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HomeWork 8 : The Bose-Einstien condensation

1. Bose condensate critical temperature

a) Using the Bose-Einstein distribution, the total number of particles in a box is
1
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In the continuum limit, we replace >, by [ #d?’k, and introducing the density of states
g(e) we get the density :
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we can see this equation as an implicit definition of the chemical potential as a function
of T and n. Rewrite (evaluate g(e) explicitly !) n in terms of dimensionless variables
z = P (called the fugacity) and z = Be. You should find that
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To calculate this integral we can expand
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Prove that
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For this you will certainly need the following results :
o0
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with the value I'(3/2) = /7/2, and

P
93/2 = <t W
Invert this equation and calculate the critical temperature T, where p = 0. Comment.
2. Number of particles in the condensate

NB : In this exercice, the notations will be taken from the lecture.

The goal is to determine the temperature dependence of the number of particles in the
condensate (k = 0), for a contact potential Vi = A.

a) Proceed by first calculating the thermodynamic expectation value of the particle
number operator N = ", azak. Rewrite it in terms of the Bogoliubov operators o and
switch to the continuum limit.
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Result :

mn /
N = No(T) + 2(22)32 (é + Ul(fy)) :

where v = k3 /2m, k} = 4mn), 8 = 1/kgT, and
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with y = 2v22 + 1

b) Show that for low temperature the depletion of the condensate increases quadratically

with the temperature
No(T) _ No(0) m 2
= — — (kT
% v 120 kBT)

where ¢ = \/@.
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