
A Quantum-Thermodynamic Approach to Transport

Phenomena

Diplomarbeit von

Hendrik Weimer

02.07.2007

Hauptberichter: Prof. Dr. Günter Mahler

Mitberichter: Prof. Dr. Udo Seifert

1. Institut für Theoretische Physik

Universität Stuttgart

Pfaffenwaldring 57, 70550 Stuttgart
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1. Introduction

Advances in miniaturization have been an important driving force for technological
progress during the last decades. Transistors on computer chips are getting smaller and
smaller, new materials and medical treatments based on nanotechnology have become
available, and it seems that there is no end in sight. However, there are fundamen-
tal physical constraints on how far this miniaturization process may go. For example,
computational building blocks cannot be smaller than the size of an atom, information
cannot be transmitted using less than a photon.

In this realm, every physical phenomenon has to be described by quantum mechanics.
While the theory has been around now for many decades and has passed all experimental
tests so far, there are still many open problems. The greatest challenge in quantum
mechanics is the fact that computational problems usually require exponentially more
time when incrasing the number of subsystems within a quantum object.

This situation is somewhat akin to the situation in physics before the advent of power-
ful computers. Already in the 19th century physicists began to tackle systems consisting
of 1023 particles, by giving up the desire to track each individual particle, but instead
aiming for a holistic description. This led to the highly successful theory of classical
thermodynamics.

Recently, thermodynamic concepts have been found to be valid for certain classes of
quantum systems [Gemmer04]. Using similar ideas, it might be possible to describe the
essential properties of other systems as well, especially far out of equilibrium.

This thesis presents a view on transport phenomena based on the concepts developed
in quantum thermodynamics. In this thesis, the term “transport” shall not only refer
to transport in the thermodynamic sense concerning quantities like work and heat, but
also to transport of information (or lack thereof) and similar concepts. Being a non-
equilibrium property by definition, transport behavior is fundamental for characterizing
dynamical properties of a system, e.g., when transmitting information or calculating the
efficiency of an engine.

Following this introduction and after a discussion of some basic concepts, new defi-
nitions for work and heat in quantum systems are presented in chapter 3. Chapter 4
contains an analysis of heat transport in a class of magnetic systems. Subsequently, a
novel procedure for temperature control of an atomic system is presented, which is based
on the properties of entropy transport in cavity quantum electrodynamics.
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2. Basic Concepts

2.1. Quantum Mechanics

2.1.1. Postulates

The fundamental postulates of quantum mechanics are (see e.g [Cohen-Tannoudji77;
Ballentine98])

1. The pure state of a system |ψ〉 is represented by a complex Hilbert space vector
with unit norm.

2. The Hilbert space of a composite system is the tensor product of the Hilbert
spaces of the component systems, with operators acting on only one subsystem
not affecting the other.

3. Observable quantities are described by Hermitian operators.

4. Changes in the state with respect to time are generated by the operator corre-
sponding to the total energy of a system, changes in position of a particle are
generated by the operator corresponding to its momentum.

These four postulates are all that is required to generate a consistent theory with a rich
variety of amazing phenomena, which revolutionized 20th-century physics.

2.1.2. Dynamics

The first postulate mandates the dynamics of a quantum system to be norm-preserving.
Therefore, it has to be represented by a unitary operator. We then may write

|ψ(t+ ∆t)〉 = Û(t,∆t)|ψ(t)〉. (2.1)

Using a theorem on one-parameter unitary groups (cf. [Blank94]), there exists an in-
finitesimal generator Ĥ such that

Û(t,∆t) = 1̂ − i

~
Ĥ(t)∆t+O(∆t2). (2.2)

The fourth postulate tells us that the operator Ĥ corresponds to the energy of the system.
The constant ~ defines the relation of the energy and time scales. In the following, it
will be set to one. Inserting (2.2) into (2.1) brings us to

|ψ(t+ ∆t)〉 = (1̂ − iĤ∆t)|ψ(t)〉 +O(∆t2). (2.3)

3



2. Basic Concepts

Performing the limit ∆t→ 0 results in

i
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉, (2.4)

the famous Schrödinger equation.

2.1.3. Interaction picture

For systems involving a Hamiltonian consisting of a time-independent Ĥ0 and a time-
dependent part V̂ (t)

Ĥ = Ĥ0 + V̂ (t), (2.5)

the dynamics can be simplified if the eigensystem of Ĥ0 is known. We then may introduce
the state in the interaction picture as

|ψI(t)〉 = eiĤ0t|ψ(t)〉. (2.6)

Solving for |ψ(t)〉 and plugging the result into the Schrödinger equation (2.4) leads to

i
d

dt
|ψI(t)〉 = V̂I(t)|ψI(t)〉, (2.7)

with

V̂I(t) = eiĤ0tV̂ (t)e−iĤ0t. (2.8)

2.1.4. Coordinate representation

Analogous to Sec. 2.1.2 it is possible to derive the coordinate representation of quantum
mechanics from the fourth postulate, resulting in

−i
∂

∂x
|ψ(x, t)〉 = p̂|ψ(x, t)〉. (2.9)

Therefore, in the coordinate representation the momentum operator p̂ takes the form

p̂ = −i
∂

∂x
. (2.10)

This leads to the canonical commutator relation

[x̂, p̂]|ψ〉 = i|ψ〉. (2.11)

.
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2.1. Quantum Mechanics

2.1.5. Statistical properties

We consider a state

|ψ〉 =
∑

ci|i〉. (2.12)

Using the tensor product structure established in the second postulate it is possible to
derive the following properties of |ψ〉 (cf. [Zurek05])

• Measuring the state of a quantum system is a statistical process, with different
probabilities for different outcomes.

• The probability pi to find |ψ〉 in the state |i〉 is given by

pi = |ci|2, (2.13)

which is known as Born’s rule.

We now look at the statistical properties of an observable O, which according to the
second postulate is represented by a Hermitian operator Ô. Working in the eigenbasis
of Ô, we look at the quantity

〈ψ|Ô|ψ〉 =
∑

ijk

〈i|ciOk|k〉〈k|cj |j〉 =
∑

k

pkOk. (2.14)

Therefore, 〈ψ|Ô|ψ〉 is the expectation value of O. Another consequence is that the possi-
ble outcomes of a measurement of an observable are the eigenvalues of its corresponding
operator.

2.1.6. Density operator

In many cases one does not have pure states, but a statistical mixture of pure states, typ-
ically due to the system being entangled with the outside world. We therefore introduce
the density operator

ρ̂ =
∑

i

pi|ψi〉〈ψi|, (2.15)

where pi is the probability to find the system in the pure state |ψi〉. ρ̂ is a semi-
positive operator with unit trace. The dynamics of ρ̂ can be calculated by inserting the
Schrödinger equation (2.4) into the time-derivative of (2.15), resulting in

d

dt
ρ̂ = −i[Ĥ, ρ̂]. (2.16)

The properties of a single subsystem of a composite Hilbert space are given by the
reduced density matrix

ρ̂1 = Tr2 {ρ̂} =
∑

i,i′

∑

j

〈ij|ρ̂|i′j〉|i〉〈i′|, (2.17)
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2. Basic Concepts

where ρ̂1 is the reduced density matrix for subsystem 1. The sum over i and i′ runs
over states in the Hilbert space associated with subsystem 1, while the sum over j is
associated with the Hilbert space of subsystem 2.

An important quantity is the purity of a system

P = Tr
{

ρ̂2
}

. (2.18)

For pure states, P is always one, whereas for the maximally mixed state of dimension n,

ρ̂max =
1

n
1̂ (2.19)

P is at its minimal value, which is Pmin = 1/n.

A concept similar to the purity is the von Neumann entropy, which is defined as

S = −Tr {ρ̂ log ρ̂} . (2.20)

For diagonal states the von Neumann entropy is equal to the Shannon entropy. An
important theorem by Araki and Lieb [Araki70] is the triangle inequality

|S(ρ̂1) − S(ρ̂2)| ≤ S(ρ̂) ≤ S(ρ̂1) + S(ρ̂2). (2.21)

This implies that if the total system is pure (i.e., S(ρ̂) = 0) the reduced entropies
are equal, no matter how the partition into subsystems is performed. On the other
hand, if S(ρ̂1) = S(ρ̂2) > 0 the total state cannot be written as a product state of
the two subsystems. This is due to the entanglement between both subsystems, which
contributes to the local entropies.

2.1.7. Harmonic oscillator

The Hamiltonian of the one-dimensional harmonic oscillator is given by

Ĥ =
p̂2

2m
+
m

2
ω2x̂2, (2.22)

with m being the mass and ω is the eigenfrequency. Using the operators

â =

√

mω

2

(

x̂+
i

mω
p̂

)

(2.23)

â† =

√

mω

2

(

x̂− i

mω
p̂

)

(2.24)

the Hamiltonian can be written in the simple form

Ĥ = ω

(

â†â+
1

2

)

. (2.25)
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2.1. Quantum Mechanics

The eigenstates of n̂ = â†â form a basis in which each basis vector |n〉 denotes the
number of excitations of energy ω stored in the oscillator. The basis |n〉 is often referred
to as the “Fock basis”. Since

â†|n〉 =
√
n+ 1|n+ 1〉 (2.26)

â|n〉 =
√
n|n− 1〉, (2.27)

the operators â† and â are called creation and annihilation operator, respectively. One
further important property is the commutator relation

[â, â†] = 1̂. (2.28)

Of particular interest are the eigenstates of the annihilation operator, i.e. solutions to
the eigenvalue equation

â|α〉 = α|α〉. (2.29)

In the Fock basis |α〉 is given by

|α〉 = e−|α|2/2
∑

n

αn

√
n!
|n〉. (2.30)

It is easy to check that these states give rise to a Poisson distribution, i.e.

pn = e−|α|2 |α|2n

n!
, (2.31)

having the properties

〈n〉 = |α|2 (2.32)

〈n2〉 − 〈n〉2 = |α|2. (2.33)

In coordinate representation |α〉 is always a Gaussian wave-packet, which is known to
have the minimum uncertainty product ∆x∆p. Furthermore, the uncertainty product
does not change in time, therefore these states are named “coherent states”. Another
noteworthy property is that both the mean of position and of momentum evolves ac-
cording to the solution of the classical harmonic oscillator.

2.1.8. Special operators

In any finite and discrete Hilbert space we may introduce a complete set of orthonormal
states |i〉, i.e.,

〈i|j〉 = δij
∑

i

|i〉〈i| = 1̂. (2.34)

Operators may be represented as a linear combination of the transition operators

P̂ij = |i〉〈j|. (2.35)

7



2. Basic Concepts

For a two-level system it is often useful to express operators in terms of the SU(2)
generators, which are the Pauli matrices

σ̂x =

(

1
1

)

σ̂y =

(

−i
i

)

σ̂z =

(

1
−1

)

. (2.36)

Together with the identity matrix they form a complete basis for Hermitian operators.
Furthermore, we define for convenience the transition operators

σ̂+ = P̂12

σ̂− = P̂21. (2.37)

2.2. Classical Thermodynamics

2.2.1. Fundamentals

Many physically relevant systems, both classical and quantum, consist of a large number
of particles. Finding the solution of the equations of motion for such systems is typically
either uninteresting or computationally unfeasible, or both. Therefore, classical ther-
modynamics aims to find a description of the system consisting of only a few variables,
while still being able to reproduce the essential properties of the system.

There are various ways how classical thermodynamics may be introduced. In the
following we use the ergodic hypothesis as the fundamental principle, which states (see,
e.g., [Schwabl00])

“For an isolated system S any microstate α compatible with external con-
straints such as energy or volume is equally probable.”

For a system having Ω accessible microstates we introduce the entropy

S = kB log Ω. (2.38)

Again, the constant kB defines only a relation between measurement scales and thus will
be set to one in the following. An important property is that for isolated systems, S is
at its maximum value compatible with external constraints.

2.2.2. Temperature and the Boltzmann distribution

Suppose we have two subsystems S1 and S2 being in contact in such a way that only
energy may be exchanged. The total energy E is taken to be the sum of the energies of
the subsystems

E = E1 + E2. (2.39)
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2.2. Classical Thermodynamics

Using the fundamental principle the entropy is given by

S(E) ≈ S1(E1) + S2(E − E1), (2.40)

which means that the entropy is an additive quantity. Differentiation with respect to E1

yields
∂

∂E1
[S1(E1) + S2(E − E1)] = 0, (2.41)

since S(E) does not depend on E1. This may be rewritten as

∂S1

∂E1
=
∂S2

∂E2
. (2.42)

Therefore, there exists a quantity that is equal in both subsystems, which we define as
the inverse temperature β. One can perform the same calculation for a system where
both energy and volume can be exchanged, finally resulting in

∂S1

∂V1
=
∂S2

∂V2
≡ βp, (2.43)

with p being the pressure.

If S2 is much larger than S1, we can derive an explicit formula for the probability to
find S1 in a microstate α. We consider

pα =
Ω2(E2)

Ωtot(E)
=

eS2(E−Eα)

Ωtot(E)
, (2.44)

with Eα being the local energy of the microstate α. Performing a Taylor expansion of
S2(E − Eα) in Eα gives

S2(E − Eα) ≈ S2(E) − βEα, (2.45)

finally leading to the Boltzmann distribution

pα = Z−1e−βEα . (2.46)

The partition function Z can be obtained due to the pα being normalized, resulting in

Z =
∑

α

e−βEα . (2.47)

2.2.3. The laws of thermodynamics

We now consider a system with an energy E and a volume V . The complete differential
of the entropy S(E,V ) is given by

dS =
∂S

∂E
dE +

∂S

∂V
dV =

1

T
dE +

p

T
dV, (2.48)

9



2. Basic Concepts

with T = β−1. Solving for dE is possible since the entropy is a monotonic function of
the temperature, resulting in

dE = TdS − pdV. (2.49)

If we want to write dE in terms of work and heat energy conservation mandates

dE = d̄Q+ d̄W, (2.50)

which is the first law of thermodynamics. Here, the symbol d̄ denotes that these quan-
tities are not complete differentials. The identification

d̄Q = TdS

d̄W = −pdV (2.51)

depends on how the changes in work and heat are performed, i.e., on the details of the
underlying thermodynamic process. For reversible processes (2.51) is valid.

We now consider a system under some external constraints X, Y . If we remove the
constraint Y the system will eventually reach a new macrostate compatible with the new
set of constraints. The initial entropy

Si = S(E,X, Y ) (2.52)

and the final entropy

Sf = S(E,X) (2.53)

will not be the same in general, which may be expressed by recalling that the entropy is
at its maximum value compatible with the constraints. This leads to

∆S = Sf − Si ≥ 0, (2.54)

which is the second law of thermodynamics. In a nutshell, it says that for every system
the removal of a constraint will never decrease entropy.

2.3. Emergence of Thermodynamics within Quantum Systems

As seen in the previous sections, both quantum mechanics and thermodynamics are
theories with statistical properties. However, the main difference is that in quantum
mechanics the probabilities play a fundamental role, whereas in thermodynamics the
probabilities should emerge from an underlying microscopic theory. As the derivation of
thermodynamics from purely classical mechanics has proven to be unsatisfactory, and
quantum mechanics already features statistical properties, which classical mechanics
is lacking, it is tempting to view thermodynamics as a theory emerging from quantum
mechanics under some circumstances. However, it is far less clear in which situations this
is possible, that is, when and how quantum and thermodynamic probabilities become
equal.

10



2.3. Emergence of Thermodynamics within Quantum Systems

⊗ n ⊗

n1

n2

n3

∆E

∆E

∆E

(a) (b)

Figure 2.1.: Typical scenarios a two-level system coupled to an environment under mi-
crocanonical (a) and canonical (b) conditions. The ni denote the degeneracy
of the levels.

2.3.1. Basic idea

The main problem for thermodynamic behavior in quantum systems is that of irre-
versibility. Irreversible dynamics is necessary as thermodynamic systems always re-
lax towards an equilibrium state and stay there for all times. It is obvious that the
Schrödinger equation cannot account for irreversible behavior as it is invariant under
time-reversal. However, since the Schrödinger equation describes the dynamics of the
full system, it is still possible that the dynamics within a subsystem is indeed irreversible
[Gemmer04].

It seems natural to partition the whole system into the system proper and the envi-
ronment. Thus the total Hamiltonian may be written as

Ĥ = ĤS + ĤE + ĤSE, (2.55)

where ĤS acts only on the system, ĤE acts only on the environment and ĤSE contains
the interaction between system and environment. In order to actually be able to speak
of an environment, its Hilbert space must be sufficiently larger than the Hilbert space
of the system. The structure of ĤSE determines what type of environment is realized,
e.g., microcanonical (no energy exchange allowed) or canonical (energy change allowed)
conditions. Typical model systems are depicted in Fig. 2.1.

2.3.2. Observations

By introducing a probability measure for the total Hilbert space one can show that the
local purity of a gas-container system under microcanonical conditions [Fig. 2.1(a)] is at
its maximum, thus proving the second law [Gemmer01b]. Furthermore, under canonical
coupling [Fig. 2.1(b)] the system will be Boltzmann distributed (2.46), provided that
the degeneracy in the environment grows exponentially [Gemmer03], i.e,

ni ∝ eβEi . (2.56)

Here, Ei is the energy of the level i and β is the spectral temperature of the container.
While the system will be in a canonical state with temperature β, the environment will
typically be in a non-thermal state [Borowski03].
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3. Work and Heat in Quantum Systems

The formulation of classical thermodynamics was one of the most important achieve-
ments of the 19th century, as it allowed to investigate a large variety of phenomena,
including the workings of thermodynamical machines. The first law of thermodynamics,

dU = d̄W + d̄Q, (3.1)

combined with definitions for the infinitesimal change in work d̄W and heat d̄Q and the
second law is all that is required for computing important quantities like the efficiency
of a process.

In the quantum realm, the classification of work and heat is less clear. So far, it has
been mainly derived from the change of the total energy expectation value

dU = dTr
{

Ĥρ̂
}

= Tr
{

ρ̂dĤ + Ĥdρ̂
}

, (3.2)

and defining the first term as d̄W and the second as d̄Q [Alicki79; Kosloff84; Kieu04;
Henrich06]. However, such a classification is problematic, as can be seen in a simple
example. Consider the Hamiltonian

Ĥ =
∆E

2
σ̂z + gσ̂x, (3.3)

where σ̂z describes the original energy eigenbasis of a system and gσ̂x is an external time-
independent driving force. According to (3.2) there is obviously no work performed on
the system. However, if we look at the time-evolution of a system initially in its ground
state, the probability to find it in the excited state is given by

pe(t) = 2g2
1 − cos

(

√

∆E2 + 4g2t
)

∆E2 + 4g2
(3.4)

As shown in Fig. 3.1 this may even lead to inversion in the system, hinting at the
possibility to extract work from the system. While in some cases this problem may
be fixed by regarding only processes in which the fields are switched on and off, the
microscopic foundation of Eq. (3.2) is rather unclear.

Nevertheless thermodynamic behavior may occur even in small quantum systems
[Gemmer04], so in principle it should be possible to obtain d̄W and d̄Q even there.
In the following, we will present a definition that does not suffer from the problems
above.

This chapter is organized as follows. We first discuss the effective local dynamics of
a bipartite quantum system. Based upon what an experimentalist would observe, we

13



3. Work and Heat in Quantum Systems

t[∆E/~]

p
e
(t

)

0
0

0.2

0.4

0.6

π
2 π 3

2π 2π

Figure 3.1.: Probability to find a system driven by a time-independent Hamiltonian in
the excited state of the original eigenbasis. (∆E = 1, g = 0.6)

give a definition for the local energy. We then show that the change in local energy
can always be split into a part that coincides with a change in entropy and in a part
which does not. Corresponding to classical thermodynamics, the former is called “heat”
and the latter is called “work”. Our definitions for the local heat and work do not only
depend on local properties, but on properties of the whole system. We explicitly give
formulas to calculate the non-local quantities once the time evolution of the full system
is known. Finally, some examples will be given.

3.1. The LEMBAS principle [Weimer07]

We consider an autonomous bipartite system described by the Hamiltonian

Ĥ = ĤA + ĤB + ĤAB, (3.5)

where ĤA acts only on subsystem A and ĤB only on B, respectively. In agreement
with the results from classical thermodynamics, we define the infinitesimal work d̄W
performed on A as the change in its internal energy dU that does not change its local
von Neumann entropy, i.e.

dS = 0 ⇔ d̄W = dU. (3.6)

The remainder is defined as the infinitesimal heat d̄Q.
The dynamics of the subsystem A is given by the Liouville-von Neumann equation

∂

∂t
ρ̂A = −i[ĤA + Ĥeff, ρ̂A] + Linc(ρ̂), (3.7)

where ρ̂A is the reduced density operator of A, Ĥeff is an effective Hamiltonian describing
the unitary dynamics induced by B and Linc is a superoperator describing incoherent
processes. Since Linc is a function of the density operator of the full system, eqn. (3.7)
is not necessarily a closed differential equation.

We now consider a hypothetical measurement of the local effective energy in A. One
could imagine an experimentalist tuning a laser over the whole spectrum and recording
the absorption profile. However, depending on the angle and the polarization of the laser
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3.2. Definitions for work and heat

beam, a different spectrum will be observed. Thus the experimentalist introduces a local
effective measurement basis (LEMBAS). In the following we study how this concept can
be incorporated into the derivation of work and heat. It is important to note that this
results in work and heat depending on the measurement basis chosen, i.e., they are
basis-dependent quantities.

If one choses the energy basis of subsystem A as the measurement basis, only the parts
of the total effective Hamiltonian Ĥeff that commute with ĤA will affect measurements
of the type described above. To find this part Ĥeff

1 , we expand Ĥeff in the transition
operator basis defined by the energy eigenstates {|j〉}:

Ĥeff =
∑

jk

(Ĥeff)jk|j〉〈k| (3.8)

Using this operator basis, we have

[

ĤA, |j〉〈k|
]

= ωjk|j〉〈k|, (3.9)

where ωjk is the difference between the energy eigenvalues of the states |j〉 and |k〉, and
therefore ωjj = 0 for non-degenerate energy eigenvalues. Now, we define

Ĥeff
1 =

∑

j

(Ĥeff)jj |j〉〈j| (3.10)

which is the diagonal part of Ĥeff. From Eq. (3.9), we see that no non-trivial linear
combination of transition operators |j〉〈k| commutes with ĤA. Therefore, the remaining
part Ĥeff

2 = Ĥeff − Ĥeff
1 does not commute with ĤA, resulting in

[Ĥeff
1 , ĤA] = 0, [Ĥeff

2 , ĤA] 6= 0, (3.11)

except for the case where Ĥeff
2 = 0.

3.2. Definitions for work and heat

If a measurement of the local energy is performed in the energy eigenbasis of ĤA, the
corresponding operator is

Ĥ ′ = ĤA + Ĥeff
1 . (3.12)

Therefore, the change in internal energy within A is given by

dU =
d

dt
Tr
{

Ĥ ′ρ̂A

}

dt = Tr
{

˙̂
H ′ρ̂A + Ĥ ′ρ̇A

}

dt. (3.13)

Using (3.7) and ĤA being time-independent leads to

dU = Tr
{

˙̂
Heff

1 ρ̂A − i[Ĥ ′, Ĥeff
2 ]ρ̂A + Ĥ ′Linc(ρ̂)

}

dt, (3.14)
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3. Work and Heat in Quantum Systems

where the cyclicity of the trace has been used. Observing that the dynamics induced by
the first two terms is unitary, we arrive at

d̄W = Tr
{

˙̂
Heff

1 ρ̂A − i[Ĥ ′, Ĥeff
2 ]ρ̂A

}

dt (3.15)

d̄Q = Tr
{

Ĥ ′Linc(ρ̂)
}

dt. (3.16)

Following this approach, it is possible to define heat and work for any quantum mechan-
ical process, regardless of the type of dynamics or the states involved.

In order to actually compute d̄W and d̄Q, the effective Hamiltonian Ĥeff is required.
By starting with the Liouville-von Neumann equation for the full system

∂

∂t
ρ̂ = −i[Ĥ, ρ̂] (3.17)

and taking the partial trace over B [cf. (2.17)] yields

∂

∂t
ρ̂ = TrB

{

[ĤA + ĤB + ĤAB, ρ̂]
}

. (3.18)

Applying some theorems on partial traces (cf. appendix A) shows that terms involving
ĤB vanish, and that ĤA generates the local dynamics in A. For dealing with the terms
involving ĤAB, we first split the density operator

ρ̂ = ρ̂A ⊗ ρ̂B + ĈAB, (3.19)

where ρ̂A,B are the reduced density matrices for A and B, respectively, and ĈAB is
the operator describing the correlations between both subsystems. Since the first term
represents a factorizing density matrix the factorization approximation is exact, and we
can write (cf. [Gemmer01a])

TrB

{

[ĤAB, ρ̂A ⊗ ρ̂B]
}

= [Ĥeff, ρ̂], (3.20)

where Ĥeff is given by

Ĥeff = TrB

{

ĤAB(1̂A ⊗ ρ̂B)
}

. (3.21)

We will now show that the processes generated by [ĤAB, ĈAB ] cannot result in unitary
dynamics, but will always change the local von Neumann entropy SA. In order to prove
this, we compute its time derivative

ṠA = −Tr
{

[ĤAB , ĈAB] log ρ̂A ⊗ 1̂B

}

. (3.22)

Therefore, any dynamics generated by this term cannot be unitary, but results in a
contribution to Linc. If the dynamics of the full system is unitary, we have

Linc = −iTrB

{

[ĤAB, ĈAB ]
}

. (3.23)
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3.3. Equilibrium properties

3.3. Equilibrium properties

An open question remains in how these new definition of heat and work are linked to
the common one (3.2). It is easy to check that for Ĥeff

2 = 0 the definitions are identical.
This is the case if we only consider quasistatic processes, where we can investigate the
local temperature of, say, system A. From the Gibbs fundamental relation it is known
that

dS =
1

T
d̄Q. (3.24)

Using now the definition given for the heat in (3.16) we get

dSA =
1

T ∗Tr
{

Ĥ ′Linc(ρ̂)
}

dt. (3.25)

T ∗ should indicate a parameter associated with the local temperature. On the other side
we know the derivation of the entropy SA from (3.22) combined with (3.25) gives

−Tr {Linc(ρ̂) log ρ̂A} =
1

T ∗Tr
{

Ĥ ′Linc(ρ̂)
}

T ∗ =
Tr {Linc(ρ̂) log ρ̂A}
Tr
{

Ĥ ′Linc(ρ̂)
} . (3.26)

For canonical states Ĥ ′ commutes with ρ̂A and Linc(ρ̂A), thus (3.26) is equivalent to the
classical definition

T =
∂U

∂S
. (3.27)

T ∗ is not necessarily equal to the global temperature of the full system due to the interac-
tion between the individual systems inducing correlations [Hartmann04a; Hartmann04b].

3.4. Further examples

3.4.1. Detuned laser

Using the LEMBAS principle, it is now possible to investigate work and heat in concrete
physical systems. First we consider a two-level atom with a local Hamiltonian ĤA driven
by a laser field V̂ . In the semiclassical treatment of the radiation field emitted by a laser,
the total Hamiltonian is given by

Ĥ = ĤA + V̂ =
∆E

2
σ̂z + g sinωtσ̂x, (3.28)

where g is the coupling strength and ω the laser frequency. In the rotating wave approx-
imation the Hamiltonian can be made time-independent. We investigate the situation
where the atom is initially in a thermal state described by the density operator

ρ̂(0) = Z−1 exp(−βĤA), (3.29)
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3. Work and Heat in Quantum Systems

with Z being the partition function and β the inverse temperature.

In order to calculate d̄W and d̄Q we first need to diagonalize the Hamiltonian, which
can be made time-independent by applying the unitary transformation

Û1 = eiωtP̂11 + P̂22. (3.30)

This leads to the time evolution operator

Û =









ei(δ+∆E)t/2
[

cos
(

Ωt
2

)

− i δ
Ω sin

(

Ωt
2

)]

−i g
Ωei(δ+∆E)t/2 sin

(

Ωt
2

)

−i g
Ωe−i(δ+∆E)t/2 sin

(

Ωt
2

)

e−i(δ+∆E)t/2
[

cos
(

Ωt
2

)

+ i δ
Ω sin

(

Ωt
2

)]









,

(3.31)
where Ω =

√

g2 + δ2 is the Rabi frequency and δ = ω − ∆E is the detuning from the
resonance frequency. Since (3.28) is already an effective description we can directly
compute d̄W and d̄Q resulting in

d̄W =
∆Eg2

2Ω
tanh

β∆E

2
sin Ωt (3.32)

d̄Q = 0. (3.33)

For comparison, using (3.2) leads to

d̄W =
(∆E + δ)g2

2Ω
tanh

β∆E

2
sin Ωt. (3.34)

Since the maximum of this expression is not at the resonance frequency (i.e., δ = 0),
this result is unphysical.

3.4.2. One-dimensional spin chain

Another case in which the LEMBAS principle can be applied is the study of stationary
steady states. Consider a linear chain of spins between two baths at different tempera-
tures (Fig. 3.2). The Hamiltonian for the spin chain consists of a local Zeeman splitting
and an XXZ interaction, i.e.

Ĥ =
N
∑

µ

∆E

2
σ̂(µ)

z + λ
(

σ̂(µ)
x ⊗ σ̂(µ+1)

x + σ̂(µ)
y ⊗ σ̂(µ+1)

y + δσ̂(µ)
z ⊗ σ̂(µ+1)

z

)

. (3.35)

The bath coupling is realized by two dissipators D1,N in Lindblad form (cf. [Michel03]),
with

Di(ρ̂) = W
(i)
10 (2σ̂

(i)
− ρ̂σ̂

(i)
+ − ρ̂σ̂

(i)
+ σ̂

(i)
− − σ̂

(i)
+ σ̂

(i)
− ρ̂) +W

(i)
01 (2σ̂

(i)
+ ρ̂σ̂

(i)
− − ρ̂σ̂

(i)
− σ̂

(i)
+ − σ̂

(i)
− σ̂

(i)
+ ρ̂).
(3.36)
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⊗⊗⊗⊗ · · ·T1 TN

µ = 1 µ = 2 µ = N − 1 µ = N

Figure 3.2.: Linear spin chain coupled to two baths at different temperatures T1, TN .

T

µ
1 2 3 4

0.12

0.14

0.16

0.18

Figure 3.3.: Fourier’s law in a Heisenberg chain. (∆E = 1, λ = λB = 0.01, T1 = 0.1,
T2 = 0.2)

Such a dissipator correctly describes the effect of a bath as long as the system is homo-
geneous and the internal coupling is small [Wichterich07]. The rates W10 and W01 are
connected to the bath temperatures by

W
(i)
10 = λB(1 − Ti)

W
(i)
01 = λBTi. (3.37)

Here, λB is the coupling strength of the interaction with the bath.
In a suitable parameter range for a Heisenberg chain (δ = 1) the system has a sta-

tionary steady state satisfying Fourier’s law, i.e.,

Jth = κ∇T, (3.38)

with Jth being the heat current within the system, κ being the thermal conductivity and
∇T the internal temperature gradient [Michel03]. For a system of N = 4 spins this is
shown in Fig. 3.3. Conversely, as can bee seen in Fig. 3.4, the Förster chain (δ = 0) has a
stationary steady state without an internal temperature gradient, i.e., the conductivity
is infinite.

Let us now try to find the stationary state for two inner spins. Since in the stationary
state the continuity equation for the probabilities reads

ṗµ = −∇j = 0, (3.39)

the reduced density matrix of a single spin, ρ̂µ, has to be diagonal. Another simplification
can be made by using that the Hamiltonian contains only nearest-neighbor interactions.
Using theorem A.5 we obtain for the effective Hamiltonian of a single spin

Ĥeff
µ =

[

∆E

2
+ 2λδ(pµ−1 + pµ+1 − 1)

]

σ̂z. (3.40)

19



3. Work and Heat in Quantum Systems
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Figure 3.4.: Temperature profile for a Förster chain. (Same parameters as in Fig. 3.3)

However, it is not sufficient to project out single spins as

[Ĥeff
µ , ρ̂µ] = 0, (3.41)

i.e., it is not possible to extract information on the relationship between internal currents
and gradients this way. Instead we consider the two-spin density operator

ρ̂µ,µ+1 =

























cµ,µ+1 + p̄µp̄µ+1 0 0 0

0 p̄µpµ+1 − cµ,µ+1 − J
4λ(χµ,µ+1 + i) 0

0 − J
4λ(χµ,µ+1 − i) p̄µ+1pµ − cµ,µ+1 0

0 0 0 cµ,µ+1 + pµpµ+1

























.

(3.42)
Here, cµ,µ+1 are classical correlations, J is the probability current, χµ,µ+1 are off-diagonal
elements not contributing to the current, and

p̄µ = 1 − pµ. (3.43)

In order to check that the current J is indeed the expectation value of the probability
current we use the current operator (cf. [Michel04])

Ĵµ,µ+1 = iλ(σ̂
(µ)
+ σ̂

(µ+1)
− − σ̂

(µ)
− σ̂

(µ+1)
+ ), (3.44)

which has the expectation value

〈Jµ,µ+1〉 = Tr
{

Ĵµ,µ+1ρ̂µ,µ+1

}

= J. (3.45)

Let us now concentrate on the first two spins, i.e, ρ̂1,2. The local Liouville von Neu-
mann equation reads for the stationary state

∂

∂t
ρ̂1,2 = [Ĥeff, ρ̂1,2] + D1(ρ̂1,2) + L(2,3)

inc (ρ̂1,2,3) = 0, (3.46)
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with Ĥeff being given by

Ĥeff =
∆E

2
σ̂(1)

z +

[

∆E

2
+ 2λδ(p3 − 1)

]

σ̂(2)
z . (3.47)

and the incoherent term being

L(2,3)
inc (ρ̂1,2,3) = −iTr3

{

[Ĥ2,3, Ĉ123]
}

, (3.48)

with Ĉ123 being the operator describing the three-particle correlations. While Eq. (3.46)
imposes constraints on the stationary state, it does not provide a closed set of equations.
Such a set can only be found if all local two-spin density operators are taken into account.
However, finding a solution to this set involves solving a large number of non-linear
equation and thus is a highly complicated task. Given a solution exists, one has found
a set of local variables describing the relevant properties of the system. In this sense
the system behaves thermodynamic, as it is not necessary to solve the full Liouville von
Neumann equation. Once this set of variables is found one might even be able to tackle
long-standing problems like whether or not there exists a principle of mimimum entropy
production [Prigogine67] in the quantum realm.

Even without knowing the solution to (3.46) further statements can be made. As the
system is homogenous and weakly coupled the external energy current flowing from the
baths into the system have to be identical to the internal energy current

JE = J∆E. (3.49)

The external energy current can be determined by writing down the Liouville von Neu-
mann equation for the full system, multiplying with the system Hamiltonian and taken
the trace, i.e,

Tr

{

Ĥ
∂

∂t
ρ̂

}

= −iTr
{

[Ĥ, Ĥ]ρ̂
}

+ Tr
{

ĤD1(ρ̂)
}

+ Tr
{

ĤDN (ρ̂)
}

= Tr
{

ĤD1(ρ̂)
}

+ Tr
{

ĤDN (ρ̂)
}

. (3.50)

In the stationary state we thus have

JE = −Tr
{

ĤD1(ρ̂)
}

= Tr
{

ĤDN (ρ̂)
}

. (3.51)

Performing partial traces over everything but the two spins next to the baths leads to

JE = −Tr
{

Ĥeff
1,2D1(ρ̂1,2)

}

= Tr
{

Ĥeff
1,2DN (ρ̂N−1,N )

}

. (3.52)

We further trace over the second-last spin, resulting in

JE = −Tr
{

Ĥeff
1 D1(ρ̂1)

}

= Tr
{

Ĥeff
1 DN (ρ̂N )

}

. (3.53)
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Plugging the ansatz (3.42) for ρ̂1,2 and (3.36) into (3.52) and (3.53) yields

JE =
λB

2
[χ1,2J − 8c1,2λδ − 2(p1 − T1)(∆E − 2λδ + 4λδp2)] (3.54)

JE = λB(p1 − T1)[2λδ(2p2 − 1) + ∆E]. (3.55)

For a Förster chain this eventually results in

JE = λB∆E(p1 − T1) (3.56)

χ1,2 = 0, (3.57)

and analogously in

JE = λB∆E(pN − TN ) (3.58)

χN−1,N = 0. (3.59)
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Quantum magnets, i.e. low-dimensional quantum systems dominated by spin-spin inter-
actions, have become a subject of intense investigation in recent years [Schollwöck04].
These systems allow to study a large variety of quantum effects yet are described by
rather simple interactions, making them interesting both from an experimental and the-
oretical point of view. Of particular interest are the heat transport properties of so-called
“telephone number compounds”, materials containing 1D and 2D spin structures. Ex-
perimental observations show extremely large thermal conductivity along spin chains
and normal values perpendicular to them [Sologubenko00; Hess01].

A rather large amount of spins will be required before one can reliably characterize
the transport behavior; a theoretical approach to heat conductivity from first principles
is thus rather complicated. So far the heat transport has primarily been investigated
in terms of the Green-Kubo formula [Zotos97; Klümper02; Heidrich-Meisner03; Saito03;
Jung06]; the main advantage of this approach is its computability after having diag-
onalized the system Hamiltonian. Derived on the basis of linear response theory the
Kubo formula has originally been formulated for electrical transport [Kubo57; Kubo91].
Basically one is interested in a current-current auto-correlation, which has ad hoc been
transfered to heat transport simply by replacing the electrical current by a heat cur-
rent [Luttinger64]. However, the justification of this replacement remains questionable
since there is no way of expressing a temperature gradient in terms of an addend to the
Hamiltonian as in electrical transport [Gemmer06].

Other approaches to heat conductivity in quantum systems are based on direct diago-
nalization of the Schrödinger equation of a limited number of spins [Gobert05], analyzing
the level statistics of the Hamiltonian [Mej́ıa-Monasterio05; Steinigeweg06] or by an ex-
plicit coupling to some environments of different temperature [Saito03; Michel03]. In
the latter case, environments are described by a quantum master equation [Breuer02]
in Liouville space. Here the temperature differences can, indeed, be described by a per-
turbation operator so that one may treat a thermal perturbation in this extended state
space similar as an electrical one in the Hilbert space [Michel04].

The so-called Hilbert space Average Method [Gemmer04] allows for a direct inves-
tigation of the heat transport in quantum systems from Schrödinger dynamics. By
deriving a reduced dynamical equation for a class of design quantum systems, normal
heat transport as well as Fourier’s law has been confirmed [Michel05; Michel06]. Re-
cently, it has been shown that for diffusive systems the Hilbert space average method
is equivalent to a projection operator technique with an extended projection operator
[Breuer06; Breuer07]. However, ballistic behavior cannot be analyzed with the Hilbert
space Average Method in a straight-forward manner since it is not obvious how to obtain
time-dependent rates.
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µ = 1

µ = 1

µ = 2

µ = 2

µ = 3

µ = 3

(a) (b)

Figure 4.1.: Partition schemes for investigating the transport perpendicular (a) or par-
allel (b) to the spin chains. Each spin is represented by a dot, solid lines
indicate Heisenberg interactions along the chains, dashed lines represent ran-
dom interactions. The diagonal couplings within each plane have been left
out for clarity [except lower left corner of (a)].

4.1. Description of the Model

The model we are going to investigate is a three-dimensional spin model depicted in
Fig. 4.1. We perform a partition into N identical subunits (planes), each consisting of
n spins. A local magnetic field is present at each spin resulting in a Zeeman splitting of

ĤZ =
∆E

2

∑

i

σ̂(i)
z . (4.1)

In one direction, the spins are coupled via a Heisenberg interaction

ĤH = λH

∑

i

σ̂
(i) ⊗ σ̂

(i+1), (4.2)

with the coupling strength λH and the Pauli spin vectors σ̂
(i) = (σ̂

(i)
x , σ̂

(i)
y , σ̂

(i)
z ). In

the other two directions, we use an interaction matrix ĤR for adjacent spins and next
neighbor spins lying diagonally opposite [see lower left corner of Fig. 4.1(a)]. The nonzero
matrix elements are taken from a Gaussian ensemble with zero mean and a variance s2

that is related to the coupling strength λR via

λ2
R =

d

N
s2, (4.3)

with d being the connectivity of the spins. Thus the total Hamiltonian is described by

Ĥ = ĤZ + ĤH + ĤR. (4.4)

The coupling strengths λH for the Heisenberg interaction and λR for the random inter-
action are chosen so that λR ≪ λH ≪ ∆E. Regardless of the partition scheme chosen
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µ = 1 µ = 2 µ = N

⊗⊗ ⊗

δǫ

∆E

n

· · ·

Figure 4.2.: N subunits with ground state and first excitation band of width δε contain-
ing n energy levels each. Black dots specify the initial states used.

each subunit can be seen as a molecule consisting of several energy bands. If we restrict
ourselves to initial states where only one spin is excited (or superpositions thereof) the
Heisenberg interaction does not allow to leave this subspace of the total Hilbert space.
By choosing also the random interaction to conserve the subspace we restrict all fur-
ther investigations to the single excitation subspace. Therefore, energy transport in our
model system is equivalent to spin transport in a gapless system (i.e. ∆E = 0). Fig-
ure 4.2 gives a graphical representation of our system, with δε being the width of the
first energy band.

Depending on the partition scheme the heat transport in two alternative directions
can be studied: perpendicular to the spin chains [Fig. 4.1(a)] and parallel to them
[Fig. 4.1(b)].

4.2. The Time-Convolutionless (TCL) Projection Operator

Technique

To investigate transport behavior according to our method it is necessary to partition the
total microscopic system described by the Hamiltonian Ĥ into mesoscopic local subunits.
While the complete dynamics is governed by the Schrödinger equation of the full system
according to its density operator

˙̂ρ = −i[Ĥ, ρ̂] ≡ L(t)ρ̂, (4.5)

we aim at deriving a closed reduced dynamical equation for the subunits chosen. This is
done by introducing a projection superoperator P that projects onto the relevant part
of the full density matrix ρ̂ [Breuer02]. The dynamics of the reduced system is no longer
unitary, but described by

P ˙̂ρ = PL(t)ρ̂. (4.6)

Accordingly, we define another projection superoperator Q projecting on the irrelevant
part of the full density matrix ρ̂, i.e.,

Qρ̂ = ρ̂− Pρ̂, (4.7)

leading to the dynamics described by

Q ˙̂ρ = QL(t)ρ̂. (4.8)
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In order to be projection operators onto different parts of the system the properties

P + Q = I (4.9)

P2 = P (4.10)

Q2 = Q (4.11)

PQ = QP = 0, (4.12)

where I is the identity operation, have to be fulfilled. Using (4.9) in (4.6) and (4.8) leads
to the differential equations

P ˙̂ρ = PL(t)Pρ̂ + PL(t)Qρ̂ (4.13)

Q ˙̂ρ = QL(t)Pρ̂ + QL(t)Qρ̂. (4.14)

One possibility to tackle these equations is to formally solve (4.14) for Qρ̂, resulting
in

Qρ̂(t) =

t
∫

t0

dsG(t, s)QL(s)Pρ̂(s), (4.15)

with an appropriate propagator G(t, s). Furthermore, we have assumed factorizing initial
conditions, i.e., Qρ̂(t0) = 0. Plugging (4.15) into (4.13) leads to an integro-differential
equation known as the Nakajima-Zwanzig equation [Nakajima58; Zwanzig60]. Although
it allows for a systematic perturbation expansion its structure is usually very complicated
because every order requires the integration over superoperators involving the complete
history of Pρ̂. Therefore, its applicability to typical physical systems is rather limited
[Breuer02].

A different approach tries to explicitly avoid the integral over the complete history by
looking at the inverse of the time evolution. We replace the ρ̂(s) in (4.15) by

ρ̂(s) = G(t, s)(P + Q)ρ̂(t), (4.16)

where G(t, s) is the backward propagator of the full system, i.e., the inverse of its unitary
evolution. We then can write (4.15) as

Qρ̂(t) = Σ(t)(P + Q)ρ̂(t), (4.17)

where we have introduced the superoperator

Σ(t) =

t
∫

t0

dsG(t, s)QL(s)PG(t, s). (4.18)

We then move all occurrences of Qρ̂(t) in (4.17) to the left-hand side. The superoperator
1 − Σ(t) may be inverted for small times or small couplings [Breuer02], leading to

Qρ̂(t) = [1 − Σ(t)]−1Pρ̂(t). (4.19)
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Plugging this result into (4.13) brings us to a differential equation for the relevant
part of the system, i.e.,

P ˙̂ρ(t) = PL(t)[1 − Σ(t)]−1Pρ̂(t). (4.20)

Since this differential equation for the relevant part does not involve a convolution in-
tegral like in the Nakajima-Zwanzig equation, this is called the “time-convolutionless”
(TCL) master equation [Shibata77]. For convenience, we use in the following the TCL
generator

K(t) = PL(t)[1 − Σ(t)]−1P. (4.21)

In order to perform a perturbation expansion of K(t) we rewrite [1 − Σ(t)]−1 as a
geometric series, i.e,

[1 − Σ(t)]−1 =
∑

n

Σ(t)n, (4.22)

we may expand the TCL generator as

K(t) =
∑

n

PL(t)Σ(t)nP ≡
∑

n

λnKn(t), (4.23)

where λ is the coupling constant in which the series expansion is performed. One may
then use (4.18) and the series expansion of G(t, s) and G(t, s) to compute the Kn. For
typical interactions, the odd terms of the series expansion vanish [Breuer02], while the
leading order is given by

K2 =

t
∫

0

dt1PL(t)L(t1)P, (4.24)

leading to the second-order TCL master equation

P ˙̂ρ =

t
∫

0

dt1PL(t)L(t1)Pρ̂. (4.25)

It is important to note that P has not been specified so far. Apart from the usual
requirement for a projection superoperator (4.10) the partition into system of interest
and the irrelevant part is largely arbitrary [Breuer07]. However, in order to obtain
a converging perturbation series expansion there are constraints to the choice P: A
“wrong” partitioning strategy may lead to a breakdown of the expansion [Breuer06].

4.3. Classification of the transport behavior

In order to be able to characterize the transport behavior one needs to introduce a
quantity that unambiguously determines whether the transport in a system is ballistic
or diffusive. An obvious choice would be the existence of non-vanishing currents in
absence of external fields or gradients as a sufficient condition for ballistic transport.
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4. Heat Transport in Magnetic Systems

However, this is difficult to implement computationally, as currents in diffusive systems
decay exponentially, meaning that even there, small currents will always be present for
finite times. A better concept is to look at the spatial variance of an initially peaked
excitation

σ2(t) =

∫

dxρ(x, t)(x− x̄)2, (4.26)

where ρ(x, t) is the probability density and x̄ the spatial expectation value.

4.3.1. Variance of a free particle

A free (quasi-)particle not interacting with any external potential shows ballistic trans-
port behavior by definition. We express its Hamiltonian by using the dispersion relation
for real particles, i.e.,

Ĥ =
p̂2

2m
, (4.27)

with p̂ being the momentum operator of the particle and m being the mass. In the
momentum space the Schrödinger equation reads

i
∂

∂t
ψ(p, t) =

p2

2m
ψ(p, t), (4.28)

which has the solution

ψ(p, t) = e−i p2

2m
tψ(p, 0). (4.29)

ψ(p, 0) is determined by the initial conditions. For a Gaussian wave-packet with initial
spatial variance σ2

0 we obtain for the probability distribution in real space

ρ(x, t) = |ψ(x, t)|2 =

√
2σ0

√

4πσ4
0 +m2πt2

e
− 2σ2

0
x2

4σ4
0
+m2t2 . (4.30)

Its spatial variance (4.26) is given by

σ2(t) = σ2
0 +

m2t2

4σ2
0

. (4.31)

This means that ballistic transport implies a variance growing quadratically in time.

4.3.2. Diffusion equation

In contrast to the free particle case we now study the transport behavior of a system
whose probability density ρ(x, t) is described by a diffusion equation

∂ρ

∂t
= D∆ρ, (4.32)

with D being the diffusion coefficient. For an initial probability density

ρ(x, 0) = δ(x) (4.33)
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4.4. Perpendicular transport

the solution to (4.32) is

ρ(x, t) =
1√

4πDt
exp

(

− x2

4Dt

)

. (4.34)

This leads to a spatial variance of

σ2(t) = 2Dt, (4.35)

i.e., for diffusive systems the variance grows linearly. Therefore, the spatial variance is
a useful concept for classifying the transport behavior of a system.

However, if we consider instead the differential equation

∂ρ

∂t
= D̃t∆ρ, (4.36)

we obtain the solution

ρ(x, t) =
1

√

2πD̃t2
exp

(

− x2

2Dt2

)

. (4.37)

This results in a spatial variance of

σ2(t) = D̃t2, (4.38)

which means that the transport behavior is ballistic.

4.4. Perpendicular transport

4.4.1. Derivation of the TCL master equation

For the transport perpendicular to the spin chains, the subunit Hamiltonian of our model
system is given by

Ĥ =

N
∑

µ=1

ĤL(µ) + ĤR(µ, µ+ 1), (4.39)

where ĤL consists of a constant local energy splitting, a Heisenberg interaction (i.e.
the spin chains) and the internal random couplings of each subunit [cf. gray planes in
Fig 4.1(a)]. Since λR ≪ λH the effect of the internal random couplings on the spectrum
of ĤL may be neglected. The eigenenergies Ei of the first excitation band of an n-spin
Heisenberg chain can be computed using the Bethe ansatz [Schollwöck04], leading to

Ei = 4λ

(

1 + cos
2πi

n

)

. (4.40)

Therefore, the bandwidth δε is given by

δε = 8λH . (4.41)
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4. Heat Transport in Magnetic Systems

ĤR(µ, µ+ 1) denotes the interaction between the subunits, which is purely random.
The projection superoperator P of the type as suggested by Breuer [Breuer07] reads

Pρ̂ =
∑

µ

Tr
{

Π̂µρ̂
} 1

n
Π̂µ ≡

∑

µ

Pµ
1

n
Π̂µ, (4.42)

with Π̂µ being the standard projection operators

Π̂µ =
∑

nµ

|nµ〉〈nµ|, (4.43)

and |nµ〉 the eigenstate of ĤL(µ) in the one-particle excitation subspace, i.e. the states
in the band of subunit µ (cf. Fig. 4.2). Consequently, the numbers Pµ are just the
excitation probabilities of subunit µ.

Switching to the interaction picture, where

V̂ (t) = exp(iĤLt)ĤR exp(−iĤLt), (4.44)

plugging both the Hamiltonian (4.39) and the projection (4.42) into the second-order
TCL expansion (4.25), we get

P d

dt
ρ̂ = −

t
∫

0

dt1P
[

V̂ ,
[

V̂ (t1),Pρ̂
]]

= −
∑

ν

t
∫

0

dt1P
[

V̂ ,

[

V̂ (t1), Pν
1

n
Π̂ν

]]

, (4.45)

which leads, after performing the projections, to

∑

σ

Ṗσ
1

n
Π̂σ = −

∑

µν

t
∫

0

dt1
1

n2
Tr
{[

V̂ ,
[

V̂ (t1), Π̂ν

]]}

PνΠ̂µ. (4.46)

Since the projection operators satisfy the relation

Π̂µΠ̂σ = δµσΠ̂µ, (4.47)

we only need to look at terms where the first summation indices are equal, arriving at

Ṗµ = −
∑

ν

t
∫

0

dt1
1

n
Tr
{

Π̂µ

[

V̂ (t),
[

V̂ (t1), Π̂ν

]]}

Pν . (4.48)

By inserting the definition of V̂ (4.44) and exploiting that Π̂µ projects onto eigenstates
of ĤL(µ) we can evaluate the trace by using the block structure of ĤR, resulting in (see
[Michel05; Michel06])

Ṗµ =
n
∑

k,l

2|〈kµ|ĤR|lµ+1〉|2
sinωklt

nωkl
(Pµ+1 − 2Pµ + Pµ−1) , (4.49)
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Γ

t

Figure 4.3.: Various regimes for the correlation function Γ. Inset: square and linear
regime.

where ~ωkl denotes the energy difference between the eigenstates k, l.
During the time evolution of the system there are three different regimes: For times

much smaller than the eigenfrequencies ωkl the double sum

Γ =
∑

kl

2
sinωt

ω
(4.50)

may be simply replaced by a double sum over the peaks of the sinc functions. This is
the so-called “square regime”, resulting in

Γ = 2n2t. (4.51)

The term “square regime” comes from the transition probabilities growing quadratically
in time. The correlation function Γ, however, grows linearly in this case.

After some time, however, the difference in the eigenfrequencies becomes observable.
This is the linear regime, which may be computed analogously to Fermi’s Golden Rule
(see below).

For very large times, the argument of the sine function is merely a random phase,
which makes its contribution vanish after summation. Therefore, in this regime only
terms with k = l contribute, leading to

Γ = 2nt. (4.52)

While in this regime Γ grows linearly in time as in the square regime, the slope is smaller
by a factor of n. Figure 4.3 shows typical behavior of Γ over time.

Assuming |〈kµ|ĤR|lµ+1〉|2 ≈ λ2
R, the double sum can be computed analogous to Fermi’s

Golden Rule [Schwabl98]. We consider the distribution

δt(ω) =
sinωt

πω
, (4.53)
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Figure 4.4.: Density of states for the first excitation band of a Heisenberg chain.

which is a representation of the Dirac δ-distribution, i.e.,

lim
t→∞

∞
∫

−∞

F (ω)δt(ω)dω = F (0). (4.54)

Therefore, we may write for the relaxation rate

γ = 2λ2
∑

k,l

sinωklt

nωkl
=

2πλ2

n

∑

k,l

δ(Ek − El). (4.55)

Replacing the double sum over integrals in the energy space we arrive at

γ =
2πλ2

n

δε
∫

0

g(E)2dE, (4.56)

i.e., the integral over the square of the density of states. Using (4.40), the density of
states of the first excitation band of a Heisenberg chain is given by

g(E) =
∑

i

δ(E − En) ≈ n

π

π
∫

0

dx δ

[

E − δε

2
(1 + cos x)

]

=
2n

πδε

1
∫

0

du
1√

1 − u2
δ

[

u−
(

2E

δε

)]

=
2n

πδε

1
√

1 −
(

2E
δε − 1

)2
. (4.57)

Figure 4.4 shows a plot of g(E).
Unfortunately, (4.57) is not square integrable due to the singularities at the boundaries

of the spectrum. In order to obtain a finite result, we renormalize the number of states in
the band. Renormalization is a procedure originally developed in quantum field theory
[Bjorken65], but can be regarded as a mathematical tool as well [Delamotte04].

We introduce the regularized integral

FΛ(n) =

δε
∫

Λ

α2n2

π2E(δε − E)
, (4.58)
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4.4. Perpendicular transport

with α being the factor the renormalizes the number of states. We assume that for a
band consisting of only a few levels ñ (but still enough to define a density of states), the
density of states is approximately constant. Our renormalization prescription is then
given by

FΛ(ñ) =
ñ2

δε
, (4.59)

resulting in

α =
π

√

2 log(δε/Λ − 1)
. (4.60)

This allows us to calculate the physical limit of the renormalization procedure, i.e.,

lim
Λ→0

FΛ(n) =
n2

δε
, (4.61)

which is the same value as for a constant density of states. This finally leads to the rate
equations

dP1

dt
= γ (P2 − P1) (4.62)

dPµ

dt
= γ (Pµ+1 − 2Pµ + Pµ−1) (4.63)

dPN

dt
= γ (PN−1 − PN ) (4.64)

with the relaxation rate

γ =
2πλ2

Rn

δε
. (4.65)

The approximation introduced by Fermi’s Golden Rule is only valid in the linear regime,
i.e.

4π2nλ2
R

δε2
≪ 1. (4.66)

4.4.2. Solution of the TCL master equation

For a system consisting of 3 subunits (4.62–4.64) can be solved easily, resulting in

P1(t) =
1

6
(2 + e−3γt + 3e−γt)

P1(t) =
1

3
(1 − e−3γt)

P1(t) =
1

6
(2 + e−3γt − 3e−γt). (4.67)

Figure 4.5 shows both the numerical results for the solution of the full Schrödinger
equation and the solution of the rate equation (4.63), which are in reasonably good
agreement.

Equation (4.63) is a discrete version of the diffusion equation. For a δ-shaped exci-
tation at t = 0 its solution is a Gaussian function whose variance grows linear in time.
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Figure 4.5.: Perpendicular transport: probability to find the excitation in subunit µ =
1, 2, 3. Comparison of the numerical solution of the Schrödinger equation
(crosses) and second-order TCL (lines). (N = 3, n = 600, λR = 5 · 10−4,
λH = 6.25 · 10−2)

Therefore, it is evident that the heat transport is normal perpendicular to the chains.
Furtheremore, in our model diffusive behavior is an emergent property, as the dynamics
of a single spin is obviously non-diffusive.

4.4.3. Thermal conductivity

The thermal conductivity can be calculated by considering states close to equilibrium.
In this case, we still have a temperature difference ∆T between adjacent subunits. Then,
the thermal conductivity is given by

κ = γn

(

∆E

T

)2 e−∆E/T

(

1 + ne−∆E/T
)2 , (4.68)

with T being the mean temperature between adjacent subunits [Michel05].

4.4.4. Lower-dimensional systems

One might be tempted to ask whether this transport behavior can be observed in lower-
dimensional systems as well. The crucial parameter is the connectivity d between ad-
jacent planes. For our three-dimensional model we have d = 9, which reduces to d = 3
in a 2D system. In order to study the deviation from normal transport behavior, we
consider the time-averaged quadratic deviation

D2
1 =

1

τ

τ
∫

0

[PTCL
1 (t) − P S

1 (t)]2dt, (4.69)

with PTCL
1 (t) being the solution of the TCL master equation (4.67) and P S

1 (t) being the
numerical solution of the time-dependent Schrödinger equation. Figure 4.6 shows the
deviation for different connectivities. Connectivities larger than for the 3D case have
been obtained by including more couplings between adjacent plains. These results are
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Figure 4.6.: Deviation from normal transport over connectivity. (N = 3, n = 500,
λR = 5 · 10−4, λH = 6.25 · 10−2, average and standard deviation for 75
random interaction matrices)

largely independent of the size of the subunits. Therefore, in 2D systems the deviation
from normal transport will always be significantly larger than in a 3D system.

4.5. Parallel transport

4.5.1. General properties of the interactions

In the following let us concentrate on the other direction, i.e., parallel to the chains.
Thus, we have a slightly different partition of the total Hamiltonian,

Ĥ =

N
∑

µ=1

Ĥ
(µ)
L + Ĥ

(µ,µ+1)
H + Ĥ

(µ,µ+1)
R ≡ ĤL + ĤH + ĤR. (4.70)

Here, the local part ĤL contains only random interactions besides the Zeeman splitting.
In the one-particle excitation space the Hamiltonian for the Heisenberg interaction can
be written as

ĤH = 2λH

















1̂

1̂ 1̂

1̂
. . .

















. (4.71)

The local Hamiltonian ĤL has features a diagonal block structure

ĤL =

















Ĥ
(µ)
L

Ĥ
(µ+1)
L

. . .

















. (4.72)
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Therefore, the commutator [ĤH , ĤL] is given by

[ĤH , ĤL] = 2λH

















Ĥ
(µ+1)
L − Ĥ

(µ)
L

Ĥ
(µ)
L − Ĥ

(µ+1)
L Ĥ

(µ+2)
L − Ĥ

(µ+1)
L

Ĥ
(µ+1)
L − Ĥ

(µ+2)
L

. . .

















. (4.73)

Since all operators Ĥ
(µ)
L have matrix elements drawn from the same ensemble, the com-

mutator will vanish for sufficiently large matrix sizes.

The Hamiltonian for the random interaction between the subunits has a block struc-
ture similar to ĤH , i.e.,

ĤR =

















Ĥ
(µ,µ+1)
R

Ĥ
(µ,µ+1)†
R Ĥ

(µ+1,µ+2)
R

Ĥ
(µ+1,µ+2)†
R

. . .

















. (4.74)

Using the same argument as above the commutator [ĤH , ĤR] vanishes as well. In sum-
mary, the commutator relations

[ĤH , ĤL] = [ĤH , ĤR] = 0 (4.75)

are satisfied. If the dynamics induced by ĤL and ĤH is absorbed in the transformation
into the interaction picture, the random interaction transforms into

V̂ (t) = ei(ĤH+ĤL)tĤRe−i(ĤH+ĤL)t = eiĤLtĤRe−iĤLt, (4.76)

where (4.75) has been used. Therefore, the derivation of the dynamics of the Pµ (4.49)
is still valid.

4.5.2. Local band structure

For calculating the local band structure we consider a random matrix of dimension n,
drawn from a Gaussian unitary ensemble. For such a matrix the density of states is
given by (see [Mehta91])

g(E) =
8n

πδε

√

δε2

4
− E2. (4.77)

Using (4.3), the width of the energy band is

δε = 4
n2λ2

R

d
. (4.78)
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Figure 4.7.: Comparison of the eigenvalues of ĤL and a random matrix drawn from a
Gaussian unitary ensemble. (n = 600, λR = 5 · 10−4, d = 8)

In order to check whether our local Hamiltonian ĤL can be approximated by such a
random matrix, we compare the eigenvalues E(x). For the random matrix we use

n =

n
∫

0

dx =

δǫ/2
∫

−δǫ/2

g(E)dE (4.79)

leading to
dE

dx
=

1

g[E(x)]
. (4.80)

Separation of variables yields

8n

πδε

√

δε2

4
− E2 dE = dx. (4.81)

This expression cannot be solved analytically for E, so we compare the numerical solution
for discrete values of x with the actual eigenvalues of ĤL. As Fig.4.7 shows, ĤL may
indeed be approximated by a random matrix drawn from a Gaussian unitary ensemble.
However, by looking at (4.78) and (4.66) that the requirement for the linear regime is
violated and the derivation according to Fermi’s Golden Rule can no longer be applied.

4.5.3. Solution of the TCL master equation

Instead of using Fermi’s Golden Rule argument we approximate the sinc function in
(4.49) by its peak value and obtain for the diffusion coefficient

γ = 2nλ2
Rt, (4.82)

which is linear in time.
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The solution of (4.63) with the diffusion coefficient (4.82) defines the occupation prob-
abilities in the interaction picture P int

µ . Since we are interested in the occupation prob-
abilities in the Schrödinger picture P s

µ we need to calculate the inverse transformation
of the density operator

Pρ̂s = e−iĤH tPρ̂inteiĤHt, (4.83)

where the diagonal elements Pρ̂s
µµ are the occupation probabilities P s

µ. The off-diagonal

elements of Pρ̂int can be computed by replacing the projector (4.43) with another one
projecting out off-diagonal elements as well, i.e,

Pρ̂ =
∑

µ

Tr
{

Π̂µν ρ̂
} 1

n
Π̂µν ≡

∑

µν

ρ̂int
µν

1

n
Π̂µν , (4.84)

with

Π̂µν =
∑

n

|nµ〉〈nν |. (4.85)

The master equation for the off-diagonal elements is always of the form

d

dt
ρ̂int

µν = −κµν ρ̂
int
µν , (4.86)

with a positive relaxation coefficient κ. This means that the dynamics of the diagonal
and the off-diagonal elements decouple so that diagonal initial states remain diagonal
for all time.

Solving the TCL master equation first in the interaction picture for 3 subunits gives

P int
1 (t) =

1

6

(

2 + e−3λ2
R

nt2 + 3e−λ2
R

nt2
)

P int
2 (t) =

1

3

(

1 − e−3λ2
R

nt2
)

P int
3 (t) =

1

6

(

2 + e−3λ2
Rnt2 − 3e−λ2

Rnt2
)

. (4.87)

Using (4.83) to transform into the Schrödinger picture finally leads to

P s
1(t) =

1

24
e−3λ2

R
nt2
[

12e2λ2
R

nt2 cos
(√

2λH t
)

+ 8e3λ2
R

nt2 + 3cos
(

2
√

2λHt
)

+ 1
]

P s
2(t) =

1

12
e−3λ2

Rnt2
[

−3 cos
(

2
√

2λHt
)

+ 4e3λ2
Rnt2 − 1

]

P s
3(t) =

1

24
e−3λ2

R
nt2
[

−12e2λ2
R

nt2 cos
(√

2λHt
)

+ 8e3λ2
R

nt2 + 3cos
(

2
√

2λHt
)

+ 1
]

.

(4.88)

In Fig. 4.8 the numerical solution of the Schrödinger equation is compared with the TCL
prediction. Again, there is good agreement between the two methods.
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Figure 4.8.: Parallel transport: probability to find the excitation in the first subunit
(µ = 1). Comparison of the numerical solution of the Schrödinger equa-
tion (crosses) and second-order TCL (solid line). (Same parameters as for
Fig. 4.5)
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Figure 4.9.: Variance of an excitation initially at subunit µ0 = 150. Second-order TCL
prediction (crosses) and quadratic fit (solid line). (N = 300, n = 600,
λR = 5 · 10−4, λH = 6.25 · 10−2)

4.5.4. Spatial variance

To investigate the transport behavior a much larger system has to be considered, so that
the initial excitation does not reach the boundaries of the system during the relaxation
time. Since the solution of the time-dependent Schrödinger equation becomes unfeasible,
the second-order TCL prediction has been used for subsequent numerical integration.
The variance of an excitation initially at µ = µ0 shown in Fig. 4.9 grows quadratic in
time, i.e. the transport is ballistic. Here we have considered a system with N = 300
subunits and an initial excitation at µ0 = 150 solving the TCL master equation. Nu-
merical investigations show that the transport behavior is largely independent of γ(t).
Ballistic transport is observed as long as λH t≫ γ(t) on all relevant timescales.

4.6. Discussion

In summary, we have shown that transport properties in a quantum system can be
studied from first principles using a projection operator method that projects out the
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information on the local sub-structure. We have verified the accuracy of the second-order
TCL expansion by comparison with the numerical solution of the full time-dependent
Schrödinger equation.

Using this extended projection operator technique [Breuer06; Breuer07] we have an-
alyzed the transport behavior of a concrete spin model system. In agreement with
experimental investigations of magnetic systems [Sologubenko00; Hess01] we have found
a dramatic anisotropy in the heat conducting behavior of the system: normal behavior
perpendicular to strongly coupled Heisenberg spin chains and a ballistic one in the di-
rection of the chains. The results of this analysis supports previous results concerning
the transport in spin systems [Heidrich-Meisner03].

In this way diffusive behavior has been derived from first principles on a mesoscopic
scale whereas the dynamics on the microscopic scale (i.e. of a single spin) is obviously
non-diffusive. This indicates that the transport behavior is not only a property of a
system per se, but also depends on the way we are looking at it.
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5. Entropy Transport in the
Jaynes-Cummings Model

5.1. Jaynes-Cummings model

The Jaynes-Cummings model [Jaynes63] (JCM) is a simple but powerful model describ-
ing the interaction between a two-level atom and a single mode of the quantized radiation
field. While being exactly solvable it offers a large range of genuinely quantum phenom-
ena like collapses and revivals in the inversion of the atom [Yoo85; Shore93], which have
been observed experimentally as well [Rempe87; Brune96]. In the framework of the JCM
we will propose a novel procedure for transporting entropy within the atom-field system,
allowing to control the temperature of the atom.

5.1.1. Field quantization

Our starting point for the quantization of the radiation field are the Maxwell equations
of classical electrodynamics. In free space, without currents and charges they are given
by (in Heaviside-Lorentz units, with the speed of light c = 1)

∇ ·E = 0 (5.1)

∇ · B = 0 (5.2)

∇× E +
∂

∂t
B = 0 (5.3)

∇× B− ∂

∂t
E = 0. (5.4)

Introducing a vector potential A satisfying

B = ∇× A, (5.5)

allows to transform (5.3) and (5.4) to

∇ · (∇ · A) −∇2A +
∂2

∂t2
A = 0. (5.6)

The vector potential is not unambiguously defined as the physical fields E and B invari-
ant under the gauge transformation

A 7→ A′ = A −∇χ. (5.7)
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We now introduce a fixed gauge by

∇ · A = 0, (5.8)

which is called the Coulomb gauge. This leads to the wave equation

∇2A− ∂2

∂t2
A = 0. (5.9)

We now regard a volume of periodicity V of arbitrary size, where we may use a mode
ansatz for A, i.e.,

A =
∑

k

(Ak exp(ikr) + c.c) . (5.10)

Here k denotes the wave vector and r the position. Plugging (5.10) into (5.9) gives

ω2Ak − ∂2

∂t2
Ak = 0, (5.11)

which has the solution
Ak = Ak(0) exp(−iωt). (5.12)

Since the solution must respect the Coulomb gauge we obtain solutions for two orthonor-
mal polarization vectors ekλ, i.e.,

A =
∑

kλ

√

1

2ωV
ekλ

(

akλ e
i(kr−ωt) + a∗kλ e

−i(kr−ωt)
)

. (5.13)

The time-averaged energy per cycle for a mode k may then be written as

Ek =
ω

4π

∫

V

d3r

2π
ω
∫

0

dt
(

Ek
2(r, t) + Bk

2(r, t)
)

=
1

2
ω (a∗a+ aa∗), (5.14)

which is formally equivalent to the energy of a quantized harmonic oscillator (2.25).
Therefore we use the quantization procedure

akλ 7→ âkλ

a∗kλ 7→ â†kλ. (5.15)

For the derivation of the Hamiltonian of the radiation field we start from the classical
Hamilton density

H =
1

2
ȦjȦj +

1

2

∂Aj

∂xi

∂Aj

∂xi
, (5.16)

where Einstein summation convention has been used. The Hamiltonian is then given by

Ĥ =

∫

d3r

(

1

2
˙̂
Aj

˙̂
Aj +

1

2

∂Âj

∂xi

∂Âj

∂xi

)

, (5.17)
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with the Âi being obtained via the quantization procedure. By using

∫

d3r ukλu
∗
k′λ′ =

~

2ω
δkk′δλλ′ (5.18)

we finally obtain for the Hamiltonian

Ĥ =
∑

kλ

ωk

(

â†kλâkλ +
1

2

)

. (5.19)

This means that the quantized radiation field is described by a set of independent har-
monic oscillators.

5.1.2. Resonant Interaction Hamiltonian

The Hamiltonian describing atom and field is given by

Ĥ =

∫

Ψ̂†
[

1

2m
(p̂− eÂ)2 + eφ

]

Ψ̂ + ĤF , (5.20)

where e is the electron charge, φ is the Coulomb potential and ĤF is the Hamiltonian
of the radiation field (5.19) [Walls94]. Ψ̂ is the operator for the Schrödinger field of
the atom in second quantization. The term proportional to A2 is negligible, and if the
wavelength of the radiation field is small compared to the linear dimension of the atom
we may perform the electric dipole approximation

p̂Â ≈ −d̂Ê, (5.21)

where d is the electric dipole moment. Putting all the pieces together, we finally arrive
at

Ĥ =
∆E

2
σ̂z + ω(â†â+

1

2
) + g(σ̂+â+ σ̂−â

† + σ̂+â
† + σ̂−â) (5.22)

with

g = d

√

ω

2V
. (5.23)

For a two-level atom we have

d̂ =

∫

ψ∗
eex̂ψg. (5.24)

The interaction Hamiltonian is simply given by the last summand in (5.22), i.e.,

ĤI = g(σ̂+â+ σ̂−â
† + σ̂+â

† + σ̂−â). (5.25)

The last two terms lead to oscillations at twice the resonance frequency and may be ne-
glected [Walls94]. This approximation is often called the “rotating wave approximation”
(RWA).
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Figure 5.1.: Collapse and revival of the probability to find the atom in its excited state
(g = 1, α = 4)

After performing the RWA the total Hamiltonian can be written as a sum of two-
dimensional operators acting only on the states |e, n〉, |g, n + 1〉. In this basis we have

Ĥn = Ωn+1σ̂x, (5.26)

with Ωn+1 being the Rabi frequency defined by

Ωn = g
√
n. (5.27)

The eigenstates of (5.26) are well-known and read

|+n〉 =
1√
2
(|g, n + 1〉 + |e, n〉)

|−n〉 =
1√
2
(|g, n + 1〉 − |e, n〉). (5.28)

If the field is initially prepared in a Fock state |n〉 and the atom in its excited state |e〉,
we obtain Rabi oscillations in the atom as its probability of being in the excited state is
given by

pe(t) = |〈e, n|Û |e, n〉|2 = cos2(Ωnt). (5.29)

In contrast, if the field starts in a coherent state |α〉 the evolution of the system is much
more complicated and shows collapses and revivals of pe(t) as shown in Fig. 5.1. The
revival can be made perfect when applying a π pulse in the σ̂z basis of the system at
half of the revival time. This leads to a complete inversion of the time-evolution of the
dynamics and finally to an echo phenomenon as shown in Fig. 5.2.

For a field prepared in a coherent state, the state of the atom will be almost pure at half
of the revival time if the atom is initially in a pure state [Gea-Banacloche90; Phoenix91].
However, a more realistic model would involve a thermal initial state for the atom. The
thermal contribution to the initial state of the field may be neglected as long as the
number of coherent photons is sufficiently larger than the number of thermal photons
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Figure 5.2.: Perfect revival after an additional π pulse. (g = 1, α = 4)

[Satyanarayana92]. Using thermal states allows for an investigation of the thermal prop-
erties of the JCM, i.e., its applicability for problems like the initial state preparation
in quantum computing [DiVincenzo00], cooling of atoms [Chu98; Cohen-Tannoudji98;
Phillips98], or implementation of quantum thermodynamic machines [Gemmer04].

5.2. Proposed procedure

In the following we will discuss a model where an atom in a thermal state enters a cavity
prepared in a coherent state. By obtaining a closed form for the reduced density matrix
for the atom we will show that after the collapse the state of the atom is independent of
its initial state. After a fixed interaction time the atom is taken to leave the cavity and to
interact with a laser field, which is treated as a semi-classical driver. For an appropriate
laser field the final state will be thermal as well. Depending on the interaction time with
the cavity, the final temperature can be varied over a large range, leading to cooling
or heating of the atom. We will present an expression for the minimum and maximum
temperature that can be achieved. Finally, we will discuss applications of the method
to cooling of the internal degrees of freedom of atoms and creating heat baths suitable
for studying thermodynamics at the nanoscale. The whole procedure of our proposal is
depicted in Fig. 5.3.

The total system is described by the Hamiltonian

Ĥ = ĤA + ĤF + ĤI , (5.30)

where the atomic Hamiltonian ĤA is given by

ĤA =
∆E

2
σ̂z, (5.31)

with ∆E being the energy splitting. The field Hamiltonian ĤF is

ĤF = ~ω

(

â†â+
1

2

)

, (5.32)
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|α〉 Laser

Figure 5.3.: Outline of the procedure: a two-level atom in a thermal state (occupation
probabilities represented by black dots) interacts with a cavity prepared in
a coherent state |α〉. After a time t the atom leaves the cavity. A laser
pulse is applied to the system, resulting in a thermal state with a different
temperature.

with ω being the frequency of the single mode and â being the annihilation operator of
field mode. Being in resonance, we have ω = ∆E. The JCM interaction Hamiltonian is
given by

ĤI = gσ̂+â+ g∗σ̂−â†. (5.33)

We restrict ourselves to the field being initially in a coherent state |α〉 and the atom
being in a thermal state described by the density operator

ρ̂(0) = Z−1 exp(−βĤA) ≡ pe(0)|e〉〈e| + [1 − pe(0)]|g〉〈g|, (5.34)

with Z being the partition function, β the inverse temperature, pe the probability to
find the atom in its excited state |e〉, and |g〉 denotes its ground state.

5.3. Reduced density matrix for the atom

The time evolution of the full system is then given by

ρ̂(t) = pe(0)Û |e, α〉〈e, α|Û † + [1 − pe(0)] Û |g, α〉〈g, α|Û †

≡ pe(0)|ψe(t)〉〈ψe(t)| + [1 − pe(0)] |ψg(t)〉〈ψg(t)|,
(5.35)

where Û is the time evolution operator of the full system.

In order to obtain the effective time evolution for the atom alone, the degrees of
freedom corresponding to the field have to be traced out according to (2.17). Here, the
partial trace over the field is given by

ρ̂(t) = TrF {|ψ(t)〉〈ψ(t)|} =
∑

n

〈n|ψ(t)〉〈ψ(t)|n〉. (5.36)

Since ρ̂ is hermitian and has unit trace, the atom is effectively described by the diagonal
element ρ11 and the off-diagonal element ρ01.
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5.3. Reduced density matrix for the atom

In the following we first consider the case where the initial state is |e, α〉. Then, the
full time evolution is given by (see, e.g., [Basdevant00])

|ψe(t)〉 =
∑

n

(

e−iΩn+1t/2|+n+1〉 − eiΩn+1t/2|−n+1〉
) e−|α|2/2

√
2

αn

√
n!

e−i(n+1/2)ωt, (5.37)

where the n-photon Rabi frequency Ωn and the n-photon eigenstates of the atom-field
system have been used. The time evolution of the reduced density matrix element ρ11

before the revival time has been studied extensively (see, e.g., [Basdevant00]) and is
given by

ρ11(t) =
1

2
+

1

2
cos(2gt) exp

(

− t2

τ2
C

)

, (5.38)

with τC being the collapse time, given by τC =
√

2/g. For an atom initially in |g〉 the
result is

ρ11(t) =
1

2
− 1

2
cos(2gt) exp

(

− t2

τ2
C

)

. (5.39)

Therefore, after the collapse the diagonal elements are constant, and ρii = 1/2.

The off-diagonal element ρ01 (again, first for the atom initially in |e〉) is given by

ρ01(t) =
∑

n

〈ψe(t)|n, g〉〈n, e|ψe(t)〉. (5.40)

Evaluating the summands ρ
(n)
01 using Eq. (5.37) and Eq. (5.28) leads to

ρ
(n)
01 (t) = iw(n)

√
n

2α∗ e−iωt

{

sin

[

(Ωn+1 + Ωn)
t

2

]

− sin

[

(Ωn+1 − Ωn)
t

2

]}

, (5.41)

with w(n) being the Poisson distribution. The first term inside the square brackets
oscillates at a much higher frequency than the second and results only in a random phase,
which vanishes after summation. In the high-photon limit

√
n may be approximated by

(see [Gea-Banacloche90])
√
n ≈

√
n̄+

n− n̄

2
√
n̄
. (5.42)

Analogously, the difference of the Rabi frequencies can be expressed as

Ωn+1 − Ωn = 2g(
√
n+ 1 −

√
n) (5.43)

≈ 2g

(

1

2
√
n̄
− 1

8
√
n̄3

− n− n̄

4
√
n̄3

)

. (5.44)

Plugging only the leading order into Eq. (5.41) and replacing the sum in Eq. (5.40) by
an integral over a Gaussian distribution leads to

ρ01(t) = − i

2
exp[i(ωt + φ)] sin

gt

2
√
n̄
, (5.45)
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Figure 5.4.: Comparison of the real and imaginary part of Eq. (5.45) (solid lines) and the
solution of the full time-dependent Schrödinger equation. Initial states for
the atom were |g〉 (Re ρ01: crosses, Im ρ01: boxes) and |e〉 (Re ρ01: diamonds,
Im ρ01: triangles). (n̄ = 36, g = 1, φ = 0)

where φ is the initial phase of the radiation field. Using the same approximations for
the atom initially in its ground state yields the same result for ρ01(t). Therefore, after
the collapse the atom evolves totally independent from its initial state. A comparison of
Eq. (5.45) with the numerical solution of the full time-dependent Schrödinger equation is
shown in Fig. 5.4. Apart from the collapse and revival phase there is excellent agreement.

Since the diagonal elements of ρ̂ are both at 1
2 the Bloch vector only moves within

x − −y plane of the Bloch sphere. Therefore, in order to obtain a thermal state one
always has to apply a π

2 pulse to the system (see Fig. 5.5), which is independent of the
exact position within the x−−y plane. Since the pulse diagonalizes ρ̂, the probability to
find the atom in its excited state after the pulse pe(t) is given by the smallest eigenvalue
of ρ̂. Computation of pe(t) yields

pe(t) =
1

2

(

1 − sin
gt

2
√
n̄

)

. (5.46)

This can also be expressed as a temperature using

T = − ∆E

kB log
(

pe

1−pe

) . (5.47)

5.4. Minimum and maximum temperature

Equation (5.46) suggests that at half of the revival time the atom will be in its ground
state (i.e., T = 0). However, this minimum temperature would only be reached for
infinitely large n̄, for which it would take an infinitely long time to reach this state. In
order to determine the actual minimum temperature a correction for finite n̄ is required.
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Figure 5.5.: Illustration of the π
2 pulse acting on the Bloch vector of the atom.
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Figure 5.6.: Minimum temperature Tmin over average photon number n̄.

A correction to Eq. (5.45) can be obtained by including the next order in Eq. (5.44).
Close to half of the revival time the sine in Eq. (5.41) is near its maximum and can be
approximated by a second order Taylor expansion, which leads to a final result of

pe

(τR
2

)

=
π2

32n̄
. (5.48)

Using the next order in Eq. (5.42) as well leads to an additional correction in O( 1
n̄2 ).

Putting this pe into Eq. (5.47) gives the minimum temperature Tmin(n̄) as shown in
Fig. 5.6.

In order to determine the maximum temperature that can be reached we require that
the collapse must have taken place [i.e,. the difference in the occupation probabilities
Eqs. (5.38) and (5.39) is negligible compared to the difference induced by the laser].
Requiring the former to be smaller by a factor of 10, this can be expressed as

10 cos(2gt) exp

(

− t2

τ2
C

)

= sin
gt

2
√
n̄
. (5.49)

The cosine on the left hand side may be replaced by unity without violating the above
requirement. For large n̄ the right hand side can be approximated linearly in t, resulting
in

10 exp

(

− t2

τ2
C

)

=
gt

2
√
n̄
. (5.50)
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Figure 5.7.: Maximum temperature Tmax over average photon number n̄.

Solving for the appropriate cavity interaction time t and using Eqs. (5.46) and (5.47)
leads to a maximum temperature Tmax of

Tmax =
∆E

kB log
4
√

n̄+
√

W (400n̄)

4
√

n̄−
√

W (400n̄)

, (5.51)

where W (·) denotes the Lambert W function, i.e., the inverse function of f(x) = xex.
Figure 5.7 shows the dependence of Tmax on n̄.

5.5. Entropy transport

In order to investigate the dynamical properties of the cooling or heating of the atom it is
convenient to calculate its von Neumann entropy. Figure 5.8 shows the time-dependence
of the entropy for a typical case. In the beginning, the total entropy increases strongly
due to the entanglement between atom and field. The amount of entanglement then
slowly decreases until it reaches its minimum at half of the revival time. Subsequently,
the total entropy increases again. The local entropy of the field rapidly approaches the
entropy of the atom. Following this, it remains constant until the revival phase. This
means that the rate of entropy transport from the atom to the field is the same as the
rate for the total entropy (and thus entanglement) decrease.

5.6. Applications

These results show that the temperature of the atom can be tuned over a large range
that depends only on the average photon number n̄, the coupling time t, and the energy
splitting ∆E. However, there are some other applications for this procedure, which
are realizable within present experimental setups. A rather obvious one is the cooling
of atoms. However, an implementation using an optical cavity would be extremely
difficult as the frequencies relevant for cooling are in the MHz range, where the coupling
constant g is much too small to observe any effects [due to the ω dependence in Eq.
(5.23)]. A much more promising implementation could be realized using circuit quantum
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Figure 5.8.: Local entropy for the atom (solid line) and the radiation field (dashed line).
(g = 1, α = 6, β = 2.5∆E)

electrodynamics (QED) [Blais04; Wallraff04], in which the atom is replaced by a Cooper-
pair box and the cavity is implemented by a one-dimensional resonator. There, the
coupling constant is sufficiently large even in the relevant frequency range. Using our
procedure might lead to lower temperatures than resulting from currently employed
techniques. Besides circuit QED, other implementations involving a Jaynes-Cummings
Hamiltonian with a tunable coupling constant may prove useful as well.

Another interesting application of this procedure could be the realization of tiny lo-
cal baths. Local baths are an important ingredient in non-equilibrium quantum ther-
modynamics [Gemmer04], where it is necessary to create and control a temperature
gradient on a nanoscopic scale. This could be used to investigate transport behavior
[Saito00; Michel03] or quantum thermodynamic machines [Henrich06]. Using our frame-
work to repeatedly set a temperature of a single two-level system could act as such a
local bath, as long as the cavity is reset after each step and the temperature control
happens on a much smaller timescale than the other processes within the system (i.e.,
strong bath coupling).
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6. Summary and Conclusion

As laid out in the beginning, exponentially growing computational resources are the
main obstacle when investigating complex quantum systems. However, the main part
of this thesis states that not all is lost. There are classes of quantum systems that are
thermodynamic in the sense that it is possible to correctly describe essential properties
like transport behavior without having to solve the full time-dependent Schrödinger
equation. This even holds far from equilibrium.

In chapter 3, the LEMBAS principle was introduced. While in general it still requires
the solution to the full problem, it is possible to use it to find constraints on stationary
steady states, thus reducing the search space dramatically. Additionally, definitions for
work and heat are much more obvious in the context of the LEMBAS principle. However,
the relation to results from classical non-equilibrium thermodynamics, like the principle
of minimum entropy production, remains an open problem.

The most powerful approach for tackling large thermodynamic quantum systems is
the projection operator technique used in chapter 4. While being a perturbative ap-
proach, it can give a good approximation to the dynamics of the system for all times.
Using this method, the transport properties of a concrete three-dimensional magnetic
system have been investigated. There, diffusive and ballistic heat transport have been
found to coexist in the same system, depending only oon the direction the transport is
being invenstigated. Furthermore, diffusive behavior has been found to be an emergent
property, as it does not exist on the scale of a single spin, but only when a reasonably
large amount of spins is considered.

Finally, chapter 5 demonstrates that quantum thermodynamics can directly lead to
useful applications: Using a straightforward setup it is possible to control the temper-
ature of a two-level system. This scenario could be used in any case where extremely
cooled internal degrees of freedom are desirable, like in quantum computing or even for
medical applications such as magnetic resonance imaging.

In summary, this thesis demonstrates that transport properties of quantum system can
be studied using standard techniques. The methods are not limited to classical concepts
like work and heat, but are also applicable in a more general sense for quantities like
entropy and entanglement.
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A. Appendix

A.1. Trace theorems

Let H = HA ⊗HB be a bipartite Hilbert space, with operators Â and B̂ acting on H1

and H2, respectively, and an operator Ĉ acting on the full Hilbert space.

Theorem A.1.

TrA

{

[Â⊗ 1̂, Ĉ]
}

= TrB

{

[1̂ ⊗ B̂, Ĉ]
}

= 0.

Proof. Due to symmetry it suffices to prove

TrA

{

[Â⊗ 1̂, Ĉ]
}

= 0. (A.1)

Using an orthonormal basis {Q̂i} with each Q̂i acting only on HA or HB we can write

TrA

{

[Â⊗ 1̂, Ĉ]
}

=
∑

jk

cjkTrA

{

[Â⊗ 1̂, Q̂j ⊗ Q̂k]
}

=
∑

jk

cjkTrA

{

[Â⊗ 1̂, Q̂j ] ⊗ Q̂k

}

=
∑

jk

cjkTrA

{

[Â, Q̂j]
}

Q̂k

cycl.
= 0. (A.2)

Theorem A.2.

TrA

{

(Â⊗ B̂)Ĉ
}

= B̂TrA

{

(Â⊗ 1̂)Ĉ
}

TrB

{

(Â⊗ B̂)Ĉ
}

= ÂTrB

{

(1̂ ⊗ B̂)Ĉ
}

.

Proof. Again, for symmetry reasons we only need to prove the first part. Using the same
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basis operators as in the proof of theorem A.1 we have

TrA

{

(Â⊗ B̂)Ĉ
}

=
∑

jk

cjkTrA

{

(Â⊗ B̂)(Q̂j ⊗ Q̂k)
}

=
∑

jk

cjkTrA

{

(ÂQ̂j) ⊗ (B̂Q̂k)
}

= B̂
∑

jk

cjkTrA

{

(ÂQ̂j) ⊗ Q̂k

}

= B̂TrA

{

(Â⊗ 1̂)Ĉ
}

. (A.3)

Corollary A.3. If the operator acting on the system being traced out is the unit operator,
it immediately follows from theorem A.2 that

TrA

{

(1̂ ⊗ B̂)Ĉ
}

= B̂TrA

{

Ĉ
}

TrB

{

(Â⊗ 1̂)Ĉ
}

= ÂTrB

{

Ĉ
}

. (A.4)

Corollary A.4. Another immediate consequence of theorem A.2 is

TrB

{[

Ĉ, Â⊗ B̂
]}

=
[

TrB

{

Ĉ(1̂ ⊗ B̂)
}

, Â
]

TrA

{[

Ĉ, Â⊗ B̂
]}

=
[

TrA

{

Ĉ(Â⊗ 1̂)
}

, B̂
]

. (A.5)

A.2. Reduced density matrices

Theorem A.5. Let H = HA ⊗ HB be a bipartite Hilbert space. We may write any
density operator ρ̂ as

ρ̂ = ρ̂A ⊗ ρ̂B + ĈAB, (A.6)

with ρ̂A,B being the reduced density matrices of subsystem A,B, respectively, and ĈAB

being the operator representing the correlations (both classical correlations and entangle-
ment). Then

TrA

{

ĈAB

}

= TrB

{

ĈAB

}

= 0. (A.7)

Proof. As discussed above, we only need to prove the first part. Taking the partial trace
over A results in

TrA {ρ̂} = TrA {ρ̂A ⊗ ρ̂B} + TrA

{

ĈAB

}

ρ̂A = ρ̂A + TrA

{

ĈAB

}

TrA

{

ĈAB

}

= 0. (A.8)
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A.2. Reduced density matrices

Corollary A.6. By taking the trace over the remaining system in theorem A.5 we arrive
at

Tr {CAB} = 0. (A.9)
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