Pre-NQ-manifolds and derived brackets in generalized geometry and double field theory

Andreas Deser ${ }^{1}$, Christian Sämann ${ }^{2}$ arXiv: 1611.02772

${ }^{1}$ Istituto Nazionale di Fisica Nucleare, Torino
${ }^{2}$ Department of Mathematics, Heriot-Watt University, Edinburgh

10. Feb. 2017

Nordic Strings Meeting
Hannover

Contents

Motivation: What is double field theory?
Questions
(Pre)-NQ-manifolds and derived brackets
Constructing the brackets
Different brackets from the same principle
Standard Lie bracket
Courant bracket
C-bracket

Outlook

Appendix: Covariant derivatives, torsion and curvature

Motivation: What is double field theory?

Canonical momenta and winding

- Sigma model $X: \Sigma \rightarrow M=T^{d}$

$$
S=\int_{\Sigma} h^{\alpha \beta} \partial_{\alpha} X^{i} \partial_{\beta} X^{j} G_{i j} d \mu_{\Sigma}+\int_{\Sigma} X^{*} B,
$$

where $h \in \Gamma\left(\otimes^{2} T^{*} \Sigma\right), G \in \Gamma\left(\otimes^{2} T M\right), B \in \Gamma\left(\wedge^{2} T^{*} M\right)$.

- Classical solutions to e.o.m. (take closed string $\Sigma=\mathbb{R} \times S^{1}$)

$$
\begin{gathered}
X_{R}^{i}=x_{0 R}^{i}+\alpha_{0}^{i}(\tau-\sigma)+i \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{i} e^{-i n(\tau-\sigma)}, \quad X_{L}^{i}=\ldots, \\
\alpha_{0}^{i}=\frac{1}{\sqrt{2}} G^{i j}\left(p_{j}-\left(G_{j k}+B_{j k}\right) w^{k}\right),
\end{gathered}
$$

- p_{k} : Canonical momentum zero modes
- w^{k} : Winding zero modes, $w^{k}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \partial_{\sigma} X^{k} d \sigma$.

Motivation: What is double field theory?

Two sets of coordinates

- Two sets of momenta in $\alpha_{0}^{i} \rightarrow$ differential operators:

$$
p_{k} \simeq \frac{1}{i} \partial_{k}, \quad w^{k} \simeq \frac{1}{i} \tilde{\partial}^{k}
$$

- Level matching $L_{0}-\bar{L}_{0}$, with $L_{0}=\frac{1}{2} \alpha_{0}^{i} G_{i j} \alpha_{0}^{j}+N-1$ gives

$$
N-\bar{N}=\partial_{i} \tilde{\partial}^{i}
$$

- Want: If two fields obey the constraint, then also their product. Thus choose a subset, which also has:

$$
\partial_{k} \phi \tilde{\partial}^{k} \psi+\tilde{\partial}^{k} \phi \partial_{k} \psi=0,
$$

for all elements ϕ, ψ of the subset.

Motivation: What is double field theory?

$O(d, d)$-transformations, generalized tangent bundle, Gualtieri, Hitchin

Observation 1: The strong constraint is given by

$$
\eta^{M N} \partial_{M} \phi \partial_{N} \psi=0, \quad \eta=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

And stays the same if we apply a constant transformation that leaves η invariant:

$$
A^{t} \eta A=\eta \quad \text { i.e. } \quad A \in O(d, d ; \mathbb{R})
$$

Observation 2: This is the structure group of the generalized tangent bundle, locally isomorphic to $T M \oplus T^{*} M$:

- Sections: $T M \oplus T^{*} M \ni s=s^{i} \partial_{i}+s_{i} d x^{i}$.
- Fundamental rep of $O(d, d): s^{M}:=\left(s^{i}, s_{i}\right)$.
- Bilinear pairing $\eta:\langle s, t\rangle=s^{i} t_{i}+s_{i} t^{i}=\eta_{M N} s^{M} t^{N}$.

Motivation: What is double field theory?

Action of DFT, C-bracket, Hohm, Hull, Zwiebach

Observation 3:

$$
\begin{array}{r}
S_{D F T}=\int d^{2 D} x e^{-2 d}\left(\frac{1}{8} \mathcal{H}_{M N} \partial^{M} \mathcal{H}_{K L} \partial^{N} \mathcal{H}^{K L}-\frac{1}{2} \mathcal{H}_{M N} \partial^{M} \mathcal{H}_{K L} \partial^{L} \mathcal{H}^{K N}\right. \\
\left.-2 \partial^{M} d \partial^{N} \mathcal{H}_{M N}+4 \mathcal{H}_{M N} \partial^{M} d \partial^{N} d\right)
\end{array}
$$

Properties:

- The action as a global $O(d, d ; \mathbb{R})$-symmetry, and a gauge symmetry given by applying the generalized Lie derivative:

$$
\left(\delta_{X} \mathcal{H}\right)_{M N}:=X^{P} \partial_{P} \mathcal{H}_{M N}+\left(\partial_{M} X^{P}-\partial^{P} X_{M}\right) \mathcal{H}_{P N}+\left(\partial_{N} X^{P}-\partial^{P} X_{N}\right) \mathcal{H}_{M P}
$$

- The commutator of two such transformations gives the C-bracket:

$$
[V, W]_{C}^{M}:=V^{K} \partial_{K} W^{M}-W^{K} \partial_{K} V^{M}-\frac{1}{2}\left(V^{K} \partial^{M} W_{K}-W^{K} \partial^{M} V_{K}\right)
$$

Questions

-What is the geometric meaning of double fields, such as $d(x, \tilde{x}), V^{M}(x, \tilde{x}), \mathcal{H}_{M N}(x, \tilde{x})$? At least locally?

- Is there an algebraic way to understand the C-bracket?
- How does this apply to the Lie- and Courant bracket?

(Pre)-NQ-manifolds and derived brackets

Motivation: An easy calculation...
Given a manifold M, consider $T[1] M$ with local coordinates (x^{μ}, ξ^{μ}). Its cotangent bundle locally has ($x^{\mu}, \xi^{\mu}, p_{\mu}, \xi_{\mu}^{*}$) and is Poisson:

$$
\left\{p_{\mu}, x^{\nu}\right\}=\delta_{\mu}^{\nu} \quad\left\{\xi_{\mu}^{*}, \xi^{\nu}\right\}=\delta_{\mu}^{\nu}
$$

Let's take the operator $Q=\xi^{\mu} p_{\mu}$, and vector fields $X=X^{\mu} \xi_{\mu}^{*}$, $Y=Y^{\nu} \xi_{\nu}^{*}$, then we can do the following exercise:

$$
\begin{aligned}
\{\{Q, X\}, Y\} & =\left\{\left\{\xi^{\mu} p_{\mu}, X^{\nu} \xi_{\nu}^{*}\right\}, Y^{\rho} \xi_{\rho}^{*}\right\} \\
& =\left\{\xi^{\mu} \partial_{\mu} X^{\nu} \xi_{\nu}^{*}+X^{\nu} p_{\nu}, Y^{\rho} \xi_{\rho}^{*}\right\} \\
& =-Y^{\rho} \partial_{\rho} X^{\nu} \xi_{\nu}^{*}+X^{\rho} \partial_{\rho} Y^{\nu} \xi_{\nu}^{*} \\
& =[X, Y]_{\text {Lie }}^{\nu} \xi_{\nu}^{*} .
\end{aligned}
$$

We say, that the Lie bracket is a derived bracket (due to Kosmann-Schwarzbach, Roytenberg, Voronov).

(Pre)-NQ-manifolds and derived brackets

Important definitions

Definition 1.

A symplectic pre-NQ-manifold of \mathbb{N}-degree n is an \mathbb{N}-graded manifold \mathcal{M}, together with symplectic form ω of degree n and a vector field Q of degree 1 , satisfying $L_{Q} \omega=0$.

Examples
An important class where in addition $Q^{2}=0$, are the Vinogradov Lie n-algebroids:

$$
\mathcal{V}_{n}(M):=T^{*}[n] T[1] M .
$$

They have the following properties:

- Local coordinates ($x^{\mu}, \xi^{\mu}, \zeta_{\mu}, p_{\mu}$) of degrees $0,1, n-1, n$.
- Symplectic form $\omega=d x^{\mu} \wedge d p_{\mu}+d \xi^{\mu} \wedge d \zeta_{\mu}$
- Nilpotent vector field Q with Hamiltonian $\mathcal{Q}=\xi^{\mu} p_{\mu}$, i.e. $\{\mathcal{Q}, \mathcal{Q}\}=0$.

Constructing the brackets

Getzler, Fiorenza, Manetti

Let \mathcal{M} be a symplectic pre- $N Q$-manifold. Functions on the body M are degree- 0 objects, i.e. $f \in C_{0}^{\infty}(\mathcal{M})$. We choose as analogue of vector fields degree $(n-1)$-objects $X \in \mathcal{C}_{n-1}^{\infty}(\mathcal{M})$, call them extended vector fields. Then define n-ary brackets by

$$
\begin{aligned}
& \mu_{1}(V)= \begin{cases}\{\mathcal{Q}, V\}, \quad \text { if } V \text { has degree } 0 \\
0, & \text { otherwise }\end{cases} \\
& \mu_{2}(V, W)= \frac{1}{2}(\{\delta V, W\}-\{\delta W, V\}) \\
& \mu_{3}(V, W, U)=-\frac{1}{12}(\{\{\delta V, W\}, U\} \pm \ldots) \\
& \ldots \\
& \text { where } \delta V:= \begin{cases}\{\mathcal{Q}, V\}, & \text { if } V \text { has degree } n-1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Conditions for L_{∞}-structure

If $Q^{2}=0$, the above brackets form an L_{∞} structure. In our case we want to investigate conditions that this is also true, especially for $n=2$, where we found the following

Theorem 1.

Consider the subset of $\mathcal{C}^{\infty}(\mathcal{M})$ consisting of functions and extended vector fiels, i.e. $\mathcal{C}_{0}^{\infty}(\mathcal{M}) \oplus \mathcal{C}_{1}^{\infty}(\mathcal{M})$. If the Poisson brackets and the maps μ_{i} close on this subset, the latter is an L_{∞}-algebra if and only if

$$
\begin{aligned}
\left\{Q^{2} f, g\right\}+\left\{Q^{2} g, f\right\} & =0, \\
\left\{Q^{2} X, f\right\}+\left\{Q^{2} f, X\right\} & =0, \\
\left\{\left\{Q^{2} X, Y\right\}, Z\right\}_{[X, Y, Z]} & =0,
\end{aligned}
$$

for all functions f, g and extended vector fields X, Y, Z. The notation $Q^{2} f$ means $\{\mathcal{Q},\{\mathcal{Q}, f\}\}$ and the subscript $[X, Y, Z]$ means the alternating sum over X, Y, Z.

$n=1:$ Standard Lie bracket

Obtaining our toy example

Now, lets apply the construction to different cases.
Let M be a Riemannian manifold. As graded manifold, we take $\mathcal{M}=\mathcal{V}_{1}(M)$, which has coordinates $\left(x^{\mu}, \zeta_{\mu}\right)$ of degree 0 and $\left(\xi^{\mu}, p_{\mu}\right)$ of degree 1 . Then we have:

- As $\mathcal{Q}=\xi^{\mu} p_{\mu}$ which squares to zero in $\mathcal{V}_{1}(M)$, there are no further restrictions.
- Vector fields are linear functions in ζ_{μ}.
- μ_{1} gives the de Rham differential.
- $\mu_{2}(X, Y)=\frac{1}{2}(\{\{\mathcal{Q}, X\}, Y\}-\{\{\mathcal{Q}, Y\}, X\})=[X, Y]_{\text {Lie }}^{\mu} \zeta_{\mu}$.
- μ_{3} vanishes due to the Jacobi identity for the Lie bracket.

So, we recover the standard Lie bracket as a derived bracket.

$n=2:$ Courant bracket

For a manifold M, take now $\mathcal{V}_{2}(M)$. Locally, coordinates are $\left(x^{\mu}, \xi^{\mu}, \zeta_{\mu}, p_{\mu}\right)$ of degrees $0,1,1,2$. We get

- $\mathcal{Q}=\xi^{\mu} p_{\mu}$ squares to zero.
- Extended vectors, i.e. degree 1 objects, are now the "generalized vectors", i.e. $V=X^{\mu} \zeta_{\mu}+\alpha_{\mu} \xi^{\mu}, W=Y^{\mu} \zeta_{\mu}+\beta_{\mu} \xi^{\mu}$.
- μ_{1} is the de Rham differential.
- $\mu_{2}(V, W)=[X, Y]^{\mu} \zeta_{\mu}+\left(L_{X} \beta-L_{Y} \alpha-\frac{1}{2} d\left(\iota_{X} \beta-\iota_{Y} \alpha\right)\right)_{\mu} \xi^{\mu}$, i.e. we get the Courant bracket.
- μ_{3} gives the the defect to the Jacobi identity for Courant algebroids.

So we recover generalized geometry on a Courant algebroid.

$n=2:$ C-bracket

New result: Interpretation of the C-bracket

We take the same setting as before, but instead of M as base, we take $T^{*} M$, i.e. we take $\mathcal{V}_{2}\left(T^{*} M\right)$. Local coordinates are now $\left(x^{M}, \xi^{M}, \zeta_{M}, p_{M}\right)$ of degree ($0,1,1,2$).

Problem: We now have too many "vectors". We solve this by defining

$$
\theta^{M}:=\frac{1}{\sqrt{2}}\left(\xi^{M}+\eta^{M N} \zeta_{N}\right) \quad \text { and } \quad \beta^{M}:=\frac{1}{\sqrt{2}}\left(\xi^{M}-\eta^{M N} \zeta_{N}\right)
$$

and taking only θ^{M} as degree- 1 coordinates. Taking

$$
\omega=d x^{M} \wedge d p_{M}+\frac{1}{2} \eta_{M N} d \theta^{M} \wedge d \theta^{N}, \quad \mathcal{Q}=\theta^{M} p_{M}
$$

we get a pre-NQ-manifold (as \mathcal{Q} doesn't square to zero, but we have $L_{Q} \omega=0$ for the corresponding vector field).

$n=2:$ C-bracket

New result: Interpretation of the C-bracket

With this we get the following results:

- $\mu_{1}(f)=\theta^{M} \partial_{M} f$, i.e. the de Rham differential on the doubled space.
- For vectors $X=X_{M} \theta^{M}, Y=Y_{M} \theta^{M}$ we get, using $\eta^{M N} X_{M} \partial_{N}=X^{N} \partial_{N}$ etc.

$$
\mu_{2}(X, Y)=\left(X^{M} \partial_{M} Y_{K}-Y^{M} \partial_{M} X_{K}-\frac{1}{2}\left(Y^{M} \partial_{K} X_{M}-X^{M} \partial_{K} Y_{M}\right)\right) \theta^{K}
$$

i.e. the C-bracket of double field theory.

- μ_{3} gives the defect to the Jacobi identity of the C-bracket.

$n=2:$ C-bracket

New result: Interpretation of the C-bracket

So the formulas give us double field theory, but what about the constraints for Q^{2} ?

$n=2:$ C-bracket

The strong constraint

To have a proper L_{∞}-structure, we still have to implement the constraints of our theorem. What are they? Let f be a function and $X=X_{M} \theta^{M}, Y$ and Z be extended vectors.

- $\left\{Q^{2} f, g\right\}+\left\{Q^{2} g, f\right\}=2 \partial_{M} f \eta^{M N} \partial_{N} g=0$

This is the strong constraint.

- $\left\{Q^{2} X, f\right\}+\left\{Q^{2} f, X\right\}=2\left(\partial_{M} X_{K} \theta^{K}\right) \eta^{M N} \partial_{N} f=0$ This is the strong constraint for vectors and functions.
- $\left\{\left\{Q^{2} X, Y\right\}, Z\right\}_{[X, Y, Z]}=2 \theta^{K}\left(\left(\partial^{M} X_{K}\right)\left(\partial_{M} Y^{N}\right) Z_{N}\right)_{[X, Y, Z]}=0$ Additional constraint for vectors? ...Shows up in properties of the Riemann tensor of double field theory

So the strong constraint together with the third constraint ensure the L_{∞}-structure for vectors and functions.

Outlook

What we did...

We found a unifying language to describe the Lie bracket, Courant bracket and C-bracket. The strong constraint plays a role to ensure an L_{∞}-structure on functions and vectors. What I didn't describe in the talk:

- In all three cases, arbitrary tensors can be defined, extended Lie derivatives and the action of infinitesimal extended diffeomorphisms.
- We get a whole "derived geometry", including torsion, Gualtieri-torsion and Riemann tensors (so far for $n=1,2$).
- Writing down integration densities and Einstein-Hilbert actions for extended metrics for the cases $n=1$ and $n=2$ was possible. In general?...long calculations!
- NS-NS fluxes can be added by twisting the corresponding Vinogradov algebroids. This is interesting for flux compactification and T-duality.

Outlook

Open questions

- Everything was local. Global analysis? Gerbes, groupoids... What is the global description of double field theory? T-duality?
- For higher Vinogradov algebroids $\mathcal{V}_{n}(M)$, degree n - 1 -objects are

$$
X=X^{\mu} \zeta_{\mu}+X_{\mu_{1} \ldots \mu_{n-1}} \xi^{\mu_{1}} \cdots \xi^{\mu_{n-1}}
$$

i.e. sections of $T M \oplus \wedge^{n-1} T^{*} M$. For $n=3$, we get the easiest case of exceptional generalized geometry, where the U-duality group is $S L(5, \mathbb{R})$. How about the other exceptional tangent bundles?

- What are torsion and Riemann tensors in exceptional generalized geometries? Do they have a meaning in Poisson geometry on certain Vinogradov algebroids?
- Quantization: If we can write the brackets in terms of Poisson brackets, we can do deformation quantization!

Appendix: Covariant derivatives, torsion and curvature

Covariant derivatives

Definition 2.

An extended covariant derivative ∇ on a pre- $N Q$-manifold \mathcal{M} is a linear map from the set $\mathcal{X}(\mathcal{M})$ of extended vectors to $\mathcal{C}^{\infty}(\mathcal{M})$, such that the image ∇_{X} for $X \in \mathcal{X}(\mathcal{M})$ gives a map $\left\{\nabla_{X}, \cdot\right\}: \mathcal{X}(\mathcal{M}) \rightarrow \mathcal{X}(\mathcal{M})$, which satisfies
$\left\{\nabla_{f X}, Y\right\}=f\left\{\nabla_{X}, Y\right\} \quad$ and $\quad\left\{\nabla_{X}, f Y\right\}=\{\{\mathcal{Q}, X\}, f\} Y+f\left\{\nabla_{X}, Y\right\}$,
for all functions f and extended vectors Y. For arbitrary extended tensors extend this by the graded Leibniz rule of the Poisson bracket

$$
\{V, W \otimes U\}:=\{V, W\} \otimes U+(-1)^{(n-|W|)|U|} W \otimes\{V, U\}
$$

where $V, W, U \in \mathcal{C}^{\infty}(\mathcal{M})$ and $|W|$ denotes the degree.

Appendix: Covariant derivatives, torsion and curvature

Some remarks

- Pointwise, \mathcal{X} is a vector space, so we can consider also its dual. For torsion and curvature we use $\hat{\mathcal{X}}:=\mathcal{X} \oplus \mathcal{X}^{*}$.
- We also denote by $\pi: \hat{\mathcal{X}} \rightarrow \mathcal{X}$ the projection to the first summand.
- In the following we will deal with \mathcal{V}_{1} and the restricted \mathcal{V}_{2} suitable for double field theory. In these cases, one can show that the following functions have the right properties:

$$
\begin{aligned}
& \nabla_{X}=X^{\mu}{ }_{p}-X^{\mu} \Gamma^{\rho}{ }_{\mu \nu} \zeta_{\rho} \xi^{\nu} \\
& \nabla_{X}=X^{M} p_{M}-\frac{1}{2} X^{M} \Gamma_{M N K} \theta^{N} \theta^{K} .
\end{aligned}
$$

Appendix: Covariant derivatives, torsion and curvature

Extended torsion

Definition 3.

Let \mathcal{M} be a pre-NQ-manifold. Given an extended connection ∇, we define the extended torsion tensor $\mathcal{T}: \otimes^{3} \hat{\mathcal{X}}(\mathcal{M}) \rightarrow \mathcal{C}^{\infty}(M)$ for $X, Y, Z \in \hat{\mathcal{X}}(\mathcal{M})$ by

$$
\begin{aligned}
\mathcal{T}(X, Y, Z):= & 3\left((-1)^{n|X|}\left\{X,\left\{\nabla_{\pi(Y)}, Z\right\}\right\}\right)_{[X, Y, Z]} \\
& +\frac{(-1)^{n(|Y|+1)}}{2}(\{X,\{Q Z, Y\}\}-\{Z,\{Q X, Y\}\})
\end{aligned}
$$

where $|X|,|Y|$ denote the respective degrees, π is the above defined projection and $n=1,2$ is the degree of the underlying Vinogradov algebroid.
With this definition, we are able to show the following results relating extended torsion to standard ones:

Appendix: Covariant derivatives, torsion and curvature

Theorem 2.
For $\mathcal{M}=\mathcal{V}_{1}(M)$, let $X \in \mathcal{X}^{*}(\mathcal{M})$ and $Y, Z \in \mathcal{X}(\mathcal{M})$, then the extended torsion reduces to the torsion operator $T(X, Y, Z)=\left\langle X, \nabla_{Y} Z-\nabla_{Z} Y-[Y, Z]\right\rangle$, where the bracket is the Lie bracket of vector fields. More generally, this is true whenever we take one element of $\mathcal{X}^{*}(\mathcal{M})$ and the other two in $\mathcal{X}(\mathcal{M})$. In all other cases the extended torsion vanishes. In case of double field theory, for extended vector fields X, Y, Z, the extended torsion tensor equals the Gualtieri torsion of generalized geometry.

Appendix: Covariant derivatives, torsion and curvature

Extended curvature

Definition 4.
Let \mathcal{M} be a pre-NQ-manifold. Given an extended connection ∇, the extended curvature operator $\mathcal{R}: \otimes^{4} \hat{\mathcal{X}}(\mathcal{M}) \rightarrow \mathcal{C}^{\infty}(M)$ for $X, Y, Z, W \in \hat{\mathcal{X}}(\mathcal{M})$ is defined by

$$
\begin{aligned}
& \mathcal{R}(X, Y, Z, W):= \\
& \quad \frac{1}{2}\left(\left\{\left\{\left\{\nabla_{X}, \nabla_{Y}\right\}-\nabla_{\mu_{2}(X, Y)}, Z\right\}, W\right\}-(-1)^{n}(Z \leftrightarrow W)\right. \\
& \left.\quad+\left\{\left\{\left\{\nabla_{Z}, \nabla_{W}\right\}-\nabla_{\left\{\nabla_{Z}, W\right\}-\left\{\nabla_{w}, Z\right\}}, X\right\}, Y\right\}-(-1)^{n}(X \leftrightarrow Y)\right) .
\end{aligned}
$$

Reminder: μ_{2} is the C-bracket in the derived-bracket form.

Appendix: Covariant derivatives, torsion and curvature

Extended curvature

Theorem 3.
For $\mathcal{M}=\mathcal{V}_{1}(M)$, let $X, Y, Z \in \mathcal{X}(\mathcal{M})$ and $W \in \mathcal{X}^{*}(\mathcal{M})$. Then the extended curvature reduces to the standard curvature:

$$
\mathcal{R}(X, Y, Z, W)=\left\langle W, \nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z\right\rangle
$$

Furthermore, if $X, Y, Z, W \in \mathcal{X}(\mathcal{M})$ or if two, three or all of X, Y, Z, W are in $\mathcal{X}^{*}(\mathcal{M})$, we have $\mathcal{R}(X, Y, Z, W)=0$. Moreover, in case of double field theory, extended curvature is the Hohm-Zwiebach curvature. Tensoriality holds by the constraints given in theorem 1.

It is the last sentence, where the algebraic setting becomes important for geometry.

