connection will have to wait till chapter 4, because
we first have to define what exactly Lie groups and algebras are. I will follow the
presentation in [16,20,21] to give a short overview of the most relevant definitions
and properties that we will need later on. A more complete treatise of this topic
can be found in [22].

3.1 Groups and actions
Definition 3.1.1. A group is a set G equipped with a group multiplication G×G→
G, (g, h) 7→ gh, satisfiying

(i) a, b ∈ G =⇒ ab ∈ G (closure)

(ii) ∀a, b, c ∈ G : (ab)c = a(bc) (associativity)

(iii) ∃1 ∈ G ∀a ∈ G : 1a = a1 = a (identity element)

19
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(iv) ∀a ∈ G ∃a−1 ∈ G : aa−1 = a−1a = 1 (inverse element)
If the multiplication is commutative as well (i.e., ab = ba ∀a, b ∈ G), the group is
called commutative or abelian.

Example 3.1.2. Probably the most important example of groups are matrix
groups, subgroups of the general linear group

GL(n,K) = {A ∈ Mat(n× n,K) | detA 6= 0} (3.1)

using the standard matrix multiplication. The ones most frequently encountered
are

SL(n,K) = {A ∈ GL(n,K) | detA = 1} (3.2)
SO(n) =

{
A ∈ SL(n,R) | AAT = 1n

}
(3.3)

U(n) =
{
A ∈ GL(n,C) | AA† = 1n

}
(3.4)

SU(n) = {A ∈ U(n) | detA = 1} (3.5)
Sp(n) =

{
A ∈ GL(n,H) | AA† = 1

}
(3.6)

where H are the quaternions. For more information on Sp(n), see appendix A.

Definition 3.1.3. A Lie group G is a C∞-manifold that is also a group, in such
a way that both the group multiplication and the map g → g−1 are C∞ maps. We
say that a Lie group G acts on a manifoldM from the left if there exists a smooth
map Φ : G×M→M with
(i) ∀g, g′ ∈ G, x ∈M : Φ(gg′, x) = Φ(g,Φ(g′, x))

⇐⇒ (gg′)x = g(g′x)
⇐⇒ Lgg′ = Lg ◦ Lg′

(ii) ∀x ∈M : Φ(1, x) = x

⇐⇒ 1x = x

⇐⇒ L1 = idM
using the shorthand Φ(g, x) ≡ gx and the left translation Lg :M→M defined by
Lg(x) = gx, respectively. Note that Lg is a diffeomorphism and that L−1

g = Lg−1.

Analogously, one can define the right action of G onM as a map Ψ :M×G→M
satisfiying
(i) ∀g, g′ ∈ G, x ∈M : Ψ(x, gg′) = Ψ(Ψ(x, g′), g)

⇐⇒ x(gg′) = (xg)g′

⇐⇒ Rgg′ = Rg′ ◦Rg
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(ii) ∀x ∈M : Ψ(x, 1) = x

⇐⇒ x1 = x

⇐⇒ R1 = idM
using again Ψ(x, g) ≡ xg and the right translation Rg :M→M, Rg(x) = xg.

Remark. If Ψ :M×G→M is an action from the right, than Φ(g, x) = Ψ(x, g−1))
is an action from the left, and vice versa if a left action Φ is given instead.

Definition 3.1.4. Let G act on M from the left (or analogously from the right).
Then the action is called free if

∀g ∈ G,∀x ∈M : gx = x =⇒ g = 1. (3.7)

Given a point x ∈M, the set

Gx = {y ∈M | ∃g ∈ G : y = gx}
≡ {gx | g ∈ G} (3.8)

is called the orbit of the group action through the point x.

3.2 Lie algebras
Definition 3.2.1. Let Lg : G → G be the left action of a Lie group upon itself
(i.e., Lg(g′) = gg′, using the standard group multiplication). If 1 is the identity
element of G, one can define the left-invariant vector field Ā ∈ X(G) determined
by A ∈ T1G ≡ g via

Āg = Lg∗(A) (3.9)
One can then define a commutator for A,B ∈ g, using

[A,B] = [Ā, B̄]1 ∈ g (3.10)

Note that this definition inherits the properties of the usual vector field commutator
(2.8), that is, it is antisymmetric and obeys the jacobi identity. (g, [·, ·]) is then
called the Lie algebra of G.

Remark. More generally, a Lie algebra could be defined as any vector space carrying
a Lie bracket [·, ·] that is bilinear, antisymmetric and obeys the Jacobi identity,
without the notion of a Lie group. And although every Lie group canonically
determines a Lie algebra, the converse is only true locally. This means that different
Lie groups G and G′ might have the same Lie algebra; the condition for this to be
possible is that they are at least locally isomorphic and that they have the same
universal covering group.
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Definition 3.2.2. The exponential map exp : g→ G is defined by
exp(A) = γ(1). (3.11)

Here, γ is the map defined by γ(t) = ϕt(1), where {ϕt} is the one parameter
group generated by Ā. Using this definition, it can be shown that the exponential
map satisfies γ(t) = exp(tA) and ϕt(g) = gγ(t) = g exp(tA).

Remark. There are some mathematical details necessary to show that exp is well
defined. For example, one would have to show that Ā is a complete vector field
and that the assignement A↔ γ is unique. For more information on this, see [16].

Example 3.2.3. If G is a matrix group as in 3.1.2, one can use the more familiar
definition for the exponential map,

exp : Mat(n× n,K)→ GL(n,K), exp(A) =
∞∑

k = 0

Ak

k! , (3.12)

or analogously for subgroups of GL(n,K). It satisfies
d
dt exp(tA) = A exp(tA) = exp(tA)A. (3.13)

The Lie algebra g can then be defined by
g = {A ∈ Mat(n× n,K) | exp(tA) ∈ G ∀t ∈ R} (3.14)

This definiton allows us to calculate the Lie algebras for the matrix groups given
in 3.1.2:

gl(n,K) = Mat(n× n,K) (3.15)
sl(n,K) = {A ∈ Mat(n× n,K) | trA = 0} (3.16)
so(n) =

{
A ∈ Mat(n× n,R) | A+ AT = 0

}
(3.17)

u(n) =
{
A ∈ Mat(n× n,C) | A+ A† = 0

}
(3.18)

su(n) = {A ∈ u(n) | trA = 0} (3.19)
sp(n) =

{
A ∈ Mat(n× n,H) | A+ A† = 0

}
(3.20)

Note that we interpret these sets as real vector spaces, equipped with a Lie bracket
[·, ·], in the case of matrix groups usually [A,B] = AB − BA. If we then choose
a basis {Ea} for one of these spaces, it will in general satisfy some commutation
relation

[Ea, Eb] = f cabEc, (3.21)
where the f cab are called the structure constants.

For more information on the Lie algebra sp(n), see appendix A.
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3.3 Representations and Lie-algebra valued forms
Definition 3.3.1. Let V be some vector space. We then call a map ρ : G→ GL(V )
a representation of the group G if ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G (i.e., ρ
is a group homomorphism). Note that a representation always implies a left action
on the vector space via

gv = ρ(g)v, (3.22)
where ρ(g) ∈ GL(V ) acts on v ∈ V in the usual way.

Example 3.3.2. An important example for a representation is the adjoint repre-
sentation of a Lie group on its Lie algebra, which can be constructed as follows:
For any g ∈ G, we can define the adjoint isomorphism Adg : G→ G via Adg(g′) =
gg′g−1. We can than look at the push forward of this map, i.e.,

(Adg)∗1 ≡ Adg : g→ g. (3.23)

The map Ad : G → GL(g), g 7→ Adg is then called the adjoint representation of
the group G. We can differentiate this once more, resulting in

Ad∗1 ≡ ad : g→ gl(g). (3.24)

This is then called the adjoint representation of the Lie algebra. It satisfies

ad(A)(B) = ∂2

∂s∂t
(exp(tA) exp(sB) exp(−tA))

∣∣∣∣∣
s,t = 0

= [A,B], (3.25)

given A,B ∈ g. We can interpret ad(A) as a matrix acting on the vector space g.
Its components with respect to some basis Ea are given by the structure constants:

ad(Ei)(Ej) = [Ei, Ej] = fkijEk =⇒ (ad(Ei))kj = fkij. (3.26)

Additional details on the construction of these representations can be found in [16].

Definition 3.3.3. Given a Lie group G and its Lie algebra g, we can use the
adjoint representation of the Lie algebra to define a symmetric bilinear form

K(A,B) = tr(ad(A)ad(B)) =⇒ Kij = fkilf
l
jk, (3.27)

called the Killing form. If this form is non-degenerate, the Lie group as well as its
Lie algebra are called semisimple.

One can show that if the group is compact, the Killing form on g is negative definite,
and its negative defines a left invariant riemannian metric on the group, called the
Cartan-Killing metric (i.e., gij = fkilf

l
kj).
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Remark. If we use the Cartan-Killing metric to pull down the structure constants
upper index (i.e., fijk ..= gklf

l
ij = fnkmf

m
nlf

l
ij), the Jacobi identity (2.16) implies that

fijk is totally antisymmetric (using fijk = −fjik).

Definition 3.3.4. If η ∈ Ωk(M, g) and ω ∈ Ωl(M, g) are Lie algebra valued forms,
we can define their commutator as

[η, ω](X1, . . . , Xk+l)

= 1
k!l!

∑
σ

(−1)σ[η(Xσ(1), . . . , Xσ(k)), ω(Xσ(k+1), . . . , Xσ(k+l))], (3.28)

where σ are again the possible commutations of the indices. We can always write
Lie algebra valued forms as η = η̃⊗A, ω = ω̃⊗B, using R-valued forms η̃, ω̃. The
commutator is then

[η, ω] = (η̃ ∧ ω̃)⊗ [A,B]. (3.29)
If we now choose a basis for our Lie algebra, {Ei}, this can be further decomposed
into η = ηi ⊗ Ei, ω = ωi ⊗ Ei, now with dim(g) R-valued forms {ηi}, {ωi}. This
leads to

[η, ω] = (ηi ∧ ωj)⊗ [Ei, Ej] = fkij(ηi ∧ ωj)⊗ Ek. (3.30)

Lemma 3.3.5. The commutator of Lie algebra valued forms η ∈ Ωi(M, g), ω ∈
Ωj(M, g) and ρ ∈ Ωk(M, g), has similiar properties to the usual commutator:

(i) [η, ω] = −(−1)ij[ω, η] (symmetry)

(ii) (−1)ik[[η, ω], ρ] + (−1)kj[[ρ, η], ω] + (−1)ij[[ω, ρ], η] = 0 (Jacobi identity)

This means that the g-valued forms are a graded Lie algebra. The exterior deriva-
tive satisfies a Leibniz rule:

d([η, ω]) = [dη, ω] + (−1)i[η, dω] (3.31)

Definition 3.3.6. Let ρ be a representation of the Group G on some vector space
V and let η be a k-form taking values in the same vector space. We can then define
the wedge product for a Lie algebra valued l-form ω and η by

ρ∗(ω)∧η(X1, . . . , Xk+l)

= 1
k!l!

∑
σ

(−1)σρ∗(ω(Xσ(1), . . . , Xσ(l))) · η(Xσ(l+1), . . . , Xσ(l+k)), (3.32)

where “ · “ means
ρ∗(A) · v = ∂

∂t
ρ(exp(At))v

∣∣∣∣∣
t=0

(3.33)
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for A ∈ g, v ∈ V .

If the representation used is obvious from the context, we will omit the ρ∗ and
simply write ω ∧ η for (3.32)

Remark. If ρ is the adjoint representation we simply get ρ∗(ω) ∧ η = [ω, η] for Lie
algebra valued forms ω, η (i.e., the usual commutator 3.3.4).
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4
Theory of principal fibre bundles

In the last chapter, we hinted at the possibility to generalize the notion of a connec-
tion to a one-form taking values in some Lie algebra that has a certain behaviour
under coordinate transformations. This object will turn out to be equivalent to the
gauge potential appearing in field theories, for example Maxwell’s electrodynam-
ics with the potential Aµ. In this case, the theory is invariant under U(1)-gauge
transformations; the Lie algebra of U(1) is just the set of imaginary numbers (i.e.,
u(1) =

{
c ∈ C | c = −c†

}
= {c ∈ C | Re(c) = 0}), and the gauge potential is a

one-form taking values in this Lie algebra. However, the object thats of physical
interest is not the potential, but the field strength F ; this will turn out to be the
curvature of the connection one-form A.

Instead of studying objects on some base manifold M that are invariant under
transformations by a group G, one can derive the local expressions for A and F
from more general objects living on another manifold P that – at least locally –
looks like M× G. This construction allows a more geometric interpretation of
gauge theories.

This chapter is mainly based on [16,20,21,23,24].

4.1 Principal fibre bundles
Definition 4.1.1. Let G be a Lie group. A tripel (P , π,M) consisting of manifolds
M,P and a map π : P →M is called a principal fibre bundle with structure group
G, or a principal G-bundle, if the following holds:

• G acts freely on P to the right

27
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• The fibres Px = π−1(x) are just the orbits of the G-action, i.e.,

π−1(π(p)) = {pg : g ∈ G} (4.1)

• for every x ∈M there exists an open neighborhood U ⊆M and a diffeomor-
phism

Φ = (Φ1,Φ2) : π−1(U)→ U ×G (4.2)
such that Φ1(p) = π(p) and Φ2(pg) = Φ2(p)g for all p ∈ π−1(U), g ∈ G. Φ is
called a local trivialization.

Remark. The fibres Px are diffeomorphic to the Lie group G, but they do not
carry a canonical group structure since the identification depends on the base
point p ∈ Px, hence there is no unique identity element.

Definition 4.1.2. Let (P , π,M) be a principal bundle and let Φ,Ψ be two local
trivializations for the open neighborhoods U ⊆ M and V ⊆ M, respectively. We
than can define the transition function guv : U ∩ V → G from Φ to Ψ as

guv(x) = Φ2(p)Ψ2(p)−1, (4.3)

where x = π(p). It satisfies

(i) guu(y) = 1 ∀y ∈ U

(ii) gvu(y) = g−1
uv ∀y ∈ U ∩ V

(iii) guv(y)gvw(y)gwu(y) = 1 ∀y ∈ U ∩ V ∩W

Remark. guv is indeed well defined. If we would have taken a different point p in
(4.3), say p′ = pg for some suitable group element g, we would get

guv(x) = Φ2(pg)Ψ2(pg)−1 = Φ2(p)gg−1Ψ2(p)−1 = Φ2(p)Ψ2(p)−1 (4.4)

hence the definition does not depend on the choice of p.

Definition 4.1.3. Similar to the definition 2.1.4 for sections of a vector bundle we
can define a section of a principal fibre bundle (P , π,M) as a map σ : U ⊆M→ P
satisfying π(σ(x)) = x for all x ∈ U . We again say that σ is global if U =M and
local otherwise.

Remark. There is a natural correspondence between local sections and local trivi-
alizations; if σ : U → P is local section, then

Φ : π−1(U)→ U ×G, Φ(σ(x)g) = (x, g) (4.5)
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is a local trivialization. On the other hand, a given local trivialization
Φ : π−1(U) → U × G automatically gives rise to a local section σ : U → P
via σ(x) = Φ−1(x, 1). If there exists a global section (or, equivalently, a global
trivialization), we call the principal fibre bundle trivial. This is equivalent to the
statement that the bundle is isomorphic to (M×G, pr1,M).

Example 4.1.4. LetM be a n-dimensional manifold. Consider

LxM ..= {u ∈ Hom(Rn, TxM) | u is invertible} (4.6)

and set L(M) = ⋃
x∈M Lx(M). Then GL(n,R) acts freely on L(M) from the right:

uA ..= u ◦ A, A ∈ GL(n,R). (4.7)

Given a chart ϕ : U → Ω onM, we can define a local section on L(M),

σ(x) : Tϕ(x)R
n ≡ Rn → TxM, σ(x) = ϕ−1

∗ϕ(x) (4.8)

and a projection
π : L(M)→M, π−1(x) = TxM. (4.9)

This turns (L(M), π,M) into a principal GL(n,R)-bundle, called the frame bundle
ofM.

Definition 4.1.5. Let (P , π,M) be a principal fibre bundle with structure group
G, and let N be a manifold on which G acts from the left. We can then define a
right action on P × N via (p, z)g = (pg, g−1z). We can then look at the space of
equivalence classes with respect to this group action, i.e.,

(P ×N )/ ∼ = {[p, z] | (p, z) ∈ P ×N}
=.. P ×G N . (4.10)

This space naturally carries a projection π̂ : P ×G N → M, π̂[p, z] = π(p). We
can then define the to (P , π,M) associated bundle of type N as (P ×G N , π̂,M).
The local trivializations are given by the principal bundle: If Φ = (π,Φ2) is a
trivialization of (P , π,M), than Φ̂ : π̂−1(U) → U × N , Φ̂([p, z]) = (π(p),Φ2(p)z)
defines a trivialization of the associated bundle.

In the special case that V is a vector space carrying a representation ρ : G→ GL(V )
(and by extension a left action defined by gv = ρ(g)v), we write P ×ρ V for the
associated vector bundle. The fibres inherit their vector space structure from V via

[p, v] + [p, w] = [p, v + w] (4.11)

and
a[p, v] = [p, av] (4.12)

for a ∈ K.
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Definition 4.1.6. Let V be a vector space, ρ a representation of the group G on
this space, and (P , π,M) a principal G-bundle. We then write Ωk(P, ρ) for the
space of V -valued k-forms satisfying

(i) R∗gη = ρ(g−1)η ∀g ∈ Γ

(ii) π∗(Xi) = 0 =⇒ η(X1, . . . , Xi, . . . , Xk) = 0 ∀Xi ∈ X(P ).

If k = 0, this reduces to
f(pg) = ρ(g−1)f(p) (4.13)

for f ∈ C∞(P, V ).

Lemma 4.1.7. There exists a canonical isomorphism Ωk(M,P ×ρ V )→ Ωk(P, ρ).
If θ ∈ Ωk(M,P ×ρ V ) we can define θ̃ ∈ Ωk(P, ρ) by

[p, θ̃(X1, . . . , Xk)] ≡ θ(π∗(X1), . . . , π∗(Xk)) ∀p ∈ P, Xi ∈ TpP (4.14)

Conversely, if η ∈ Ωk(P, ρ) is given, we can define η̂ ∈ Ωk(M,P ×ρ V ) by

η̂x(V1, . . . , Vk) ≡ [p, ηp(X1, . . . , Xk)] ∀Vi ∈ TxM, (4.15)

where p ∈ P with π(p) = x and Xi ∈ TpP with π∗(Xi) = Vi.

4.2 Connections on principal bundles
We now have a sufficient mathematical vocabulary to define a connection on a
principal bundle, with arbitrary gauge group G. The previous definition of a
linear connection will then turn out to be equivalent to the special case where the
principal bundle in question is the frame bundle defined in example 4.1.4, with
structure group GL(n,R).

Here, we will always assume that a principal G-bundle (P , π,M) is given, and that
g is the Lie algebra of G.

Definition 4.2.1. Let X ∈ g. We can then define the fundamental vector field
X̃ ∈ X(P) by

X̃(p) = d
dtp exp(tX)

∣∣∣∣∣
t = 0

. (4.16)

The fundamental vector field confers a Lie algebra homomorphism X ∈ g 7→ X̃ ∈
X(P ), which we will also call the infinitesimal generator of the G-action on P, or
simply the g-action.
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The subspace spanned by the X̃ can also be identified with the vertical space, defined
by

Vp = {v ∈ TpP | π∗(v) = 0} , (4.17)

i.e., the space of vectors that do not leave the current fibre.

Remark. While the vertical space is well defined and unique for any principal
bundle, the complementary horizontal space is not. The definition will depend on
the choice of the identity element for every fibre, which is not predetermined by
the definition of the bundle.

To make this precise, one needs a way to identify the different fibres with the Lie
algebra. This can be accomplished by introducing a one-form A ∈ Ω1(P , g), called
a connection on the principal bundle. The horizontal space will then be defined as
the subspace of TpP that satisfies A(v) = 0.

Definition 4.2.2. Let Rg be the right action of the group G defined on P and Ad
be the adjoint representation as in 3.3.2. A ∈ Ω1(P, g) is then called a connection
on P if

(i) R∗gA = Ad(g−1)A for all g ∈ G. If G is a matrix group, this means that

A(Rg∗(w)) = Ad(g−1)(A(w)) = g−1A(w)g (4.18)

for all g ∈ G, w ∈ TpP.

(ii) A
(
X̃(p)

)
= X for all X ∈ g and all p ∈ P.

We will denote the space of all connections on P by C(P).

Given a connection A, we will define the horizontal space as

HAp = {v ∈ TpP | A(v) = 0} , (4.19)

i.e., the space of vectors on P that are not identified with an infinitesimal group
action. It satisfies

Rg∗H
A
p = HApg. (4.20)

The horizontal and vertical space can be used to decompose the whole tangent space
into

TpP = Vp ⊕HAp . (4.21)

Note that this construction is not unique and depends on the choice of A.
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Remark. This definition for the connection has the advantage of being rather ele-
gant. But as mentioned above, it is not the way that gauge potentials are usually
defined in physics. Our previous idea for a connection as a one-form on the basis
manifold with a certain behaviour under coordinate transformation will emerge if
we consider the pull back via a local section, as provided in the next lemma:

Lemma 4.2.3. Let A ∈ C(P ), and let Φ,Ψ be two local trivializations around
U and V, respectively, and σu, σv be the corresponding local sections. We can
then define the local connection, or gauge potential, as Au = σ∗uA. It satisfies the
transformation formula

Av(Yx) = L−1
guv(x)∗(guv∗(Yx)) + Ad((guv(x))−1)(Au(Yx)) (4.22)

for all Yx ∈ TxM and x ∈ U∩V. Here, Lg denotes the left action from G upon itself
and guv is the transition function. If G is a matrix group, this formula simplifies
significantly to

Av = g−1
uv Auguv + g−1

uv dguv. (4.23)

Conversely, if we assign to each local trivialization Φ a one-form Au in such a way
that they all satisfy (4.22), we can piece them together to a globaly well defined
unique connection A ∈ C(P).

Remark. Notice the similarity between (4.23) and our original results for the en-
domorphism valued one-form associated to the linear connection, (2.61). In the
special case where P is the frame bundle, the transition functions represent a dif-
ferent choice of basis for the tangent space, consistent with the situation in (2.61).

Definition 4.2.4. Given a connection A, we can define the horizontal projection
of any vector v ∈ TpP by

vH = v − Ã(v)(p), (4.24)

i.e., vH = v if v ∈ HAp and vH = 0 if v ∈ Vp.

Using this definition, we can define the exterior covariant derivate DA : Ωk(P , g)→
Ωk+1(P , g) as

DAη(X0, . . . , Xk) = dη(XH
0 , . . . , X

H
k ). (4.25)

Remark. Although the definition of the exterior covariant derivate depends on A
we will usually omit the superscript when the choice of A is clear from the context.
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Lemma 4.2.5. Given a connection A ∈ C(P), the exterior covariant derivative
satisfies

(i) DAη ∈ Ωk+1(P, ρ) for all η ∈ Ωk(P, V ) with R∗gη = ρ(g−1)η

(ii) DAη = dη + ρ∗(A) ∧ η for η ∈ Ωk(P, ρ)

If additionally σ is a local section of P and again η ∈ Ωk(P, ρ), then

σ∗DAη = dσ∗η + ρ∗(σ∗A) ∧ σ∗η (4.26)

Definition 4.2.6. The curvature of a connection A is defined by

FA = DAA (4.27)

Due to Lemma 4.2.5, we have FA ∈ Ω2(P,Ad).

Theorem 4.2.7. The curvature form satisfies

(i) FA = dA+ 1
2 [A,A] (Cartan structure equation)

(ii) DAFA = 0 (Bianchi identity)

(iii) DADAη = ρ∗(FA) ∧ η

for a form η ∈ Ωk(P, ρ).

Proof. These follow from direct computation.

Remark. The equivalence of linear and gauge connections can now be made precise
by utilizing the isomorphism ξ 7→ ξ̃ in lemma 4.1.7. If E = P ×ρ V is the vector
bundle associated to (P , π,M) with respect to some representation ρ on some
vector space V, we can interpret the exterior covariant derivate on P as a map
∇A : Γ(E)→ Ω1(M, E) by setting

∇A ≡ DA, (4.28)

in the sense that
∇̃Aξ = DAξ̃, ∀ξ ∈ Γ(E). (4.29)

One can show that this indeed defines a linear connection on the vector bundle
E , as in 2.4.1. In fact, every linear connection can be interpreted as induced by a
gauge connection (cf. [20,21] for further details). Given a local section σ : U → P ,
the covariant derivate of an element ξ ∈ Γ(E) along the vector X ∈ X(M) can be
calculated via

(∇AXξ)(x) = [σ(x), dvx(Xx) + ρ∗(σ∗A(Xx))v(x)], (4.30)
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where v ∈ C∞(U , V ) such that ξ|U = [σ, v]. This can be abbreviated by writing

∇AXξ = X(ξ) + ρ∗(σ∗A(X))ξ, (4.31)

which yields our original formula (2.57) if V is the tensor product space T pqM,
carrying the tensor representation ρ.

In the special case where V = P×Ad g ..= Ad P , we can identify the curvature form
itself with a two form on the base manifold (i.e., F ∈ Ω2(M,Ad P)), on which
we can act with ∇A. In general, covariant derivatives for such forms (X ⊗ η) ∈
Ωk(M,Ad P) with X ∈ Γ(Ad P) can be computed by

DA(X ⊗ η) = ∇A(X) ∧ η +X ⊗ dη. (4.32)

Lemma 4.2.8. The relations in theorem 4.2.7 also hold if we write
FA ∈ Ω2(M,Ad P), meaning that

(i) ∇AFA = 0

(ii) ∇A∇Aη = ρ∗(FA) ∧ η.

Given a local section σ : U → P, the local field strength Fu ..= s∗FA also satisfies

Fu = dAu + 1
2 [Au,Au] (4.33)

with the local gauge potential Au.
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Yang-Mills theory

We now have all the necessary ingredients to formulate Yang-Mills theory. Similar
to the familiar case of electrodynamics, the equations of motion for the gauge field
strength F follow from an action principle; the key difference is now that we are
not constraint to an U(1)-gauge theory, but can consider fields taking values in
more general Lie algebras.

This chapter is primarily based on the presentation in [20, 21]. The Yang-Mills
equations with torsion have been derived and analyzed in numerous papers (e.g.,
[25]).

LetM be a closed, oriented, n-dimensional Riemannian manifold and G a compact
and connected Lie group. Further, let 〈·, ·〉 be an Ad-invariant scalar product on
g, meaning that

〈Ad(g)X1,Ad(g)X2〉 = 〈X1, X2〉 ∀g ∈ G,∀X1, X2 ∈ g, (5.1)

and write ‖X‖2 = 〈X,X〉. Our usual choice will be the trace for matrix groups (or
its real part, respectively, for complex valued matrices). Suppose that the volume
form ofM is given by

dM = e1 ∧ · · · ∧ en (5.2)
with respect to some positivly oriented orthonormal basis of the tangent space
{Ea} and its dual basis {ea}.

Let (P , π,M) be a principle G-bundle overM and let Ad P be defined as above,
such that the curvature of a given gauge connection can be interpreted as FA ∈
Ω2(M,Ad P).

35
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Definition 5.0.9. The Yang-Mills action SYM : C(P)→ R is defined as

SYM [A] =
∫
M
‖FA‖2dM, (5.3)

where we extended the definition of the scalar product on g to one for every fibre
of Ad P by setting

〈[p,X1], [p,X2]〉 = 〈X1, X2〉 , (5.4)

which is well defined due to the Ad-invariance of the original scalar product.

The action principle now tells us that physical fields are those for which the action
becomes stationary, i.e.,

d
dtSYM [A+ tη]

∣∣∣∣∣
t=0

= 0 ∀η ∈ Ω1(M,Ad P). (5.5)

This is equvialent to the requirement that FA satisfies a field equation:

Theorem 5.0.10. A is a stationary point of SYM if and only if

DA ∗ F = 0. (5.6)

Here, the Hodge star operator on Ad P-valued forms can be constructed from the
one onM by setting

∗ (X ⊗ η) = X ⊗ ∗Mη ∀X ∈ Γ(Ad P), η ∈ Ωk(M), (5.7)

and we will not distinguish between the two.

If we apply ∗ once more to the Yang-Mills equations (5.6), “∗ DA ∗” is just the
covariant divergence with respect to A, meaning that the Yang-Mills equations
(5.6) are equivalent to

DaFab = EaFab + [Aa,Fab] = 0. (5.8)

In four dimensions, the Bianchi identity DAF = 0 implies that the Yang-Mills
equation is automatically satisfied if the field strength is self dual or anti-self dual:

∗ F = ±F =⇒ DA ∗ F = ±DAF = 0. (5.9)

This can be generalized to higher dimensions by introducing a 4-form Q ∈ Ω4(M),
such that

∗ F = − ∗Q ∧ F . (5.10)
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Taking the covariant derivative yields

DA ∗ F = −DA(∗Q ∧ F) = −(d ∗Q︸ ︷︷ ︸
=..∗H

∧ F + ∗Q ∧DAF︸ ︷︷ ︸
=0

) (5.11)

or equivalently
d ∗ F + [A, ∗F ] + ∗H ∧ F = 0. (5.12)

In the case that ∗H∧F = 0, these are just the usual Yang-Mills equations. This can
be achieved by demanding ∗Q to be closed, which implies ∗H = 0. If ∗H∧F 6= 0,
we get an additional summand in our equations.

We will consider the case where the base manifold is equipped with a linear connec-
tion with totally antisymmetric torsion, and we can then identify the three-form
H with the torsion-form of that connection; in this case, (5.12) are known as the
torsion-full Yang-Mills equations. We can write it out in components by applying
the Hodge star once more; ∗(∗H ∧ F) then yields the contraction of F and H.

Alternatively, we could start by considering the situation where we have a gauge
connectionA satisfying the usual Yang-Mills equation (5.6) and a torsion-full linear
connection ∇; the covariant derivative with respect to this connection is then given
by

∇bF bc = EbF bc + ωaabF bc + ωcabFab, (5.13)

where ω is the connection one-form corresponing to ∇. Then it makes sense to
consider a covariant derivative ∇̃ with respect to both connections, in the sense
that

∇̃bF bc = EbF bc + ωaabF bc + ωcabFab + [Ab,F bc]. (5.14)

Demanding this to vanish also yields the torsion-full Yang-Mills equations, now
given in components by

∇̃bF bc = EbF bc + ωaabF bc + ωcabFab + [Ab,F bc] = 0. (5.15)

These equations could also be derived directly from an action principle for the
modified action

S = SYM + SCS (5.16)

with the additional summand

SCS =
∫
M
FA ∧ FA ∧ ∗Q. (5.17)

Further details can be found in [25,26], where these actions appear in the context
of string theory.
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6
Yang-Mills equations on homogenous spaces

Having reiterated the mathematical foundations for Yang-Mills theory in the last
chapters we will now begin to explore a special case where we hope to find explicit
solutions for the torsion-full Yang-Mills equations. We will consider homogenous
spaces of the form G/H with antisymmetric torsion and two distinct sets of gener-
ators, in a sense that will be explained below. Similar setups have been explored
before (for example, see [10–15]); we will however make a slightly different ansatz,
treating multiple cases simultanously.

6.1 Preliminaries
Let G be a compact semisimple Lie group and H a closed subgroup in such a way
that (G, π,G/H) is a reductive homogenous space. The Lie algebra of G can then
be decomposed into

g = h⊕m (6.1)
where h is the Lie algebra of H and m is its complement. We will write {IA} for the
set of all generators of g, i.e., we will use upper case letters from the beginning of
the alphabet when we want to infer that a summation should include all generators.
The subsets generating G/H and H will be denoted by {Ia} and {Ii}, respectively,
using lower case letters from the beginning or the middle of the alphabet. Since H
is a closed subgroup of G, the commutation relations for the generators will then
read

[Ii, Ij] = fkijIk, [Ii, Ia] = f biaIb, [Ia, Ib] = f iabIi + f cab. (6.2)
We will use the Cartan-Killing metric on g, and assume that our generators are
choosen in such a way that

gAB = fCADf
D
CB = δAB, (6.3)
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which means that

gab = δab, gij = δij, gia = 0. (6.4)

This implies that both fABC and fCAB are totally antisymmetric1.

Note that the metric on G also implies a metric on G/H, which can be constructed
by considering the left invariant fields and forms provided by the generators. We
write {ÊA} for these vector fields on G and {êA} for the corresponding dual one
forms. Given some local section σ of the principal bundle (G, π,G/H) we can pull
these forms back to the basis G/H, and write

σ∗êA ≡ eA (6.5)

for the local one forms and EA for the dual fields, respectively. Among these gener-
ators, the ea span the space T ∗(G/H) and the remaining forms can be decomposed
into ei = eiae

a.

These forms will obey the Maurer-Cartan equations 2.2.5, which for our choice of
structure constants (6.2) read

dea = − faibei ∧ eb − 1
2f

a
bce

b ∧ ec (6.6)
dei = − 1

2f
i
bce

b ∧ ec − 1
2f

i
jke

j ∧ ek (6.7)

We can also use these local one forms to write the metric as

gG/H = δabe
a ⊗ eb (6.8)

We will consider a linear connection ω on the tangent bundle with non vanishing
torsion proportional to the structure constants, i.e.,

T abc = κfabc. (6.9)

Our choice of metric implies that the corresponding torsion tensor Tabc is totally
antisymmetric (i.e., a three-form).
Employing the first structure equation (2.67) in conjunction with the Maurer-
Cartan equations (6.6), this leads to

T a = dea + ωab ∧ eb (6.10)
⇐⇒ 1

2κf
a
cbe

c ∧ eb = −faibei ∧ eb − 1
2f

a
cbe

c ∧ eb + ωab ∧ eb (6.11)
⇐⇒ ωab = faibe

i + 1
2(κ + 1)facbec, (6.12)

or in other words
ωacb = eicf

a
ib + 1

2(κ + 1)facb. (6.13)
1One consequence of antisymmetry is that fA

AB = 0 (no sum over a). For this it would suffice
that the Cartan-Killing metric is diagonal, since we would have fA

AB = gADfABD = αfADA = 0,
where α is the entry of g for the index A.
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6.2 Yang-Mills equations on R ×G/H

We will now consider the space R × G/H equipped with a generalization of the
linear connection (6.13) via

ωacb = eicf
a
ib + 1

2(κ + 1)facb and ω0
0b = ωa0b = ω0

cb = 0 (6.14)

where we choose a coordinate τ on R and a basis one form e0 = dτ . We further
choose

g = e0 ⊗ e0 + δabe
a ⊗ eb (6.15)

as our metric on this space. We can use this metric to pull down the indices of the
torsion and define the three form

H = 1
3!Tabce

a ∧ eb ∧ ec, i.e., Habc = Tabc = κfabc. (6.16)

We are now interested in solutions of the torsion-full Yang-Mills equation (5.15) for
a connection A on the trivial principal fibre bundle ((R×G/H)×G, π,R×G/H)
with structure group G (or equivalently, on the associated vector bundle E). Using
the local basis defined above, the connection and its field strength will be of the
form

A = A0e
0 +Aaea and F = F0ae

0 ∧ ea + 1
2Fabe

a ∧ eb. (6.17)

We will choose the gauge in such a way that A0 = 0. In this situation, the torsion-
full Yang-Mills equations are equivalent to

EaFa0 + ωaabF b0 + [Aa,Fa0] = 0 (6.18)
E0F0c + EbF bc + ωaabF bc + ωcabFab + [Aa,Fac] = 0 (6.19)

when written out in components.

To solve these equations we first need explicit terms for all the variables. For this,
we restrict ourself to the case of G-invariant connections. The most general ansatz
for a G-invariant connection2 is given by

A = eiIi +Xae
a, (6.20)

with the additional constraint that the Xa satisfy equation (B.1), which in this
case implies

[Ii, Xa] = f biaXb. (6.21)
2See appendix B for further information.
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This condition is automatically satisfied if we makes an ansatz such that Xa ∼ Ia,
which we will do later on.

To calculate the field strength, we need expressions for dA and A∧A. Differenti-
ating (6.20) using the Maurer-Cartan equations leads to

dA = d
(
eiIi +Xae

a
)

= deiIi + dXae
a +Xadea

= − Ii
(

1
2f

i
bce

b ∧ ec + 1
2f

i
jke

j ∧ ek
)

+ dXae
a

−Xa

(
faibe

i ∧ eb + 1
2f

a
bce

b ∧ ec
)

= − 1
2Iif

i
bce

b ∧ ec − 1
2Xaf

a
bce

b ∧ ec − 1
2Iif

i
jke

j ∧ ek

−Xaf
a
ibe

i ∧ eb + Ẋae
0 ∧ ea, (6.22)

where Ẋa = ∂
∂τXa.

For the second term we get

A ∧A = 1
2 [Aa,Ab]ea ∧ eb

= 1
2 [eiaIi +Xa, e

j
bIj +Xb]ea ∧ eb

= 1
2

(
eiae

j
b[Ii, Ij] + eia[Ii, Xb] + ejb[Xa, Ij] + [Xa, Xb]

)
ea ∧ eb

= 1
2f

k
ijIke

i ∧ ej + 1
2f

c
ibXce

i ∧ eb + 1
2f

c
ajXce

a ∧ ej + 1
2 [Xa, Xb]ea ∧ eb

= 1
2f

k
ijIke

i ∧ ej + faibXae
i ∧ eb + 1

2 [Xa, Xb]ea ∧ eb.
(6.23)

Adding these up yields

F = Ẋb︸︷︷︸
F0b

e0 ∧ eb − 1
2

(
f ibcIi + fabcXa − [Xb, Xc]

)
︸ ︷︷ ︸

Fbc

eb ∧ ec (6.24)

for the field strength. Using this, we get

EaFa0 = 0 (6.25)
ωaabF b0 = − eiafaibẊb + 1

2(κ + 1) faab︸︷︷︸
=0

Ẋb (6.26)

[Aa,Fa0] = − eiafabi Ẋb − [Xa, Ẋ
a] (6.27)

for the summands in (6.18). If we use the Cartan-Killing metric to pull down the
indices in (6.26) and (6.27), the terms proportional to eia cancel due to the total
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antisymmetry of the structure constants fABC3, which means that the first set of
Yang-Mills equations (6.18) is equivalent to

[Xa, Ẋ
a] = 0. (6.28)

This will also be solved by the same ansatz satisfying the G-invariance condition,
Xa ∼ Ia.

For the second set of equations (6.19), we need

E0F0c = Ẍc (6.29)
EbF bc = 0 (6.30)
ωaabF bc =

(
eiaf

a
ib + 1

2(κ + 1)faab
) (
−f bckIk − f bceXe + [Xb, Xc]

)
= − eiafaibf bckIk − eiafaibf bceXe + eiaf

a
ib[Xb, Xc] (6.31)

ωcabFab =
(
eiaf

c
ib + 1

2(κ + 1)f cab
) (
−fabkIk − fabeXe + [Xa, Xb]

)
= − eiaf cibfabkIk − eiaf cibfabeXe + eiaf

c
ib[Xa, Xb]

+ 1
2(κ + 1)

(
−f cabfabkIk − f cabfabeXe + f cab[Xa, Xb]

)
(6.32)

[Aa,Fac] = [eiaIi +Xa,−facjIj − facbXb + [Xa, Xc]]
= − eiafacj[Ii, Ij]− eiafacb[Ii, Xb] + eia[Ii, [Xa, Xc]]
− facj[Xa, Ij]− facb[Xa, Xb] + [Xa, [Xa, Xc]]

= − eiafacjfkijIk − eiafacbf eibXe + eia ([Xa, [Xc, Ii]]− [Xc, [Ii, Xa]])
− facjf bajXb − facb[Xa, Xb] + [Xa, [Xa, Xc]]

= − eiafacjfkijIk − eiafacbf eibXe + eiaf
cb
i [Xa, Xb]− eiafabi [Xc, Xb]

− facjf bajXb − facb[Xa, Xb] + [Xa, [Xa, Xc]] (6.33)

Adding these up allows us to compute (6.19), which is now given by:

Ẍc = eia
(
faibf

bck + f cibf
abk + facjfkij

)
Ik (6.34)

+ eia
(
faibf

bce + f cibf
abe + facbf eib

)
Xe (6.35)

− eia
(
faib[Xb, Xc] + f cib[Xa, Xb] + f cbi [Xa, Xb] + fabi [Xb, X

c]
)

(6.36)

− 1
2(κ + 1)

(
−f cabfabkIk − f cabfabeXe + f cab[Xa, Xb]

)
(6.37)

+ facjf bajXb + facb[Xa, Xb]− [Xa, [Xa, Xc]] (6.38)

3 If we instead consider arbitrary gab for our Cartan-Killing metric we still get
−ei

af
a
ibẊ

b − ei
af

ab
i Ẋb = ei

ag
acgbdẊd(fibc + ficb) = 0.
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If we now pull down all the indices using our metric (6.15), we see that (6.34) and
(6.35) vanish due to the Jacobi identity (2.16). (6.36) is zero as well, again using
total antisymmetry of the structure constants.
Furthermore, the term f cabf

abk in (6.37) vanishes since we have fkaj = 0 and
fCADf

D
CB = δAB (i.e., f cabfabk = δkc = 0).

This means that the second set of Yang-Mills equations for this case simplify to

Ẍc =
(

1
2(κ + 1)fabcfabe − fajcfaje

)
Xe − 1

2(κ + 3)fabc[Xa, Xb] (6.39)
− [Xa, [Xa, Xc]]

Remark. We could also use a more general ansatz for our metric. As long as the
structure constants remain totally antisymmetric, the arguments for the vanishing
of (6.34), (6.35) and (6.36) still hold, and the term f cabf

abk in (6.37) is zero as
long as we use the Cartan-Killing metric and impose gaj = 0 (i.e., we don’t need
gab = δab). The final equations then read

Ẍc =
(

1
2(κ + 1)f cabfabe + facjf eaj

)
Xe − 1

2(κ + 1)f cab[Xa, Xb] (6.40)
+ facb[Xa, Xb]− [Xa, [Xa, Xc]].

The reason why this is of interest is that a choice of metric coefficients for the
Cartan-Killing metric implies a choice of generators. It has been argued in [13,
14] that such a choice implies different geometric structures (e.g., if G/H =
SU(3)/SU(2) ≡ S5, our choice corresponds to an α-Sasakian manifold with α =
−1

2 .). Starting with the assumption of the existence of a G-structure is a com-
mon approach (cf. [10–15]), and writing our equations in this way would make it
easier to directly compare our results. That being said, we will continue to work
with the flat metric to ease computations. Appendix C contains a short computa-
tion for S5, showing that the final equations for different α-Sasakian structures on
SU(3)/SU(2) are equivalent.

6.3 Splitting up the generators
We will now further specialize to the case where the generators of the coset G/H
can be split into two distinct sets which will be denoted by {Ia} = {Ia′}∪{Ia′′} (i.e.,
we will use single primes for one of the sets and double primes for the other). This
ansatz encompasses many different types of manifolds. For example, if we choose
a′ ∈ {2, . . . , dim(G/H) − 1}, a′′ = 1 we get an α-Sasakian manifold, whereas
a′ ∈ {4, . . . , dim(G/H) − 3}, a′′ = {1, 2, 3} would be suitable to describe a 3-
Sasakian manifold. We will explore some examples in chapter 7.
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In this case we can make the ansatz

A = eiIi +Xa′e
a′ +Xa′′e

a′′

= eiIi + φIa′e
a′ + ψIa′′e

a′′ , (6.41)

i.e.,
Xa′ = φIa′ , Xa′′ = ψIa′′ (6.42)

where φ, ψ are functions of the real parameter τ . This ansatz automatically satisfies
the G-invariance condition (6.21) as well as the first set of Yang-Mills equations
(6.28), since both Xa and Ẋa are proportional to Ia.

We will further assume that the structure constants satisfy

fa′cdfb′cd = α′δa′b′ , fa′′cdfb′′cd = α′′δa′′b′′ (6.43)
fa′cifb′ci = 1

2 (1− α′) δa′b′ , fa′′cifb′′ci = 1
2 (1− α′′) δa′′b′′ (6.44)

and that a similar condition holds true if the summation only runs over a subset:

fa′c′d′fb′c′d′ = α′1δa′b′ , fa′′c′′d′′fb′′c′′d′′ = α′′1δa′′b′′

fa′c′d′′fb′c′d′′ = α′2δa′b′ , fa′′c′′d′fb′′c′′d′ = α′′2δa′′b′′

fa′c′′d′′fb′c′′d′′ = α′3δa′b′ , fa′′c′d′fb′′c′d′ = α′′3δa′′b′′ (6.45)
fa′c′jfb′c′j = α′4δa′b′ , fa′′c′′jfb′′c′′j = α′′4δa′′b′′

fa′c′′jfb′c′′j = α′5δa′b′ , fa′′c′jfb′′c′j = α′′5δa′′b′′

Notice that there is some redundancy here since we have

α′ = α′1 + 2α′2 + α′3, α′′ = α′′1 + 2α′′2 + α′′3 (6.46)
1
2 (1− α′) = α′4 + α′5,

1
2 (1− α′′) = α′′4 + α′′5 (6.47)

These conditions are satisfied for all manifolds we are interested in, for example
the spheres SU(n+ 1)/SU(n) = S2n+1 and Sp(n+ 1)/Sp(n) = S4n+3.

Our Yang-Mills equations (6.39) can now be rewritten into equations for φ and ψ.
For this, we need to split up the summations over a, b, c into summs over a′ and
a′′. To do this, we consider the equations for Ẍc′ (i.e., for φ̈). The one for ψ̈ will
follow analogously.

We notice that we have Ẍc′ = φ̈Ic′ , which means that we can have no terms pro-
portional to Xe′′ on the right hand side of (6.39), since Xe′′ cannot be proportional
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to Ic′ . This leads to

Ẍc′ =
(

1
2(κ + 1)fabc′fabe′ − fajc′faje′

)
Xe′

+
(

1
2(κ + 1)fabc′fabe′′ − fajc′faje′′

)
Xe′′ } = 0

− 1
2(κ + 3) (fabc′ [Xa, Xb])− [Xa, [Xa, Xc′ ]]

=
(

1
2(κ + 1)α′ − 1

2 (1− α′)
)
Xc′

− 1
2(κ + 3) (fabc′ [Xa, Xb])− [Xa, [Xa, Xc′ ]]

=
(

1
2 (κ + 2)α′ − 1

2

)
Xc′

− 1
2(κ + 3) (fabc′ [Xa, Xb])− [Xa, [Xa, Xc′ ]] (6.48)

We can calculate the commutators

[Xa′ , Xb′ ] = [φIa′ , φIb′ ] = φ2(fa′b′e′Ie′ + fa′b′e′′Ie′′ + fa′b′iIi) (6.49)
[Xa′ , Xb′′ ] = [φIa′ , ψIb′′ ] = φψ(fa′b′′e′Ie′ + fa′b′′e′′Ie′′ + fa′b′′iIi) (6.50)
[Xa′′ , Xb′′ ] = [ψIa′′ , ψIb′′ ] = ψ2(fa′′b′′e′Ie′ + fa′′b′′e′′Ie′′ + fa′′b′′iIi) (6.51)

which means that

fabc′ [Xa, Xb] = φ2fa′b′c′(fa′b′e′Ie′ + fa′b′e′′Ie′′ + fa′b′iIi)
+ 2φψfa′b′′c′(fa′b′′e′Ie′ + fa′b′′e′′Ie′′ + fa′b′′iIi)
+ ψ2fa′′b′′c′(fa′′b′′e′Ie′ + fa′′b′′e′′Ie′′ + fa′′b′′iIi)
=

(
φ2α′1 + 2φψα′2 + ψ2α′3

)
Ic′ (6.52)

and

[Xa, [Xa, Xc′ ]] = [Xa′ , [Xa′ , Xc′ ]] + [Xa′′ , [Xa′′ , Xc′ ]]
= [Xa′ , φ

2(fa′c′e′Ie′ + fa′c′e′′Ie′′ + fa′c′iIi)]
+ [Xa′′ , φψ(fa′′c′e′Ie′ + fa′′c′e′′Ie′′ + fa′′c′iIi)]
= φ3 (fa′c′e′fa′e′d′ + fa′c′e′′fa′e′′d′ + fa′c′ifa′id′) Id′
+ φψ2 (fa′′c′e′fa′′e′d′ + fa′′c′e′′fa′′e′′d′ + fa′′c′ifa′′id′) Id′
= −φ3 (α′1 + α′2 + α′4) Ic′ − φψ2 (α′2 + α′3 + α′5) Ic′ (6.53)

Putting (6.52) and (6.53) into (6.48) yields a differential equation for φ

φ̈ =
(

1
2 (κ + 2)α′ − 1

2

)
φ− 1

2(κ + 3)
(
φ2α′1 + 2φψα′2 + ψ2α′3

)
(6.54)

+ φ3 (α′1 + α′2 + α′4) + φψ2 (α′2 + α′3 + α′5)
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and analogously for ψ

ψ̈ =
(

1
2 (κ + 2)α′′ − 1

2

)
ψ − 1

2(κ + 3)
(
ψ2α′′1 + 2φψα′′2 + φ2α′′3

)
(6.55)

+ ψ3 (α′′1 + α′′2 + α′′4) + ψφ2 (α′′2 + α′′3 + α′′5)
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7
Examples: The spheres S2n+1 and S4n+3

We now have sufficiently simplified equations at our disposal which means that
we can start to look for solutions. We will construct new solutions on the spheres
SU(n+ 1)/SU(n) = S2n+1 and Sp(n+ 1)/Sp(n) = S4n+3. We will first look at the
lowest nontrivial dimension since this allows us to write down explicit terms for
the generators and we will then consider a generalization to higher dimensions.

To find these new solutions, we will interpret our equations (6.54), (6.55) as classical
equations of motion stemming from a potential V . To do this, we will introduce
rescaled functions (Ψ,Φ) that satisfy

φ(τ) = µ Φ(λτ), ψ(τ) = ν Ψ(λτ), (7.1)

with some constants µ, ν, λ ∈ R. If we then fix either Φ or Ψ to lie on a symmetry
axis of the potential V (Ψ,Φ), our equations simplify further to a form that is well
studied in the literature [27–29]. See appendix D for some information on these
equations and their solutions. Furthermore, we will construct numerical solutions
for some interesting values of κ, which can be found in appendix E.

49
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7.1 Example: SU(3)/SU(2) ≡ S5

The five-Sphere can be written as a coset space SU(3)/SU(2) and is a popular
example for a homogenous space. We can choose the Gell-Man matrices as anti-
hermitian basis for the 8-dimensional Lie algebra su(3)

I1 = i
6


2 0 0

0 −1 0

0 0 −1

 , I2 = 1
2
√

3


0 0 −1

0 0 0

1 0 0

 , I3 = i
2
√

3


0 0 1

0 0 0

1 0 0

 ,

I4 = 1
2
√

3


0 −1 0

1 0 0

0 0 0

 , I5 = −i
2
√

3


0 1 0

1 0 0

0 0 0

 ,

I6 = 1
2
√

3


0 0 0

0 0 −1

0 1 0

 , I7 = i
2
√

3


0 0 0

0 0 1

0 1 0

 , I8 = i
2
√

3


0 0 0

0 −1 0

0 0 1

 (7.2)

where we normalized them in such a way that the Cartan-Killing metric satisfies
gAB = δAB. (7.3)

It is immediatly apparent that I6, I7, I8 are just the generators of su(2) embedded
into three-dimensional space (i.e., they span a su(2) subalgebra), and that I1 plays
a special role as well. We get

f678 = − 1√
3

f231 = f451 = −1
2

f426 = −f356 = −f257 = f238 = −f458 = 1
2
√

3
as the only non-zero structure consants. If we further identify {a′} = {2, 3, 4, 5},
{a′′} = {1} and {i} = {6, 7, 8} we see that only

α′ = 1
2 , α′2 = α′5 = 1

4 and α′′ = α′′3 = 1 (7.4)
are non-zero. If we put these values into our equations (6.54) and (6.55), we get

φ̈ = 1
4κφ−

κ + 3
4 φψ + 1

2φ
3 + 1

4φψ
2 (7.5)

ψ̈ = κ + 1
2 ψ − κ + 3

2 φ2 + ψφ2. (7.6)
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This simplifies slightly by setting (ψ, φ) = (2Ψ,Φ), such that

Φ̈ = 1
4κΦ− κ + 3

2 ΦΨ + 1
2Φ3 + ΦΨ2 = −∂V

∂Φ (7.7)

Ψ̈ = κ + 1
2 Ψ− κ + 3

4 Φ2 + ΨΦ2 = −∂V
∂Ψ , (7.8)

which also allows us to write down a potential

V = −κ + 1
4 Ψ2 − 1

8κΦ2 − 1
8Φ4 + κ + 3

4 Φ2Ψ− 1
2Ψ2Φ2. (7.9)

We are now interested in solutions that start and end at critical points of V , since
those are the solutions that will have finite action.

7.1.1 Critical points
The critical points of the potential V are given by the solutions to the algebraic
equations

0 = 1
4κΦ− κ + 3

2 ΦΨ + 1
2Φ3 + ΦΨ2 (7.10)

0 = κ + 1
2 Ψ− κ + 3

4 Φ2 + ΨΦ2. (7.11)

This is solved by the trivial solution (Φ,Ψ) = (0, 0) for all κ. Notice that Φ = 0
automatically implies Ψ = 0, which means that we won’t find any critical points
on one of the axis. If we now assume Φ 6= 0, we see that (7.10) implies

Φ2 = −1
2κ + (κ + 3)Ψ− 2Ψ2, (7.12)

which we can use to replace Φ2 in (7.11):

0 = −2Ψ3 + 3
2(κ + 3)Ψ2 +

(1
2 −

1
4(κ + 3)2

)
Ψ + 1

8(κ + 3)κ. (7.13)

This equation is solved by Ψ = 1
2 for all κ, which means that (Φ,Ψ) = (1, 1

2) and
(Φ,Ψ) = (−1, 1

2) are critical points for all κ.

We can use this knowledge to factorize (7.13), which leads to an quadratic equation
for Ψ: (

Ψ− 1
2

) (
8Ψ2 − 2(3κ + 7)Ψ + κ(κ + 3)

)
= 0 (7.14)

This equation might have no real solutions, depending on κ. Note that (7.12)
implies that every solution for Ψ yields two possible values for Φ, as long as the
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right hand side of (7.12) is positive. It is now easy to see that (7.14) has the general
solutions

Ψ± = 7 + 3κ
8 ± 1

8
√

(7 + 3κ)2 − 8(3 + κ)κ (7.15)

which are only real for

κ ≤ −9− 4
√

2 or κ ≥ −9 + 4
√

2 (7.16)

Notice that Ψ± = 1
2 for κ = ∓

√
5, meaning that the critical points for these values

and the one that exists for all κ are degenerated.
Additionally, the solutions Ψ± only both yield a positive value for Φ2 if κ ≤ −1,
whereas Ψ− also works for κ ≥ 0. This means we have the following number of
critical points in relation to κ:

κ ∈ number of critical points

(−∞,−9− 4
√

2) 7

(−9− 4
√

2,−9 + 4
√

2) 3

(−9 + 4
√

2,−1) 7

(−1, 0) 3

(0,∞) 5

We are now interested in values of κ for which different critical points are degen-
erated, i.e. V (Φ1,Ψ1) = V (Φ2,Ψ2) to find solutions that connect these values, see
figure 7.1. Of special interest are the values κ = −3 and κ = −1, since they lead
to further simplification of the equations (7.7) and (7.8). As can be seen in 7.2,
these values correspond to additional symmetries and we can make our equations
even simpler by fixing Ψ to lie on one of those symmetry axis:

Φ̈ = 1
2
(
Φ3 − Φ

)
, for κ = −1,Ψ = 1

2 (7.17)

Φ̈ = 1
2

(
Φ3 − 3

2Φ
)
, for κ = −3,Ψ = 0 (7.18)

Those are kink-equations (see appendix D for additional information), which are
solved by

Φ(τ) = tanh
(

1
2τ
)
, for κ = −1,Ψ = 1

2 (7.19)

Φ(τ) =
√

3
2 tanh

(
1
2

√
3
2τ
)
, for κ = −3,Ψ = 0 (7.20)
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Figure 7.1: The potential V evaluated at all critical points as function of κ. Notice
that every line corresponds to two critical points and that there is another one for
V = Φ = Ψ = 0 for all κ.

(a) κ = −1 (b) κ = −3

Figure 7.2: Contour plot of the potential V with analytical solutions for κ =
−1,κ = −3.
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As we can see in figure 7.1, κ = 0, κ = 1 and κ ≈ 4.75 are all possible candidates
for solutions since the potential for some of the critical points are degenerated with
the origin. However, there are no additional symmetries arising for these values,
and we were not able to find analytical solutions. One can still construct numerical
solutions, see e.g. figure E.1.

Note that although Φ = 0 solves (7.7) and greatly simplifies (7.8), the resulting
solutions for Ψ

Ψ(τ) = exp
(√

κ+1
2 τ

)
, for κ ≥ −1 (7.21)

Ψ(τ) = τ, for κ = −1 (7.22)

Ψ(τ) = exp
(
i
√∣∣∣κ+1

2

∣∣∣τ) , for κ < −1 (7.23)

do not have finite action and do not mediate between two critical points.

Remember that we rescaled Ψ to write down a potential; that means that we have
to reverse this process to get the solutions for our original Yang-Mills equations.

7.1.2 Analytical solutions
In addition to the kink-solutions described above, we actually solved two other
cases as well; If we had assumed that our base manifold is S1 × G/H instead of
R×G/H, we would search for periodic solutions to our equations. We could have
also looked at the Lorentzian case iR×G/H, τ 7→ iτ , which results in a sign flip in
our equations; the solutions are then known as “bounces”, and they have a physical
interpretation as dyons. The procedure to find solutions for equations (7.17) and
(7.18) for these cases are identical to the one described above (cf. appendix D).
All solutions found for S5 can be seen in table 7.1, where we already reversed the
rescaling of Ψ; these are solutions to the original equations (7.5) and (7.6) (or their
negatives, respectively).
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Kink Solutions

φ(τ) = tanh
(

1
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

3
2 tanh

(
1
2

√
3
2τ
)

ψ = 0 κ = −3

Bounce Solutions

φ(τ) =
√

2 sech
(√

1
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

3 sech
(

1
2

√
3τ
)

ψ = 0 κ = −3

Periodic Kink Solutions

φ(τ) = N(k)k snk
(

1
2N(k)τ

)
ψ = 1 κ = −1

φ(τ) =
√

3
2N(k)k snk

(
1
2

√
3
2N(k)τ

)
ψ = 0 κ = −3

Periodic Bounce Solutions

φ(τ) =
√

2 M(k)k cnk
(√

1
2M(k)τ

)
ψ = 1 κ = −1

φ(τ) =
√

3 M(k)k cnk
(

1
2

√
3M(k)τ

)
ψ = 0 κ = −3

Table 7.1: All solutions for S5 = SU(3)/SU(2).
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7.2 Example: SU(n+ 1)/SU(n) ≡ S2n+1

The situation above can be generalized for spheres of arbitrary odd dimension
SU(n+ 1)/SU(n) ≡ S2n+1. We can construct a basis for SU(n+ 1) by embedding
the basis for SU(n) into one higher dimension and adding matrices that only have
values on the outermost rows and columns, plus one additional diagonal matrix.
This is in fact how the Gell-Mann martices (7.2) are designed, where I6, I7, I8 span
the su(2) subalgebra.

Remember that SU(n) is a (n2 − 1) dimensional manifold. This means that the
coset SU(n+1)/SU(n) will have (2n+1) values for {a} and the remaining (n2−1)
values for {i}. If we now name our indices

{a′} = {2, . . . , 2n+1}, {a′′} = {1}, {i} = {2n+2, . . . , n2−1}, (7.24)

the a′ will correspond to the non-diagonal generators mentioned above and a′′ =
1 will be the diagonal one. By construction of these generators, the structure
constants satisfy

fa′b′c′ = fia′1 = 0 (7.25)
which in conjunction with the fact that there is only one index for a′′ means that
only α′2, α′4 and α′′3 are non-zero.

Using the definitions of a′2 and a′′3 it is easy to see that the two are interconnected

a′2δa′b′ = fa′c′d′′fb′c′d′′ =⇒ 2n α′2 = fa′c′d′′fa′c′d′′ = a′′3, (7.26)

while (6.46) and (6.47) give us a relation between α′2 and α′4:

α′4 = 1
2(1− 2α′2) (7.27)

Since we also have

ga′′b′′ = δa′′b′′ = fa′′CDfb′′CD = fa′′c′d′fb′′c′d′ = α′′3δa′′b′′ (7.28)

we get
α′2 = 1

2n, α′4 = n− 1
2n , α′′3 = 1 (7.29)

This means that our Yang-Mills equations generalize to

φ̈ = 1
2

(κ + 2
n
− 1

)
φ− κ + 3

2n φψ + 1
2φ

3 + 1
2nφψ

2 (7.30)

ψ̈ = κ + 1
2 ψ − κ + 3

2 φ2 + ψφ2 (7.31)
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We can again set (ψ, φ) = (
√

2nΨ,Φ), which yields

Φ̈ = 1
2

(κ + 2
n
− 1

)
Φ− κ + 3√

2n
ΦΨ + 1

2Φ3 + ΦΨ2 = −∂V
∂Φ (7.32)

Ψ̈ = κ + 1
2 Ψ− κ + 3

2
√

2n
Φ2 + ΨΦ2 = −∂V

∂Ψ (7.33)

and allows a potential

V = −1
4

(κ + 2
n
− 1

)
Φ2 + κ + 3

2
√

2n
Φ2Ψ− 1

8Φ4 − 1
2Φ2Ψ2 − κ + 1

4 Ψ2. (7.34)

7.2.1 Critical points
The procedure to find solutions is completly analogoues to the special case discussed
above, with the the difference that the numerical factors now depend on n. We get
for example

κ ∈ number of critical points

(−∞,−1− 4n− 4
√
n2 − n) 7

(−1− 4n− 4
√
n2 − n,−1− 4n+ 4

√
n2 − n) 3

(−1− 4n+ 4
√
n2 − n,−1) 7

(−1, n− 2) 3

(n− 2,∞) 5

as new condition for the existence of critical points. κ = −3 and κ = −1 still yield
the same symmetries (e.g., see figure 7.3 for n = 3), and we still find solutions for
these values:

Φ(τ) = tanh
(

1
2τ
)
, for κ = −1,Ψ = 1√

2n
(7.35)

Φ(τ) =
√

n+1
n

tanh
(

1
2

√
n+1
n
τ
)
, for κ = −3,Ψ = 0 (7.36)

7.2.2 Analytical solutions
All analytical solutions for SU(n+1)/SU(n) can be found in table 7.2; this includes
the dyonic case τ → iτ and the periodic case R → S1. These are again solutions
to the original equations (7.30) and (7.31), without a rescaling.
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(a) κ = −1 (b) κ = −3

Figure 7.3: Contour plot for V with analytical solutions for κ = −1, κ = −3 on
SU(n+ 1)/SU(n) with n = 3, i.e. on S7.

Kink Solutions

φ(τ) = tanh
(

1
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

n+1
n

tanh
(

1
2

√
n+1
n
τ
)

ψ = 0 κ = −3

Bounce Solutions

φ(τ) =
√

2 sech
(

1
2

√
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

2(n+1)
n

sech
(

1
2

√
2(n+1)
n

τ
)

ψ = 0 κ = −3

Periodic Kink Solutions

φ(τ) = N(k)k snk
(

1
2N(k)τ

)
ψ = 1 κ = −1

φ(τ) =
√

n+1
n
N(k)k snk

(
1
2

√
n+1
n
N(k)τ

)
ψ = 0 κ = −3

Periodic Bounce Solutions

φ(τ) =
√

2 M(k)k cnk
(

1
2

√
2M(k)τ

)
ψ = 1 κ = −1

φ(τ) =
√

2(n+1)
n

M(k)k cnk
(

1
2

√
2(n+1)
n

M(k)τ
)

ψ = 0 κ = −3

Table 7.2: All solutions for S2n+1 = SU(n+ 1)/SU(n).
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7.3 Example: Sp(2)/Sp(1) ≡ S7

Another coset space that is topologically S7 is Sp(2)/Sp(1), where Sp(n) is the
compact symplectic group. We will choose a basis for sp(2) as dicussed in appendix
A, normalized in such a way that gAB = δAB:

I1 = 1
2
√

6



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


, I2 = i

2
√

6



0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0


,

I3 = 1
2
√

6



0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


, I4 = i

2
√

6



0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


,

I5 = 1
2
√

3



0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0


, I6 = −i

2
√

3



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


,

I7 = i
2
√

3



0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 1


, I8 = 1

2
√

3



0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


,

I9 = −i
2
√

3



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


, I10 = i

2
√

3



−1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


(7.37)

If we now name our indices

{a′} = {1, 2, 3, 4}, {a′′} = {5, 6, 7} and {i} = {8, 9, 10} (7.38)
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we see that
α′2 = α′4 = 1

4 , α′′1 = 2
3 , α′′3 = 1

3 (7.39)

are the only non vanishing coefficients. This means our equations (6.54) and (6.55)
now read

φ̈ = 1
12
(
3κφ− 3(κ + 3)φψ + 6φ3 + 3φψ2

)
(7.40)

ψ̈ = 1
24
(
12(κ + 1)ψ − 8(κ + 3)ψ2 − 3(κ + 3)φ2 + 16ψ3 + 6ψφ2

)
(7.41)

These can be simplified by setting (ψ(τ), φ(τ)) =
(
Ψ
(

1
2
√

3τ
)
,
√

3
2 Φ

(
1

2
√

3τ
))

:

Φ̈ = 3κΦ− 3(k + 3)ΦΨ + 9
2Φ3 + 3ΦΨ2 (7.42)

Ψ̈ = 6(κ + 1)Ψ− 4(κ + 3)Ψ2 − 3(κ + 3)
2 Φ2 + 8Ψ3 + 3ΨΦ2. (7.43)

This also allows for a potential

V = −3(κ + 1)Ψ2 + 4(κ + 3)
3 Ψ3 − 2Ψ4 − 3

2Ψ2Φ2 − 3κ
2 Φ2 − 9

8Φ4 + 3(κ + 3)
2 ΨΦ2

(7.44)
such that

− ∂V

∂Φ = Φ̈, −∂V
∂Ψ = Ψ̈. (7.45)

7.3.1 Critical points
First we observe that (Φ,Ψ) = (0, 0) still solves the algebraic equations for Φ̈ =
Ψ̈ = 0. However, Φ = 0 no longer leads to Ψ = 0, but we are left with a quadratic
expression for Ψ:

0 = 2Ψ
(
4Ψ2 − 2(κ + 3)Ψ + 3(κ + 1)

)
(7.46)

⇐⇒ Ψ = 0 or 0 = Ψ2 − κ + 3
2 Ψ + 3(κ + 1)

4 (7.47)

⇐⇒ Ψ = 0 or Ψ± = κ + 3
4 ± 1

4
√
κ2 − 6κ − 3 (7.48)

Notice that the potential is also symmetric under Φ ↔ −Φ, which means that if
these critical points exist (i.e., κ2 − 6κ − 3 ≥ 0), they lie on a symmetry axis.
Since there are no further critical points on this axis, the only possibile solutions
for Φ = 0 either mediate between Ψ+ and Ψ− or between Ψ = 0 and Ψ±. The
former is the case for κ = −3, where Ψ+ and Ψ− become equidistant to the origin
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(a) κ = −1 (b) κ = −3

Figure 7.4: Contour plot of V for κ = −1, κ = −3 with two analytical solutions
for κ = −3 and one for κ = −1 on Sp(2)/Sp(1).

and we have an additional symmetry for the potential along the Ψ = 0 axis. Our
equations for these cases simplify to

Φ̈ = 9
2
(
Φ3 − 2Φ

)
, for κ = −3,Ψ = 0 (7.49)

Ψ̈ = 8
(

Ψ3 − 3
2Ψ

)
, for κ = −3,Φ = 0 (7.50)

Those are both kink-equations, and we find the solutions

Φ(τ) =
√

2 tanh
(√

9
2τ
)
, for κ = −3,Ψ = 0 (7.51)

Ψ(τ) =
√

3
2 tanh

(√
6τ
)
, for κ = −3,Φ = 0 (7.52)

see also figure 7.4. κ = −3 is in fact the only value for which V (0,Ψ−) = V (0,Ψ+).
We can also look for values of κ for which V (0,Ψ±) = V (0, 0), which leads to two
solutions for κ,

κ± = 3
4
(
5±
√

33
)
, (7.53)

for which V (0,Ψ+) = V (0, 0). Putting these values into (7.43) yields two radial
kink equations

Ψ̈ = 1
2Ψ

(
16Ψ2 − 6(9 +

√
33)Ψ + 57 + 9

√
33
)

(7.54)

Ψ̈ = 1
2Ψ

(
16Ψ2 − 6(9−

√
33)Ψ + 57− 9

√
33
)
, (7.55)
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(a) κ+ = 3
4
(
5 +
√

33
)

(b) κ− = 3
4
(
5−
√

33
)

Figure 7.5: Contour plot of V for κ± with analytical solutions on Sp(2)/Sp(1).

which are solved by

Ψ(τ) = − 6
9−
√

33

(
tanh

(
1
2

√
1
2(57 + 9

√
33)τ

)
− 1

)
, for κ = κ+,Φ = 0

(7.56)

Ψ(τ) = − 6
9 +
√

33

(
tanh

(
1
2

√
1
2(57− 9

√
33)τ

)
− 1

)
, for κ = κ−,Φ = 0.

(7.57)

See figure 7.5.

If we now search for critical points with Φ 6= 0, we get

Φ2 = −2
3
(
Ψ2 − (κ + 3)Ψ + κ

)
(7.58)

from the first equation (7.42), which we can put into (7.43) to get a third order
equation for Ψ:

0 = 6Ψ3 − (κ + 3)Ψ2 − (κ2 + 2κ + 3)Ψ + κ(κ + 3) (7.59)
= (Ψ− 1)(6Ψ2 − (k − 3)Ψ− κ(κ + 3)) (7.60)

⇐⇒ Ψ = 1 or 0 = 6Ψ2 − (k − 3)Ψ− κ(κ + 3) (7.61)

⇐⇒ Ψ = 1 or Ψ̃± = 1
12(κ − 3±

√
25κ2 + 66κ + 9) (7.62)
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Notice that Ψ+ = 1 for κ = −2±
√

13.

Again, Ψ̃± only exists if the square root is real, which is the case for

κ /∈ (− 3
25(11 + 4

√
6),− 3

25(11− 4
√

6)) ≈ (−2.5, 0.14) (7.63)

and we have the additional condition that Φ2 has to be positive, which further
leads to the contraints

κ ∈ (≈ −6.58,− 1
25(33 + 12

√
6)) or κ >= 0, for Ψ̃+ (7.64)

κ ≤ − 1
25(33 + 12

√
6) ≈ −2.5, for Ψ̃− (7.65)

Similar to the case SU(n)/SU(n − 1), we again find critical points which are
independent of κ at (Φ,Ψ) = (± 2√

3 , 1). For κ = −1, both solutions Ψ̃± are
imaginary, but we find that Ψ+ from (7.48) takes the value Ψ+ = 1 as well. This
means that the two critcal points at (± 2√

3 , 1) and the one at (0, 1) lie on a straight
line, and although the potential is no longer symmetric along this axis we still find
a kink equation for these values:

Φ̈ = 9
2

(
Φ3 − 4

3Φ
)
, for κ = −1,Ψ = 1, (7.66)

which has the solution

Φ(τ) = 2√
3 tanh

(√
3τ
)
, for κ = −1,Ψ = 1, (7.67)

as seen in figure 7.4.

7.3.2 Analytical solutions
We again list all analytical solutions to the original equations (7.40) and (7.41) in
table 7.3. Notice that we still get the same solution for κ = −1.



64 CHAPTER 7. EXAMPLES: THE SPHERES S2N+1 AND S4N+3

Kink Solutions

φ(τ) = tanh
(

1
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

3
2 tanh

(
1
2

√
3
2τ
)

ψ = 0 κ = −3

ψ(τ) =
√

3
2 tanh

(√
1
2τ
)

φ = 0 κ = −3

ψ(τ) = − 6
9∓
√

33

(
tanh

(√
1
2w±τ

)
− 1

)
φ = 0 κ = 3

4

(
5±
√

33
)

Bounce Solutions

φ(τ) =
√

2 sech
(

1
2

√
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

3 sech
(

1
2

√
3τ
)

ψ = 0 κ = −3

ψ(τ) =
√

3 sech (τ) φ = 0 κ = −3

ψ(τ) = − 6
√

2
9∓
√

33 ( sech (w±τ)− 1) φ = 0 κ = 3
4

(
5±
√

33
)

Periodic Kink Solutions

φ(τ) = N(k)k snk
(

1
2N(k)τ

)
ψ = 1 κ = −1

φ(τ) =
√

3
2N(k)k snk

(
1
2

√
3
2N(k)τ

)
ψ = 0 κ = −3

ψ(τ) =
√

3
2N(k)k snk

(√
1
2N(k)τ

)
φ = 0 κ = −3

ψ(τ) = − 6
9∓
√

33

(
N(k)k snk

(√
1
2w±N(k)τ

)
− 1

)
φ = 0 κ = 3

4

(
5±
√

33
)

Periodic Bounce Solutions

φ(τ) =
√

2M(k)k cnk
(

1
2M(k)

√
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

3M(k)k cnk
(

1
2

√
3M(k)τ

)
ψ = 0 κ = −3

ψ(τ) =
√

3M(k)k cnk (M(k)τ) φ = 0 κ = −3

ψ(τ) = − 6
√

2
9∓
√

33 (M(k)k cnk (w±M(k)τ)− 1) φ = 0 κ = 3
4

(
5±
√

33
)

Table 7.3: All solutions for S7 = Sp(2)/Sp(1), with w± = 1
4

√
(19± 3

√
33).
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7.4 Example: Sp(n+ 1)/Sp(n) ≡ S4n+3

We can generalize our results for S7 = Sp(2)/Sp(1) to coset spaces of the form
S4n+3 = Sp(n+1)/Sp(n). As we discussed in appendix A, Sp(n+1)/Sp(n) is a space
of dimension 4n+ 3, where the “+3” dimensions correspond to a sp(1) subalgebra.
If we now identify this subalgebra with span{Ia′′}, the structure constants for this
case satisfy

fia′′b′ = fa′′b′′i = fa′′b′′c′ = 0, (7.68)
similarly to SU(n+ 1)/SU(n). The situation here is a bit more complicated, since
we no longer have fa′′b′′c′′ = 0. This means that α′′1 is also non zero, in addition to
α′2, α′4 and α′′3. Since a′ takes 4n and a′′ takes three different values the relation
between α′2 and α′′3 for this case reads

4n α′2 = 3 α′′3. (7.69)

We can still calculate α′4 from α′2 using (6.46) and (6.46), but we no longer have
α′′3 = 1; instead, we get α′′1 + α′′3 = 1. Luckily, the value of α′′1 only depends on the
normalization µ of the Ia′′ :

α′′1δa′′b′′ = fa′′c′′d′′fb′′c′′d′′ = 4η2εa′′c′′d′′εb′′c′′d′′ = 8µ2δa′′b′′ (7.70)

where we used the canonical commutation relations for sp(1) ≡ su(2). We have
shown in the appendix that α′′3 satisfies a similar condition (equation (A.12)):

α′′3 = 4n µ2 (7.71)

which allows us to eliminate the normalization consant and determine all α’s:

α′2 = 3
4(n+ 2) , α′4 = 2n+ 1

4(n+ 2) , α′1 = 2
n+ 2 , α′′3 = n

n+ 2 (7.72)

If we put these values into our differential equations, we get

φ̈ = 1
4(2 + n)

(
(2(1− n) + 3κ)φ− 3(κ + 3)φψ + 2(2 + n)φ3 + 3φψ2

)
(7.73)

ψ̈ = 1
8(2 + n)

(
4(n+ 2)(κ + 1)ψ − 8(κ + 3)ψ2 − 3(vk + 3)φ2 + 16ψ3 + 6ψφ2

)
.

(7.74)

We will set (ψ(τ), φ(τ)) =
(

Ψ
(

1√
4(n+2)

τ
)
,
√

3
4nΦ

(
1√

4(n+2)
τ
))

, such that

Φ̈ = (2(1− n) + 3κ)Φ− 3(κ + 3)ΦΨ + 3(n+ 2)
2n Φ3 + 3ΦΨ2 (7.75)

Ψ̈ = 2(n+ 2)(κ + 1)Ψ− 4(κ + 3)Ψ2 − 3(κ + 3)
2 Φ2 + 8Ψ3 + 3ΨΦ2, (7.76)
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with the potential

V = − (n+ 2)(κ + 1)Ψ2 + 4(κ + 3)
3 Ψ3 − 2Ψ4 − 3

2Ψ2Φ2 (7.77)

+ (n− 1− 3κ
2 )Φ2 − 3(n+ 2)

8n Φ4 + 3(κ + 3)
2 ΨΦ2.

7.4.1 Some solutions
Again, this more general situation can be analyzed analogouesly to the special case
n = 1. For example, we get

Φ̈ = 3(2 + n)
2n

(
Φ3 − 2n(2n+ 7)

3(n+ 2) Φ
)
, for κ = −3,Ψ = 0 (7.78)

Ψ̈ = 8
(

Ψ3 − n+ 2
2 Ψ

)
, for κ = −3,Φ = 0 (7.79)

instead of (7.49) and (7.50), which is solved by

Φ(τ) =

√√√√2n(2n+ 7)
3(2 + n) tanh

(√
7+2n

2 τ
)
, for κ = −3,Ψ = 0 (7.80)

Ψ(τ) =
√

n+2
2 tanh

(√
2(n+ 2)τ

)
, for κ = −3,Φ = 0 (7.81)

and
Φ̈ = 3(n+ 2)

2n

(
Φ3 − 4n

3 Φ
)
, for κ = −1,Ψ = 1 (7.82)

with the solution

Φ(τ) =
√

4n
3 tanh

(√
n+ 2τ

)
, for κ = −1,Ψ = 1. (7.83)

The radial kink solutions we found before now arise at

κ± = 3
4(3n+ 2±

√
9n2 + 20n+ 4) (7.84)

and the equation for Φ = 0,κ = κ± is

Ψ̈ = 2(n+ 2)(κ± + 1)Ψ− 4(κ± + 3)Ψ2 + 8Ψ3. (7.85)

This is solved by

Ψ±(τ) = −3(κ± + 1)(n+ 2)
4(κ± + 3)

tanh
√(κ± + 1)(n+ 2)

2 τ

− 1
 (7.86)

The solutions for the original equations (without rescaling), as well as for the
analogoues cases (bounce- and periodic solutions) can be found in table 7.4.
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Kink Solutions

φ(τ) = tanh
(

1
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

2n+7
2n+4 tanh

(
1
2

√
2n+7
2n+4τ

)
ψ = 0 κ = −3

ψ(τ) =
√

n+2
2 tanh

(√
1
2τ
)

φ = 0 κ = −3

ψ(τ) = −3(κ+1)(n+2)
4(κ+3)

(
tanh

(
1
2

√
(κ+1)

2 τ
)
− 1

)
φ = 0 κ = κ±

Bounce Solutions

φ(τ) =
√

2 sech
(

1
2

√
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

2n+7
n+2 sech

(
1
2

√
2n+7
n+2 τ

)
ψ = 0 κ = −3

ψ(τ) =
√
n+ 2 sech (τ) φ = 0 κ = −3

ψ(τ) = −3(κ+1)(n+2)
4(κ+3)

√
2
(
sech

(
1
2
√
κ + 1τ

)
− 1

)
φ = 0 κ = κ±

Periodic Kink Solutions

φ(τ) = N(k)k snk
(

1
2N(k)τ

)
ψ = 1 κ = −1

φ(τ) =
√

2n+7
2n+4N(k)k snk

(
1
2

√
2n+7
2n+4N(k)τ

)
ψ = 0 κ = −3

ψ(τ) =
√

n+2
2 N(k)k snk

(√
1
2N(k)τ

)
φ = 0 κ = −3

ψ(τ) = −3(κ+1)(n+2)
4(κ+3)

(
N(k)k snk

(
1
2

√
(κ+1)

2 N(k)τ
)
− 1

)
φ = 0 κ = κ±

Periodic Bounce Solutions

φ(τ) =
√

2M(k)k cnk
(

1
2

√
2τ
)

ψ = 1 κ = −1

φ(τ) =
√

2n+7
n+2 M(k)k cnk

(
1
2

√
2n+7
n+2 τ

)
ψ = 0 κ = −3

ψ(τ) =
√
n+ 2M(k)k cnk (τ) φ = 0 κ = −3

ψ(τ) = −3(κ+1)(n+2)
4(κ+3)

√
2
(
M(k)k cnk

(
1
2
√
κ + 1τ

)
− 1

)
φ = 0 κ = κ±

Table 7.4: All solutions for S4n+3 = Sp(n+ 1)/Sp(n).
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8
Conclusion

This thesis goal was to find solutions to the torsion-full Yang-Mills equations.
This was realized on spaces R × G/H, where the Cartan-Killing metric allows
one to always define a totally antisymmetric torsion proportional to the structure
constants. Choosing a G-invariant ansatz for the gauge connection on the principal
bundle ((R×G/H)×G, π,R×G/H) allowed the simplification of the Yang-Mills
equations to differential equations for matrices Xa. Finally, assuming that the
tangent space of G/H could be decomposed into two distinct sets lead to equations
which are similar to those describing the movement of a single particle moving in a
two-dimensional potential. This allowed the construction of solutions on the odd-
dimensional spheres Sn+1 = SU(n+ 1)/SU(n) as well as S4n+3 = Sp(n+ 1)/Sp(n).

The kind of solutions found are quite common in classical, non-abelian field the-
ories; since they have a localized energy density and are topological stable (they
cannot be continously transformed into the vacuum state of the theory), they are
commonly interpreted as particles. And although these are classical solutions, their
particle like properties are usually not lost under quantization.

The original motivation for studying the torsion-full Yang-Mills equations was that
they appear as part of the field eqations of heterotic supergravity. It would be
interesting to explore how our solutions could be integrated into this framework,
similar to the procedure in [25].

Another possible way to generalize the results would be to consider coset spaces
where the the tangent space of G/H splits into more than two parts, leading to
more differential equations.
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A
The group Sp(n) and its Lie algebra

A.1 Quaternions
The compact symplectic group, or Sp(n), is defined as the group of unitarian
quaternionic matrices. The quaternions are R4 with the usual addition and scalar
multiplication but equipped with an additional multiplication such that the four
base elements {1, i, j, k} satisfy the identities

i2 = j2 = k2 = ijk = −1 (A.1)

which implies the useful properties

ij = k, jk = i ki = j. (A.2)

The quaternionic multiplication is antisymmetric for {i, j, k} (e.g., ij = −ji).

Similar to the complex numbers, one can define the conjugate of a quaternion
q = a1 + bi + cj + dk as

g∗ = a1− bi− cj− dk. (A.3)

This allows us to define the adjoint of a quaternionic matrix analogously to the
adjoint of a complex matrix by transposing the matrix and taking the conjugate
of each entry.
Although quaternions allow a rather compact notation, it is often more intuitive
to work with a matrix representation of the quaternionic algebra, such that the
quaternionic multiplication corresponds to matrix multiplication and the conjugate
corresponds to the usual adjoint of the matrix. Such a representation is given by

{1, iCσ1, iCσ2, iCσ3} (A.4)
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where σi are the usual pauli matrices

σ1 =

0 1

1 0

 , σ2 =

 0 −iC
iC 0

 , σ3 =

1 0

0 −1

 (A.5)

and iC is the complex unit in C (we will drop the subscript when it is obvious from
the context which i is used).

A.2 The Lie algebra sp(n)
Due to the similarity of the complex numbers and the quaternions, the Lie algebra
of Sp(n) can be derived in a similar manner to su(n); it is simply given by

sp(n) =
{
A ∈ Mat(n× n,H) | A+ A† = 0

}
(A.6)

(i.e., the anti hermitian quaternionic matrices). We can now explicitly construct a
basis for sp(n) by following the same recipe that was used to construct a basis for
su(n), with the only difference that when ever we write down a matrix containing
an iC we now have to write down three matrices, one for i, j and k. For example,
a basis for sp(1) is simply given by

{i, j, k} ≡


 0 iC
iC 0

 ,
 0 1

−1 0

 ,
iC 0

0 −iC


 , (A.7)

which immediatly shows that su(2) ≡ sp(1). This allow us to directly write down
a basis for sp(2), by taking the complex matrices in (A.7) and replacing iC with
{i, j, k}:

sp(2) = span
{0 i

i 0

 ,
0 j

j 0

 ,
0 k

k 0

 ,
 0 1

−1 0

 , (A.8)

 i 0

0 0

 ,
 j 0

0 0

 ,
k 0

0 0

 , (A.9)

0 0

0 i

 ,
0 0

0 j

 ,
0 0

0 k

} (A.10)

Notice that we got six diagonal matrices instead of just three because the anti
hermicity condition does allow for mixed entries on the diagonal. We observe that
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both (A.9) and (A.10) are just the generators of sp(1) embedded into one higher
dimension (i.e., they both span a sp(1) sub algebra).

The basis for sp(n + 1) can now be constructed similary to above: Embed the
generators of sp(n) into one higher dimension and add three matrices with just
{i, j, k} in the last diagonal and four matrices similar to (A.8) for every new row,
meaning the generators of sp(n+ 1) are given by matrices of the form

Ii =




sp(n)

0
0

0
0

...

0· · ·0 0 0

, Ia′′ =




0

0
0

0
...

sp(1)· · ·0 0 0

, Ia′ =




0

0
α

...
0

000 β · · ·

where α, β are choosen as in (A.8) such that the matrix is anti hermitian. This
construction implies that the Lie algebra of Sp(n+1)/Sp(n) will always decompose
into a sp(1) sub algebra and a 4n-dimensional space spanned by the new non-
diagonal matrices, leading to a total dimension of (4n + 3). Knowing that Sp(1)
has dimension three, this implies that Sp(n) has total dimension n(2n+ 1).

It is now a simple application of linear algebra to show that the generators Ii, Ia′
and Ia′′ satisfy the commutation relations

fia′′b′ = fa′′b′′i = fa′′b′′c′ = 0, (A.11)

expressed using the structure constants. If we further assume that the generators
Ia′′ are normalized with some constant µ, one can use either (A.2) or the canonical
commutation relations for su(2) to show that∑

c′,d′
fa′′c′d′fa′′c′d′ = 4nµ2. (A.12)
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B
G-invariance condition

In order to describe G-invariant connections, we need a theorem from [23, sec-
tion II-11]. For this, let K be a group of automorphisms of the principal G-bundle
(P , π,M). Let u0 be an arbitrary, but fixed point of P , and let J be the closed
subgroup of K that fixes x0 = π(u0). This means that for every j ∈ J there is an
a ∈ G such that ju0 = u0a, since ju0 is in the same fibre as u0. Now define the
homomorphism λ : J → G by λ(j) = a. Taking the derivative gives an induced Lie
algebra homomorphism, which we will also denote by λ : j→ g. Make the further
assumption that the Lie algebra k of K can be decomposed into k = j ⊕ m, such
that Ad(J)(m) = m. Then the following holds true:

Theorem B.0.1. There is a one-to-one correspondence between the sets of K-
invariant connections on P and the set of linear mappings Λm : m→ g such that

Λm(Ad(j)(X)) = Ad(λ(j))(Λm(X)),∀X ∈ m, j ∈ J. (B.1)

The correspondence is given by

Λ(X) = ωu0(X̃), (B.2)

where ω is the connection one form, X̃ is the vector field on P induced by X ∈ k
and Λ is given by

Λ(X) =

λ(X) if X ∈ j

Λm(X) if X ∈ m
(B.3)

In our situation we consider the trivial principal fibre bundle ((R×G/H)×G, π,R×
G/H) with structure group G. Since H is a closed subgroup of G the Lie algebra
of g decomposes into

g = m⊕ h (B.4)
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If we now identify J ≡ H and K ≡ G we have the situation described above. Since
H is just a subgroup of the gauge group G, the homomorphism λ is trivial. Using
the notation used in chapter 6, this means that the connection

A = Xie
i +Xae

a (B.5)

is given by
Xi

..= Λ(Ii) = λ(Ii) = Ii (B.6)
and

Xa
..= Λ(Ia) = XB

a IB = X i
aIi +Xb

aIb = Xb
aIb, (B.7)

if we assume that X i
a = 0. We still need to evaluate (B.1). For this, consider

X = Ia and j = exp(tIi):

(B.1) =⇒ Λ (Ad(exp(tIi)(Ia)) = Ad(exp(tIi))(Λ(Ia)) (B.8)

The adjoint representation was defined by Ad(g) = (Adg)∗1. If we write Λ(Ia) =
Xa = ∂

∂s exp sXa

∣∣∣∣
s=0

, the right hand side is given by

Ad(exp(tIi))(Λ(Ia)) = ∂

∂s
(exp(tIi) exp(sXa) exp(−tIi))

∣∣∣∣∣
s = 0

. (B.9)

If we differentiate this with respect to t we get the commutator [Ii, Xa]. For the
left hand side, we get

Λ(Ad(exp(tIi))(Ia)) = Λ
(
∂

∂s
(exp(tIi) exp(sIa) exp(−tIi))

∣∣∣∣∣
s = 0

)
. (B.10)

Since Λ is linear, differentiating this yields

∂

∂t
Λ(Ad(exp(tIi))(Ia))

∣∣∣∣∣
t = 0

= Λ
(
∂

∂t
Ad(exp(tIi))(Ia))

∣∣∣∣∣
t = 0

)
(B.11)

= Λ ([Ii, Ia]) (B.12)
= Λ

(
f biaIb

)
(B.13)

= f biaΛ (Ib) (B.14)
= f biaXb. (B.15)

This means that the G-invariance of A implies that the Xa have to satisfy

[Ii, Xa] = f biaXb, (B.16)

which is the condition imposed in (6.21).



C
Yang-Mills equations on α-Sasakian manifolds

SupposeM = S5 ≡ SU(3)/SU(2), equipped with generators Ĩa, Ĩi as in chapter 6,
such that the Cartan-Killing metric is given by g̃ab = δab. ThanM is an α-Sasakian
manifold with α = −1

2 (cf. [13,14]). It has been argued in the afformentioned paper
that different values of α can be achieved by rescaling the generators Ĩa, and that
such a rescaling propagates to a rescaling of the basis {Ea}, {ea}. And although
equations (6.40) are invariant under such a rescaling, this invariance is not manifest
in the derived equations (6.54),(6.55) for φ and ψ, since we explicitly used that
g̃ab = δab.

Assume now that we split the indices as in section 7.1 (that is, {a′} = {2, 3, 4, 5},
{a′′} = {1}), and let the metric satisfy

ga′B = 1
β2 δa′B, g1B = 1

γ2 δ1B. (C.1)

This corresponds to a rescaling

Ĩa′ = βIa′ , Ĩ1 = γI1 (C.2)

of the original generators Ĩa, which implies an α-Sasakian structure with

α = − γ

2β2 . (C.3)

The structure constants for the new generators still satisfy

f c
′

a′b′ = f 1
ia′ = fA11 = faij = 0, (C.4)
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which means that the metric1 is given by

ga′b′ = 2f 1
a′c′f

c′

1b′︸ ︷︷ ︸
..=α′

+ 2f ia′c′f c
′

ib′︸ ︷︷ ︸
..=β−2−α′

, g11 = 2fd′1c′f
c′

d′1︸ ︷︷ ︸
..=α′′

. (C.5)

Using this metric, the structure constants f cab are no longer totally antisymmetric;
instead, we get

f c
′

a1 = −β2

γ2 f
1
ac′ (C.6)

when exchanging “mixed” indices.

We can now re-derive equations (6.54),(6.55) for this situation, starting from (6.40):

Ẍc′ =
(

1
2(κ + 1)f c′abfabe + fac

′jf eaj
)
Xe − 1

2(κ + 1)f c′ab[Xa, Xb]

+ fac
′b[Xa, Xb]− [Xa, [Xa, Xc′ ]]

=
(

1
2(κ + 1)(f c′a′b′fa

′b′e′ + 2f c′a′1fa
′1e′ + f c

′

11f
11e′) + fa

′c′jf e
′

a′j + f 1c′jf e
′

1j

)
Xe′

+
(

1
2(κ + 1)(f c′a′b′fa

′b′1 + 2f c′a′1fa
′11 + f c

′

11f
111) + fa

′c′jf 1
a′j + f 1c′jf 1

1j

)
X1

− 1
2(κ + 1)

(
f c
′

a′b′ [Xa′ , Xb′ ] + 2f c′a′1[Xa′ , X1] + f c
′

11[X1, X1]
)

+ fa
′c′b′ [Xa′ , Xb′ ] + 2fa′c′1[Xa′ , X1] + f 1c′1[X1, X1]

− [Xa′ , [Xa′ , Xc′ ]]− [X1, [X1, Xc′ ]]. (C.7)

A lot of the terms vanish. If we also pull down some of the indices to get the
structure constants into their natural index position, we get

β2Ẍc′ =
(
(κ + 1)β2γ2f c

′

a′1f
e′

a′1 + β4f ja′c′f
e′

a′j

)
Xe′

− (κ + 1)β2γ2f c
′

a′1[Xa′ , X1] + 2β4f 1
a′c′ [Xa′ , X1]

− β4[Xa′ , [Xa′ , Xc′ ]]− β2γ2[X1, [X1, Xc′ ]]
=
(
(κ + 1)β4f 1

c′a′f
a′

1e′ − β4f jc′a′f
a′

je′

)
Xe′

+ (κ + 1)β4f 1
a′c′ [Xa′ , X1] + 2β4f 1

a′c′ [Xa′ , X1]
− β4[Xa′ , [Xa′ , Xc′ ]]− β2γ2[X1, [X1, Xc′ ]]

= 1
2β

2
(
(κ + 2)β2α′ − 1

)
Xc′

+ (κ + 3)β4f 1
a′c′ [Xa′ , X1]

− β4[Xa′ , [Xa′ , Xc′ ]]− β2γ2[X1, [X1, Xc′ ]]

If we make an ansatz for Xa analogous to the one in section 6.3, that is

Xa′ = ΦIa′ , X1 = ΨI1, (C.8)
1Here, α′ and α′′ do not refer to the α-Sasaki structure; they are defined analogous to section

6.3, where we have the freedom to pull the indices up with g̃ab = δab.
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our equations for this case read

Φ̈Ia′ = 1
2β

2
(
(κ + 2)β2α′ − 1

)
ΦIa′

+ (κ + 3)β2f 1
a′c′ [ΦIa′ ,ΨI1]

− β2[ΦIa′ , [ΦIa′ ,ΦIc′ ]]− γ2[ΨI1, [ΨI1,ΦIc′ ]]
= 1

2

(
(κ + 2)β2α′ − 1

)
ΦIa′

+ (κ + 3)β2 f 1
a′c′f

e′

a′1︸ ︷︷ ︸
=−1

2α
′δc′e′

ΦΨIe′

− β2(f ia′c′f e
′

a′i + f 1
a′c′f

e′

a′1)︸ ︷︷ ︸
=− 1

2β2 δc′e′

Φ3Ie′ − γ2 fd
′

1c′f
e′

1d′︸ ︷︷ ︸
=− β2

2γ2 α
′δc′e′

Ψ2ΦIe′

which is equivalent to

Φ̈ = 1
2
(
(κ + 2)β2α′ − 1

)
Φ− κ + 3

2 β2α′ΦΨ + 1
2Φ3 + 1

2β
2α′Ψ2Φ. (C.9)

The α′ appearing in (C.9) is the one for the new basis; it can be calculated from
the one in the old basis (here, f̃ cab are the structure constants with respect to the
original basis, no sum over c′):

α̃′
(7.4)= 1

2 = 2f̃ 1
c′a′ f̃

a′

1c′ = 2β2f 1
c′a′f

a′

1c′ = β2α′, (C.10)

which means that we indeed get our original equation (7.5),

Φ̈ = κ
4 Φ− κ + 3

4 ΦΨ + 1
2Φ3 + 1

4Ψ2Φ. (C.11)

The equation for Ψ can be derived analogously.
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D
Kink Equations

D.1 Transverse and radial kink
All the analytical solutions we find arise from some variation of the kink-equation

Φ̈ = 2(Φ3 − Φ) (D.1)

which has the non-periodic solution

Φ(τ) = tanh τ. (D.2)

This result can be generalized by considering a rescaled function

Φ(τ) = µ tanh(λτ), (D.3)

which then solves the more general equation

Φ̈ = 2λ2

µ2 (Φ3 − µ2Φ). (D.4)

Solutions of this form will always mediate between two values ±Φmax; they are
called transverse kinks. We will also encounter situations where we expect solutions
that run from 0 to Φmax (i.e., a radial kink). These will be of the form

Φ(τ) = µ(tanh(λτ)− 1), (D.5)

solving the differential equation

Φ̈ = 2λ2

µ2 (Φ3 + 3µΦ2 + 2µ2Φ). (D.6)

Notice that this equation has only two free parameters, which means that not every
third order polynomial can be brought into this form.
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D.2 Periodic kink solutions
The hyperbolic tangens is actually the non-periodic limit k → 1 of the more general
solution to equation (D.1)

Φ(τ) = N(k)k snk (N(k)τ) (D.7)

where we set N(k) ..=
√

2
1+k2 .

It has a periodicity of
L = 2

√
2(1 + k2)Kk (D.8)

where Kk is the elliptic integral

Kk =
∫ π/2

0

dϕ√
1− k2 sin2(ϕ)

. (D.9)

This means that we can interpret our equations as equations on S1×G/H instead
of R × G/H, where we then find periodic solutions. These can be understood
as chains of alternating kinks and anti-kinks, equally spaced around the circle.
See [29, chapter 11.2] for further information on these solutions and their physical
interpretation. Similarly to above, we will have to rescale our function to fit our
equations, meaning that

Φ̈ = 2λ2

µ2 (Φ3 − µ2Φ). (D.10)

has the general (periodic) solution

Φ(τ) = µN(k)k snk (λN(k)τ) (D.11)

D.3 Bounce solutions
We can also consider the case where our metric has Lorentzian signature. This
corresponds to a transformation

τ → iτ (D.12)

which flips the sign of our differential equations. These new equations will then be
variations of

Φ̈ = −2(Φ3 + Φ) (D.13)

which has the non-periodic solution

Φ(τ) =
√

2 sech(
√

2τ) (D.14)
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This means that we simply need to replace tanh(τ)→
√

2 sech(
√

2τ) in our original
solutions to get solutions for this case. This applies to the rescaled function as well,
meaning that

Φ(τ) =
√

2µ sech(λ
√

2τ) (D.15)

solves
Φ̈ = −2λ2

µ2 (Φ3 − µ2Φ). (D.16)

The difference between Kink and Bounce solutions is that the latter will no longer
mediate between two critical points; Since the hyperbolic secant takes the same
value for τ → ±∞, they will instead start at the origin (or some other value, see
below), “bounc1 across a critical point, and than return to their inital value. To
describe a bounce from a different value, one can look at

Φ(τ) = µ(
√

2 sech(λ
√

2τ)− 1), (D.17)

solving the differential equation

Φ̈ = −2λ2

µ2 (Φ3 + 3µΦ2 + 2µ2Φ). (D.18)

D.4 Periodic bounce solutions
Just as the hyperbolic tangens is the non-periodic limit of the Jacobi elliptic func-
tion sn, the hyperbolic secant is the non-periodic limit k → 1 of the general solution
to equation (D.13):

Φ(τ) =
√

2M(k)k cnk
(√

2M(k)τ
)

(D.19)

now with M(k) ..=
√

1
2k2−1 .

It has the periodicity
L = 2

√
4k2 − 2Kk. (D.20)

This means that (D.15) has the general solution

Φ(τ) = µ
√

2M(k)k cnk
(
λ
√

2M(k)τ
)
. (D.21)
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E
Numerical Solutions

All numerical solutions were created with Mathematica 10.0 using code similar to
this:

(*RHS of the differential equations for phi, psi*)
Phidotdot[Psi_, Phi_, k_, ap_, apone_, aptwo_, apthree_, apfour_,

apfive_] := (1/2 (k + 2) ap - 1/2) Phi -
1/2 (k + 3) (Phi^2 apone + 2 Phi*Psi*aptwo + Psi^2 apthree) +
Phi^3 (apone + aptwo + apfour) +
Phi*Psi^2 (aptwo + apthree + apfive);

Psidotdot[Psi_, Phi_, k_, ap_, apone_, aptwo_, apthree_, apfour_,
apfive_] := (1/2 (k + 2) ap - 1/2) Psi -
1/2 (k + 3) (Psi^2 apone + 2 Phi*Psi*aptwo + Phi^2 apthree) +
Psi^3 (apone + aptwo + apfour) +
Psi*Phi^2 (aptwo + apthree + apfive);

(* input values for all alpha’,alpha’’ *)
aprimes = {3/(2 (n + 2)), 0, 3/(4 (n + 2)), 0, (2 n + 1)/(4 (n + 2)),

0};
adprimes = {1, 2/(n + 2), 0, (n)/(n + 2), 0, 0};

(* Rescalings tau -> resc[1]tau,
psi -> resc[2]psi, phi -> resc[3]phi *)

resc = {Sqrt[1/(4 (n + 2))], 1, Sqrt[3/(4 n)]};

(* Rescaled equations for these values *)
PhiSpn[Psi_, Phi_, k_, n_] :=

1/resc[[1]]^2*
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Phidotdot[resc[[2]] Psi, resc[[3]] Phi, k, aprimes[[1]],
aprimes[[2]], aprimes[[3]], aprimes[[4]], aprimes[[5]],
aprimes[[6]]]/resc[[3]];

PsiSpn[Psi_, Phi_, k_, n_] :=
1/resc[[1]]^2*
Psidotdot[resc[[2]] Psi, resc[[3]] Phi, k, adprimes[[1]],

adprimes[[2]], adprimes[[3]], adprimes[[4]], adprimes[[5]],
adprimes[[6]]]/resc[[2]];

(* Specify starting and end point {psi,phi} for numerical solution,
as well as \[Kappa],n and maximal t parameter*)
{psi0,phi0} = {1, -Sqrt[4/3]};
{psi1, phi1} = {1, Sqrt[4/3]};
k = 3/5;
n = 1;
tmax = 2.3;

(* solve equations *)
sol =
NDSolve[{Phi’’[t] == PhiSpn[Psi[t], Phi[t], k, n],

Psi’’[t] == PsiSpn[Psi[t], Phi[t], k, n], Phi[0] == phi0,
Psi[0] == psi0, Phi[tmax] == phi1, Psi[tmax] == psi1}, {Phi,
Psi}, {t, 0, tmax},

Method -> {"Shooting",
"StartingInitialConditions" -> {Phi’[0] == 0, Psi’[0] == 0}}]

The axis labels in the illustrations where created utilizing the MaTex-package,
available at https://github.com/szhorvat/MaTeX.

https://github.com/szhorvat/MaTeX
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(a) κ =
√

5, tmax = 5 (b) κ = 1, tmax = 9

(c) κ = 0, tmax = 11 (d) κ = − 3
2 , tmax = 5.5

(e) κ = −
√

5, tmax = 3.3 (f) κ = −3, tmax = 2.5

Figure E.1: Numerical Solutions for S5 = SU(3)/SU(2) between the two fixed
critical points at (Ψ,Φ) = (1

2 ,±1) for various values of κ.
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(a) κ = 1, tmax = 7.2 (b) κ ≈ 4.75, tmax = 4.6

Figure E.2: Numerical Solutions for S5 = SU(3)/SU(2) starting at the origin.

(a) κ = 3
5 , tmax = 2.3 (b) κ = −3, tmax = 3.8

Figure E.3: Numerical Solutions for S7 = Sp(2)/Sp(1).
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(a) κ = 3
4 (5 +

√
33), tmax = 0.4 (b) κ = −2 +

√
13, tmax = 1.1

(c) κ = 3
5 , tmax = 2.3 (d) κ = 3

4 (5−
√

33), tmax = 3.5

(e) κ = −3, tmax = 2.1 (f) κ = −2−
√

13, tmax = 0.7

Figure E.4: Numerical Solutions for S7 = Sp(2)/Sp(1) between the two fixed
critical points at (Ψ,Φ) = (1,±

√
4
3) for various values of κ.
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