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N spins 1/2, ferromagnetic nearest neighbour coupling J1 < 0 and antiferromagnetic next

nearest neighbour coupling J2. Lanczos diagonalization for chains with N = 24, 20, 16, 12

spins, the unit of energy is fixed by choosing J2 = +1.

Aim of the work

Calculate and discuss the dynamics (lowest excitations) in the full range of the phase space

spanned by 0 ≤ ∆ ≤ 1 and −J1 going from 0 to very large values. Identify the various

phases in this regime and compare to the DMRG work of Furusaki et al.

Points and lines with exact results in the ∆ − J1 phase diagram:

• line J1 = 0: two decoupled anisotropic HAFs with N/2 spins (i.e. doubled lattice

constant, 2a), where exact results on the infinite system are available from Bethe

ansatz.

• J1 = 0, ∆ = 0: S = 1/2 xy−chain, where the exact results are available after trans-

formation to fermions (LSM). In particular, exact results are available for arbitrary

finite size.

• J1 = −2, ∆ = 0: Majumdar-Ghosh point, where the ground state is known to be a

product state of ferromagnetic dimers with Sz
tot = 0. The excitations are solitons with

a gap. This point is the ferromagnetic version of the Majumdar-Ghosh point originally

described for the antiferromagnetic chain with NNN exchange, J1, J2 > 0.
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• −J1 = 4, ∆ = 1.0: At this point the phase transition to the ferromagnetic ground

state (which is trivially realized for very large J1) occurs. Whereas for ∆ = 1.0 the

ground state has Stot = 0 for −J1 < 4 and Stot = Smax = N/2 for −J1 > 4, for ∆ < 1.0

it has Sz
tot = 0 for all −J1.

• −J1 ≫ J2: the system approaches the limit of an anisotropic ferromagnetic Heisenberg

chain (lattice constant a), which is also covered by the Bethe ansatz solution.

Results so far:

• phase diagram ∆ − −J1 in comparison to DMRG results (Furukawa, Sato, Onoda,

Furusaki, PRB 86, 094417 (2013)):

we identify the vector chiral phase by minima k 6= π/2, a maximum number of 3

minima (k = pπ/4, p = 1, 2, 3) is found at −J1 = 3.50, ∆ = 1 (fig. 13)

we identify the dimer phase by a gap in the spectrum and, alternatively, by a second

degenerate ground state at k = π (figs. 17 - 19).

the line separating the C and IC regimes inside the dimer phase is found in complete

agreement with DMRG (20).

the extent of the dimer regime is underestimated by the approach of looking for

degenerate ground states and roughly correct in the approach of looking for a

vanishing gap

• type of excitations:

The transition from the double sine dispersion at small J1 to the sine (xy−) dispersion

at large −J1 is nicely seen. The intermediate stages of gapped spectra and modulated

spectra can be clearly followed.

A method describing the modulation in the vector chiral phase has still to be devel-

opped.

• Finite size effects:

extrapolation to N → ∞ from N = 16 and N = 24 gives reasonable results for small

−J1, e.g. the vanishing of the gap is obtained.

For larger −J1 the N−dependence is governed by oscillations and a successful extrap-

olation should take into account the N−dependence of the oscillation period.
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Figures of dispersions for some overview:

In these figures excitation spectra are shown for Sz
tot = 1 (lowest state). The zero of

energy is defined as the result obtained for k = 0, Sz
tot = 0. In the majority of cases this

conincides with the ground state for the finite system considered. However, in some cases,

the state k = π, Sz
tot = 0 has lower energy, which implies the possibility of negative energies

in the dispersion curves.

We use integer numbers p as wave vector units,adapted to the chain with 24 spins, where

k = (2π/24) p with p = 0...23. Thus p = 12 corresponds to π etc. For general number of

spins we use p = (12/π) k to make direct comparison between two different N possible (p is

no more necessarily integer). We only show the first half of the BZ, p = 0...12, that of the

second half follows from reflection invariance.

Fixed ∆ (figs. 1 - 4):

• series of spectra for ∆ = 0 and ∆ = 0.5, varying J1 from -0.7 to -2.70.

• series of spectra for ∆ = 1.0 (isotropic chain), varying J1 from 0 to -3.50.

Fixed J1 (figs. 5 - 13):

• series of spectra for J1 = −1.0,−1.8,−2.0, varying ∆ from 0 to 1.

• series of spectra for J1 = −2.5,−2.7,−3.3,−3.5 varying ∆ from 0.5 to 1.

Some discussion:

Along lines with fixed ∆ the spectrum/dispersion changes from the double sine behaviour

at small −J1 to the sine behaviour at large −J1. With the exception maybe of values

of ∆ close to 1, these two regimes are separated by a regime of dimer type, emerging

by continuous deformation from the Majumdar-Ghosh point and characterized by two

degenerate ground states at k = 0, π.

A striking property of the spectra is the emergence of minima different from the minimum

at k = 6 for small −J1. The most prominent of these is at k = 7, others are at k = 4 and

k = 9. With increase of −J1 there is a critical value −Jc1
1 where the minimum shifts from

k = 6 to k = 7, at some larger −J1 this minimum shifts to k = 9 and at a second critical

value −Jc2
1 no minimum is left. The line −Jc2

1 (∆) is identified with the Lifshitz line.
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Finite size effects and extent of the dimer phase

Possible ground states are at k = 0 and k = π and we find that the energy difference

between these states oscillates with the parameters, an obvious finite size effect as is seen

by comparing different N , fig. 14.

Plotting the dispersion for different values of N , figs. 15,16 we find that the position of the

minima for various values of N is not in contradiction to the assumption that a reasonable

limit for N → ∞ exists. From fig. 16 we conclude that it may be appropriate to measure k

wrt the ground state k for the actual N .

The increase of energy close to k = π and also k = 0 observed in many of the dispersions

is very probably a finite size effect: It is also obtained analytically for the simple af chain

xy−model, which in the free fermion picture can be solved exactly for finite N . It results

from a discontinuity in the occupation of fermion bands and only occurs for the final interval

in k−space nect to k = 0, π and thus disappears in the limit N → ∞.

Energy gap and dispersion: When the system enters the dimerized regime, an energy gap

opens up at both k = 0, 12(≡ 0, π). This is difficult to see numerically in the finite system

since the second lowest states have to be considered. Qualitatively, a 1/N extrapolation

for k = 12 in the regime of small J1 leads to the expected result ’no gap’ as well as in the

regime of intermediate −J1 and ∆ sufficeintly different from 1 to the expected result: ’finite

(dimer) gap’.

Over a finite range of ∆−values (dimer regime) the lowest k = 12 state becomes degenerate

with the lowest k = 0 state (zero energy, taken as zero of energy), the existence of these two

degenerate ground states is the signature of the dimerized regime. The degeneracy is seen

in a corresponding manner already for both N = 24 and for N = 16 (figs. 17 - 19) which

illustrates how the correlation length drops (well in the dimerized regime, even N = 16 is

sufficient to produce the degeneracy). An estimate of the extent of the degenerate ground

states can serve as an estimate of the extent of the dimerized regimed and was used to obtain

the lines shown in fig. 20.

Another characteristic of the dimerized regime is the solitonlike dispersion, obtained by a

hopping of the dimer excitation from one dimer to the next one. This can be compared to

the analytical soliton dispersion. A characteric of the emerging soliton dispersion is that the

energy of the k = π/2 state starts to deviate from 0, actually it grows linearly.
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FIG. 1: Sz
tot = 1 spectra for N = 24, ∆ = 0.00 and J1 = −0.70... − 2.70.
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FIG. 2: Sz
tot = 1 spectra for N = 24, ∆ = 0.50 and J1 = −0.70... − 2.70.
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FIG. 3: Sz
tot = 1 spectra for N = 24, ∆ = 1.00 and J1 = −0... − 1.65.
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FIG. 4: Sz
tot = 1 spectra for N = 24, ∆ = 1.00 and J1 = −1.65... − 3.50.
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FIG. 5: Sz
tot = 1 spectra for N = 24, J1 = −1.0 and ∆ = 0...1.

0 3 6 9 12
wave number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ex
ci

ta
tio

n 
en

er
gy

Delta = 0
Delta = 0.2
Delta = 0.5
Delta = 0.7
Delta = 1.0

Dispersion, S^z_tot = 1, J_1 = -1.8

FIG. 6: Sz
tot = 1 spectra for N = 24, J1 = −1.8 and ∆ = 0...0.7.

7



0 3 6 9 12
0

0.2

0.4

0.6

0.8 Delta = 0.00
Delta = 0.25
Delta = 0.45
Delta = 0.65
Delta = 1.00

Dispersion, S^z_tot = 1, J_1 = -2.0 (xy to HAF)

FIG. 7: Sz
tot = 1 spectra for N = 24, J1 = −2.0 and ∆ = 0...1.
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FIG. 8: Sz
tot = 1 spectra for N = 24, J1 = −2.0 and ∆ = 0...0.25.
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FIG. 9: Sz
tot = 1 spectra for N = 24, J1 = −2.5 and ∆ = 0...1.
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FIG. 10: Sz
tot = 1 spectra for N = 24, J1 = −2.7 and ∆ = 0...1.
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FIG. 11: Sz
tot = 1 spectra for N = 24, J1 = −3.3 and ∆ = 0.5...1.
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FIG. 12: Sz
tot = 1 spectra for N = 24, J1 = −3.3 and ∆ = 0.8...1 (approach to isotropy).
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FIG. 13: Sz
tot = 1 spectra for N = 24, J1 = −3.5 and ∆ = 0.8, 0.9, 1.0. For J1 = −3.5 and k = π

energies of both lowest and first excited state are below the lowest energy for k = 0.

11



0 0.5 1 1.5 2 2.5 3 3.5 4

-J_1

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

en
er

gy

N=24
N=20
N=16
N=12

energy differences (E(pi) - E(0))   (J_2 =  1, Delta = 1)

FIG. 14: N−dependence of difference of energies at k = π and k = 0 for Stot = 1: N = 24, 20, 16

and 12, J1 = −3.00 and ∆ = 1.00.
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FIG. 15: Sz
tot = 1 spectra for N = 24, 20, 16 and 12, J1 = −3.00 and ∆ = 1.00.
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FIG. 16: Spectra for N = 24, 20 and 16, ∆ = 1.00 and J1 = −2.00. Inverted k−range for N = 20.
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FIG. 17: energy of the possible second ground state at k = π, Sz
tot = 0 for ∆ = 0 vs. −J1 for

N = 24 and N = 16. The red part of the x−axis indicates the range of the dimer regime from

DMRG [Furusaki]
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FIG. 18: energy of the possible second ground state at k = π, Sz
tot = 0 for ∆ = 0.5 vs. −J1 for

N = 24 and N = 16. The red part of the x−axis indicates the range of the dimer regime from

DMRG
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FIG. 19: energy of the possible second ground state at k = π, Sz
tot = 0 for J1 = −2.5 vs. ∆ for

N = 24 and N = 16. The red part of the x−axis indicates the range of the dimer regime from

DMRG

16



-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
0

0.2

0.4

0.6

0.8

1
ED: dimer regime begins
ED: dimerized
DMRG: dimer regime begins
DMRG: dimer regime ends
ED: k = 9 minimum regime ends
DMRG: Lifhsitz line

phase diagram Delta -J_1: ED vs DMRG

FIG. 20: Phase diagram ∆ vs J1: comparison of DMRG results to ED resuls, N = 24.
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FIG. 21: Phase diagram ∆ vs J1: extent of regimes for dispersion minima in ED for N = 24.
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