Tensor Galileons and Gravity

Athanasios Chatzistavrakidis + Fech Scen Khoo + Diederik Roest + Peter Schupp

Based on arXiv:1612.05991

11th Nordic String Theory Meeting - ITP Hannover

Introduction and Motivation

* In physics we encounter differential equations up to second order in derivatives
* In cosmology \rightsquigarrow interest in higher derivative self-interactions, e.g. for scalar fields

Most general theory with second-order field equations?

Gravity ${ }^{+}$

Most general metric theory with second-order field equations in D dimensions?

* $D=4 \rightsquigarrow$ General relativity
* $D=5 \rightsquigarrow$ Einstein-Hilbert + Gauss-Bonnet
* $D=D \rightsquigarrow$ Lovelock

Most general metric-scalar theory with second-order field equations in $D=4$?

* Horndeski theory

Scalar ${ }^{+}$

* The answer in flat spacetime of $D \geq n$ is given by (a sum over) Galileons

Nicolis, Rattazzi, Trincherini '08

$$
\mathcal{L}_{n+1}[\pi]=\mathcal{A}_{(2 n)}^{i_{1} \ldots i_{n} j_{1} \ldots j_{n}} \partial_{i_{1}} \pi \partial_{j_{1}} \pi \partial_{i_{2}} \partial_{j_{2}} \pi \ldots \partial_{i_{n}} \partial_{j_{n}} \pi,
$$

where

$$
\mathcal{A}_{(2 n)}^{i_{1} \ldots i_{n} j_{1} \ldots j_{n}}=\frac{1}{(D-n)!} \varepsilon^{i_{1} \ldots i_{n} k_{1} \ldots k_{D-n}} \varepsilon^{j_{1} \ldots j_{n}}{ }_{k_{1} \ldots k_{D-n}} .
$$

* The name reflects the internal Galilean invariance under $\delta \pi=c+b_{i} x^{i}$
* The first few Lagrangians are

$$
\mathcal{L}_{2}=-\frac{1}{2}(\partial \pi)^{2}, \quad \mathcal{L}_{3}=-\frac{1}{2}(\partial \pi)^{2} \square \pi, \quad \mathcal{L}_{4}=-\frac{1}{2}(\partial \pi)^{2}\left[(\square \pi)^{2}-\left(\partial_{i} \partial_{j} \pi\right)^{2}\right], \ldots
$$

* Covariantization yields scalar-tensor theories in any D (in $4 \equiv$ Horndeski) Deffayet, Esposito-Farese, Vikman '09
- Also, scalars with up to $2^{\text {nd }}$ order eoms, Galileon-type p-forms, multiple species. Deffayet, Deser, Esposito-Farese '09, '10; Deffayet, Mukohyama, Sivanesan '16 \&c.

Our Goals

\checkmark A universal, index-free formulation for all Galileons and their generalizations

* with graded variables \rightsquigarrow motivated by the "double- ϵ " structure
\checkmark Generalization to mixed-symmetry tensor fields (p, q) (beyond spin-1)
* Young diagrams with 2 columns as generalized gauge fields Curtright ' 85
* Dual graviton / exotic dualizations de Medeiros, Hull '02
* E_{11} West '04 / Exotic branes Bergshoeff, Riccioni '10; A.Ch., Gautason, Moutsopoulos, Zagermann '13

Graded formalism

Extend the bosonic coordinates $\left(x^{i}\right)$ by two sets of anticommuting $\left(\theta^{i}\right)$ and $\left(\chi^{i}\right)$:

$$
\theta^{i} \theta^{j}=-\theta^{j} \theta^{i}, \quad \chi^{i} \chi^{j}=-\chi^{j} \chi^{i}, \quad \theta^{i} \chi^{j}=\chi^{j} \theta^{i} .
$$

Represent a p-form $\omega^{(p)}$ in two ways:

$$
\boldsymbol{\omega}^{(p)}=\frac{1}{p!} \omega_{i_{1} \ldots i_{p}} \theta^{i_{1}} \ldots \theta^{i_{p}}, \quad \widetilde{\boldsymbol{\omega}}^{(p)}=\frac{1}{p!} \omega_{i_{1} \ldots i_{\rho}} \chi^{i_{1}} \ldots \chi^{i_{p}} .
$$

Introduce two nilpotent and mutually commuting exterior derivatives:

$$
\mathbf{d}=\theta^{i} \partial_{i} \quad \text { and } \quad \widetilde{\mathbf{d}}=\chi^{i} \partial_{i} .
$$

Use Berezin integration to integrate over the graded variables:

$$
\int \mathrm{d} \theta \theta=1, \quad \int d^{D} \theta \theta^{i_{1}} \ldots \theta^{i_{D}}=\varepsilon^{i_{1} \ldots i_{D}}
$$

Scalar and p-form Galileons

Scalar Galileon

$$
\mathcal{L}_{n+1}[\pi]=-\frac{1}{(D-n)!} \int \mathrm{d}^{D} \theta \mathrm{~d}^{D} \chi \boldsymbol{\eta}^{D-n} \pi(\mathbf{d} \widetilde{\mathbf{d}} \pi)^{n}, \quad\left(\boldsymbol{\eta}=\eta_{i j} \theta^{i} \chi^{j}\right)
$$

The field equations are $2^{\text {nd }}$ order: $E_{n+1}=-\frac{n+1}{(D-n)!} \int \mathrm{d}^{D} \theta \mathrm{~d}^{D} \chi \boldsymbol{\eta}^{D-n}(\mathrm{~d} \widetilde{\mathbf{d}} \pi)^{n}=0$
p-form Galileon

$$
\mathcal{L}_{2 n}[\omega]=\frac{1}{(D-(p+2) n+1)!} \int \mathrm{d}^{D} \theta \mathrm{~d}^{D} \chi \eta^{D-(p+2) n+1} \mathrm{~d} \omega \tilde{\mathbf{d}} \widetilde{\omega}(\mathrm{~d} \tilde{\mathbf{d}} \widetilde{\omega})^{n-1}(\widetilde{\mathbf{d}} \mathbf{d} \omega)^{n-1} .
$$

N.B.: For $p=2 k+1 \Rightarrow(\mathbf{d} \widetilde{\mathbf{d}} \omega)^{2}=(\mathbf{d} \widetilde{\mathbf{d}} \widetilde{\omega})^{2}=0 \rightsquigarrow$ only $n=1$ for odd-forms, e.g.:

$$
\mathcal{L}_{\text {Maxwell }}[A]=-\frac{1}{2} \int \mathrm{~d}^{4} \theta \mathrm{~d}^{4} \chi \boldsymbol{\eta}^{2} \mathrm{~d} \boldsymbol{A} \tilde{\mathrm{~d}} \widetilde{\boldsymbol{A}}
$$

unless mixed contractions are considered for $p=3,5, \ldots$ Deffayet et al. '16

Mixed-symmetry tensor fields

$$
\omega_{\left[i_{1} \ldots i_{0}\right]\left[j_{1} \ldots j_{q}\right]} \rightsquigarrow(p, q) \text { tensor field }
$$

$G L(D)$-irreducibility

$$
T_{\left[i_{1} \ldots i_{p} j_{1}\right] \ldots j_{q}}=0 \quad \text { and } \quad T_{\left[i_{1} \ldots i_{p}\right]\left[j_{1} \ldots j_{q}\right]}=T_{\left[j_{1} \ldots j_{q}\right]\left[i_{1} \ldots i_{p}\right]}, \text { for } p=q
$$

e.g. for $p+q=2$, a 2 -form (2,0) and a graviton (1,1);
for $p+q=3$, a 3-form $(3,0)$ and a mixed $(2,1)$;
for $p+q=4$, a 4-form $(4,0)$, a mixed $(3,1)$ and a "special" mixed $(2,2)$; etc.
Natural description in terms of the graded variables:

$$
\begin{aligned}
& \boldsymbol{\omega}^{(p, q)}=\frac{1}{p!q!} \omega_{i_{1} \ldots i_{p} j_{1} \ldots j_{q}} \theta^{i_{1}} \ldots \theta^{i_{p}} \chi^{j_{1}} \ldots \chi^{j_{q}}, \\
& \widetilde{\boldsymbol{\omega}}^{(q, p)}=\frac{1}{p!q!} \omega_{i_{1} \ldots i_{p} j_{1} \ldots j_{q}} \chi^{i_{1}} \ldots \chi^{i_{p}} \theta^{j_{1}} \ldots \theta^{j_{q}},
\end{aligned}
$$

and the same derivatives \mathbf{d} and $\tilde{\mathbf{d}}$; no need for additional ingredients.

Mixed-symmetry Galileon and its Symmetry

For a single mixed-symmetry tensor field ω, the Galileon is $(k=(p+q+2) n-1)$:

$$
S_{2 n}[\omega]=\frac{1}{(D-k)!} \int \mathrm{d}^{D} x \int \mathrm{~d}^{D} \theta \mathrm{~d}^{D} \chi \boldsymbol{\eta}^{D-k} \mathbf{d} \omega \tilde{\mathbf{d}} \widetilde{\boldsymbol{\omega}}(\mathrm{~d} \widetilde{\mathbf{d}} \omega)^{n-1}(\mathrm{~d} \widetilde{\mathbf{d}} \widetilde{\omega})^{n-1} .
$$

For $p+q=$ odd, it vanishes (unless $n=1$) due to the grading.
Its symmetry depends on the values of p and q. The possibilities are:

$$
\delta \boldsymbol{\omega}^{(p, q)}=\left\{\begin{array}{lr}
\mathbf{d} \boldsymbol{\lambda}^{(p-1, q)}+\widetilde{\mathbf{d}} \boldsymbol{\lambda}^{\prime(p, q-1)}+b_{i_{0} i_{1} \ldots i_{p+q}} x^{i_{0}} \theta^{i_{1}} \cdots \theta^{i_{p}} \chi^{i_{p+1} \cdots \chi^{i_{p+q}}} & (p, q>0) \\
\mathbf{d} \boldsymbol{\lambda}^{(p-1,0)}+b_{i_{i} i_{1} \ldots i_{p}} x^{i_{0}} 0^{i_{1} \ldots} \ldots \theta^{i_{p}} & (p>0, q=0) \\
\widetilde{\mathrm{d}} \boldsymbol{\lambda}^{\prime(0, q-1)}+b_{i_{0} i_{1} i_{q}} \chi^{i_{0}} \chi^{i_{1}} \cdots \chi^{i_{q}} & (p=0, q>0) \\
c+b_{i} x^{i} & (p=q=0)
\end{array}\right.
$$

with b fully antisymmetric (and constant).
N.B.: For $p, q>0$, the last term does not survive irreducibility.

Easily generalized for towers of fields and up-to-second-order...

Special cases with enhanced structure

Recall: Scalar $(0,0)$ led to more possibilities (odd number of fields) than p-form $(p, 0)$
Similarly: A special mixed-symmetry field (p, p) allows more terms than a generic (p, q) :

$$
\mathcal{L}_{n+1}\left[\omega^{(p, p)}\right]=\frac{1}{(D-k)!} \int \mathrm{d}^{D} \theta \mathrm{~d}^{D} \chi \boldsymbol{\eta}^{D-k} \mathrm{~d} \omega \tilde{\mathrm{~d}} \omega(\mathrm{~d} \tilde{\mathrm{~d}} \omega)^{n-1}, \quad k=(p+1) n+p .
$$

This is not so surprising. After all, $p=1$ is the graviton, and it works in all dimensions.

In four dimensions, the Galileon for $h=\omega^{(1,1)}$ is identical to linearized Einstein-Hilbert:

$$
S_{\text {LEH }}[h]=-\frac{1}{2} \int \mathrm{~d}^{4} x h^{i j}\left(R_{i j}-\frac{1}{2} \eta_{i j} R\right)=-\frac{1}{4} \int \mathrm{~d}^{4} x \int \mathrm{~d}^{4} \theta \mathrm{~d}^{4} \chi \boldsymbol{\eta} \boldsymbol{h} \mathrm{~d} \tilde{\mathrm{~d}} \boldsymbol{h},
$$

where $R_{i j}=\frac{1}{2}\left(\partial_{i} \partial_{k} h^{k}{ }_{j}+\partial_{k} \partial_{j} h^{k}{ }_{i}-\partial_{i} \partial_{j} h-\partial^{2} h_{i j}\right), R=\eta^{i j} R_{i j}$.
The gauge transformations become identical to linearized diffeomorphisms:

$$
\delta \boldsymbol{h}=\mathbf{d} \boldsymbol{\lambda}^{(0,1)}+\widetilde{\mathbf{d}} \boldsymbol{\lambda}^{(1,0)} .
$$

In $D \geq 2 n+1$ dimensions, the (1,1)-Galileon is linearized Lovelock at n-th order:

$$
S_{n}^{L L}[h]=-\frac{1}{4} \frac{1}{(D-2 n-1)!} \int \mathrm{d}^{D} x \int \mathrm{~d}^{D} \theta \mathrm{~d}^{D} \chi \boldsymbol{\eta}^{D-2 n-1} \boldsymbol{h}(\mathrm{~d} \widetilde{\mathbf{d}} \boldsymbol{h})^{n} .
$$

Recall that Lovelock is a sum over dimensionally extended Euler densities:

$$
S_{\text {Lovelock }}=\int d^{D} x \sum_{n=0}^{\left\lfloor\frac{D-1}{2}\right\rfloor} \alpha_{n} \mathcal{L}_{n}, \quad \mathcal{L}_{n}=\frac{\sqrt{-g}}{2^{n}} \delta_{i_{j} j_{1} \ldots i_{n} / n}^{k_{1} / 1, k_{n} / n} \prod_{r=1}^{n} R^{i, j_{r} r}{ }_{k_{r} l_{r}} .
$$

Covariantization

Scalar and p-form Galileons can be extended non-trivially to curved spacetime
Deffayet, Esposito-Farese, Vikman '09

* Promote partial derivatives to covariant
* Identify higher-derivative contributions on the field and the metric
* Introduce compensator terms to cancel 3 and 4 derivatives

Caution

* No-go theorem for interacting massless gravitons (at 2-derivative level) Boulanger, Damour, Gualtieri, Henneaux '00
* Unlike scalars and p-forms, where $\nabla_{i}=\partial_{i}$, for mixed-symmetry tensors $\nabla_{i} \neq \partial_{i}$
* Additional complications, more higher-derivative terms
* Success (2-derivative field equations) does not guarantee consistency

Aragone, Deser '80

Caution

* No-go theorem for interacting massless gravitons (at 2-derivative level) Boulanger, Damour, Gualtieri, Henneaux '00
* Unlike scalars and p-forms, where $\nabla_{i}=\partial_{i}$, for mixed-symmetry tensors $\nabla_{i} \neq \partial_{i}$
* Additional complications, more higher-derivative terms
* Success (2-derivative field equations) does not guarantee consistency

Aragone, Deser '80

Just do it

The Gauss-Bonnet case

Defining

$$
\begin{gathered}
\boldsymbol{\nabla}=\theta^{i} \nabla_{i}, \quad \tilde{\boldsymbol{\nabla}}=\chi^{i} \nabla_{i}, \\
\widetilde{\boldsymbol{h}}_{l}=h_{l i} \theta^{i}, \quad \boldsymbol{H}_{l}=H_{l i j} \theta^{i} \chi^{j}, \\
H_{l i j}=\frac{3}{4} \nabla_{l j k l} h_{i j} \theta^{i} \theta^{j} \chi^{k} \chi_{(i}^{l} h_{j) l},
\end{gathered}
$$

where $\nabla=\nabla^{g}$, the following action has $2^{\text {nd }}$ order EOMs w.r.t. both g and h :

$$
S_{3}[h, g]=S_{\mathrm{LL}}[g]+\int \mathrm{d}^{5} x \int \mathrm{~d}^{5} \theta \mathrm{~d}^{5} \chi \sqrt{-g}\left(\nabla \boldsymbol{h} \widetilde{\nabla} \boldsymbol{h} \nabla \widetilde{\nabla} \boldsymbol{h}+\widetilde{\boldsymbol{\nabla}} \boldsymbol{h} \widetilde{\boldsymbol{h}}_{\boldsymbol{l}} \boldsymbol{H}^{\prime} \boldsymbol{R i e m}\right) .
$$

Epilogue

Take-home messages

* Galileon-type Lagrangians have a beautiful structure and physical applications
* We suggested a natural and universal formulation in terms of graded variables ...
* ... which reveals a further generalization to mixed-symmetry tensor fields ...
* ... by-producing an elegant formula for linearized Lovelock in any dimension ...
* ... and a highly non-trivial covariantization for linearized 5d Gauss-Bonnet

Epilogue

Take-home messages

* Galileon-type Lagrangians have a beautiful structure and physical applications
* We suggested a natural and universal formulation in terms of graded variables ...
* ... which reveals a further generalization to mixed-symmetry tensor fields ...
* ... by-producing an elegant formula for linearized Lovelock in any dimension ...
* ... and a highly non-trivial covariantization for linearized 5d Gauss-Bonnet

