Statistical Physics Exam

1 Series of questions

1.1 Fermions:

a) Write down the 2-particle wave function for two Fermions with single particle states $\phi_{i}\left(x_{j}\right), i, j=1,2$.
b) What is a Slater determinant?
c) Compute the Fermi-energy ϵ_{F} of a system of N Fermions in its ground state as a function of N (at zero temperature).

1.2 Second quantization:

a) Express the particle density and the total particle number in terms of the field operators.
b) Write down a generic Hamiltonian of a system of N particles within a potential $U(x)$ and a 2-particle interaction $V\left(x-x^{\prime}\right)$ in second quantized form in the momentum representation.

1.3 Fermions II:

a) Express the pair-distribution function $g_{\sigma \sigma^{\prime}}\left(x-x^{\prime}\right)$ in terms of particle-density operators.
Hint: Use the definition $\left\langle\phi_{0}\right| \Psi_{\sigma}^{\dagger}(x) \Psi_{\sigma^{\prime}}^{\dagger}\left(x^{\prime}\right) \Psi_{\sigma^{\prime}}\left(x^{\prime}\right) \Psi_{\sigma}(x)\left|\phi_{0}\right\rangle=\left(\frac{n}{2}\right)^{2} g_{\sigma \sigma^{\prime}}\left(x-x^{\prime}\right)$.
b) Compute the pair-distribution function for free fermions, discuss separately the cases $\sigma=\sigma^{\prime}$ and $\sigma \neq \sigma^{\prime}$.
Hint: Work in momentum representation.

1.4 Density matrix and correlators:

a) Write down the density matrix ρ for a canonical ensemble. What is the partition function Z ?
b) Express the expectation value $\langle O\rangle$ of an observable O with the help of the density matrix.
c) Prove that, if the Hamiltonian H is not explicitly time-depedent, the correlation functions satisfy $\left\langle A(t) B\left(t^{\prime}\right)\right\rangle=\left\langle A\left(t-t^{\prime}\right) B(0)\right\rangle$.
Hint: Go to the Heisenberg picture.

2 Exercices

2.1 Heisenberg model:

The Heisenberg model of a ferromagnet is defined by the Hamiltonian

$$
H=-\frac{1}{2} \sum_{l, l^{\prime}} J\left(\left|l-l^{\prime}\right|\right) \vec{S}_{l} \cdot \vec{S}_{l^{\prime}}
$$

where l and l^{\prime} are nearest neighbor sites on a cubic lattice. In the large spin approximation $(S \gg 1)$, the Holstein-Primakoff transformation

$$
\begin{aligned}
S_{i}^{+} & =\sqrt{2 S} \phi\left(\hat{n_{i}}\right) a_{i} \\
S_{i}^{-} & =\sqrt{2 S} a_{i}^{\dagger} \phi\left(\hat{n_{i}}\right) \\
S_{i}^{z} & =S-\hat{n_{i}}
\end{aligned}
$$

with the number S denoting the total spin, $\phi\left(\hat{n_{i}}\right)=\sqrt{1-\hat{n_{i}} / 2 S}$ and $\hat{n_{i}}=a_{i}^{\dagger} a_{i}$, can be used to express the Hamiltonian in terms of Bose operators a_{i}.
a) Show that the commutation relations for the spin are satisfied.
b) Write down the Hamiltonian to second order (harmonic approximation) in terms of the Bose operators a_{i} by regarding the square-roots in the above transformation as a short hand for the series expansion.
c) Diagonalize H by means of a Fourier transform and determine the dispersion relation of the spin waves (magnons).

2.2 Bogoliubov theory of the Bose liquid:

In Bogoliubov's theory, the Hamiltonian of the Bose liquid reads:

$$
H_{2}=\sum_{k}\left(\frac{\hbar^{2} k^{2}}{2 m}-\mu\right) a_{k}^{\dagger} a_{k}+\frac{n_{0} g}{2}\left(a_{k}^{\dagger} a_{-k}^{\dagger}+4 a_{k}^{\dagger} a_{k}+a_{-k} a_{k}\right)
$$

where $\mu=n_{0} g$ being the chemical potential.
We introduce the Bogoliubov transformation:

$$
\begin{aligned}
a_{k} & =u_{k} \alpha_{k}+v_{k} \alpha_{-k}^{\dagger} \\
a_{k}^{\dagger} & =u_{k} \alpha_{k}^{\dagger}+v_{k} \alpha_{-k}
\end{aligned}
$$

where u_{k} and v_{k} are real and obey $u_{k}^{2}-v_{k}^{2}=1$.
The idea is to rewrite the Hamiltonian in terms of these new operators and then to vary the parameters u_{k} and v_{k} to make it diagonal.
a) Writing the Bogoliubov transformation in the matrix form,

$$
\binom{b_{k}}{b_{-k}^{\dagger}}=\left(\begin{array}{cc}
u_{k} & v_{k} \\
v_{k} & u_{k}
\end{array}\right)\binom{a_{k}}{a_{-k}^{\dagger}}
$$

show that the pair of equations can be inverted to yield

$$
\binom{a_{k}}{a_{-k}^{\dagger}}=\left(\begin{array}{cc}
u_{k} & -v_{k} \tag{4P.}\\
-v_{k} & u_{k}
\end{array}\right)\binom{b_{k}}{b_{-k}^{\dagger}}
$$

b) Rewrite the Hamiltonian H_{2} in the matrix form

$$
H_{2}=\sum_{k}\left(\begin{array}{ll}
a_{k}^{\dagger} & a_{-k}
\end{array}\right)\left(\begin{array}{cc}
\epsilon_{k}+n_{0} g & n_{0} g / 2 \tag{4P.}\\
n_{0} g / 2 & 0
\end{array}\right)\binom{a_{k}}{a_{-k}^{\dagger}}
$$

where $\epsilon_{k}=\hbar^{2} k^{2} / 2 m$.
c) Use the inverse of the Bogoliubov transformation to express H_{2} in terms of the $b^{\prime} s$ operators, namely you should find:

$$
H_{2}=\sum_{k}\left(\begin{array}{ll}
b_{k}^{\dagger} & b_{-k}
\end{array}\right)\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{b_{k}}{b_{-k}^{\dagger}}
$$

where the coefficients $M_{i j}$ have to be computed explicitly.
d) Show that the condition for the transformed matrix to be diagonal is that

$$
\begin{equation*}
\frac{2 u_{k} v_{k}}{u_{k}^{2}+v_{k}^{2}}=\frac{n_{0} g}{\epsilon_{k}+n_{0} g} \tag{4P.}
\end{equation*}
$$

must be satisfied.
e) Show that the trace of the M matrix is

$$
E=\left(\epsilon_{k}+n_{0} g\right)\left(u_{k}^{2}+v_{k}^{2}\right)-2 n_{0} g u_{k} v_{k}
$$

Using the representation $u_{k}=\cosh (\theta)$ and $v_{k}=\sinh (\theta)$, show from \mathbf{d}) that

$$
\tanh (2 \theta)=\frac{n_{0} g}{\epsilon_{k}+n_{0} g}
$$

and hence prove that

$$
\begin{equation*}
E=\sqrt{\epsilon_{k}\left(\epsilon_{k}+2 n_{0} g\right)} \tag{4P.}
\end{equation*}
$$

consistent with the Bogoliubov quasiparticle dispersion given in the lecture.

Total: (70 P.)

