Spin(7)-instantons \& other Yang-Mills solutions on cylinders over coset spaces with G_{2}-structure

Alexander Haupt
University of Hamburg

11th Nordic String Theory Meeting 2017, Hannover 10-Feb-2017

JHEP 1603(2016)038 \& WIP

Outline

(1) Introduction

- Motivation
- Yang-Mills instantons in $d=4$
- Instantons in $d>4$ \& YM with torsion
(2) $Y M$ theory \& instantons on $8 d Z(G / H)$
- Quick review of 7d G_{2} - \& 8d $\operatorname{Spin}(7)$-structures
- Set-up: gauge field ansatz
- Solutions: old \& new

Outline

(1) Introduction

- Motivation
- Yang-Mills instantons in $d=4$
- Instantons in $d>4$ \& YM with torsion
(2) YM theory \& instantons on 8d $Z(G / H)$
- Quick review of $7 \mathrm{~d} G_{2}-\& 8 d \operatorname{Spin}(7)$-structures
- Set-up: gauge field ansatz
- Solutions: old \& new
(3) Conclusions

Outline

(1) Introduction

- Motivation
- Yang-Mills instantons in $d=4$
- Instantons in $d>4$ \& YM with torsion
(2) YM theory \& instantons on 8d $Z(G / H)$
- Quick review of $7 \mathrm{~d} G_{2}-\& 8 d \operatorname{Spin}(7)$-structures
- Set-up: gauge field ansatz
- Solutions: old \& new
(3) Conclusions
- In the low-energy limit, heterotic string theory yields $\mathcal{N}=1$, $d=10$ supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications" : $\mathcal{M}^{10}=\mathcal{M}^{10-n} \times X_{n}$
- Of particular interest are solutions that preserve some amount of supersymmetry
- Condition of SUSY preservation leads to appearance of higher-dim. YM-instantons and G-structure manifolds

Overarching aim(s):
(1) construct new instanton/YM solutions on various G-structure manifolds
(3) find embeddings into string theory (het. SUGRA)

- In the low-energy limit, heterotic string theory yields $\mathcal{N}=1$, $d=10$ supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications" : $\mathcal{M}^{10}=\mathcal{M}^{10-n} \times X_{n}$
- Of particular interest are solutions that preserve some amount of supersymmetry
- Condition of SIISY preservation leads to appearance of higher-dim. YM-instantons and G-structure manifolds

Overarching aim(s):
(1) construct new instanton $/ \mathrm{Y} M$ solutions on various G-structure manifolds
(2) find embeddings into string theory (het. SUGRA)

- In the low-energy limit, heterotic string theory yields $\mathcal{N}=1$, $d=10$ supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications" : $\mathcal{M}^{10}=\mathcal{M}^{10-n} \times X_{n}$
- Of particular interest are solutions that preserve some amount of supersymmetry
- Condition of SUSY preservation leads to appearance of
higher-dim. YM-instantons and G-structure manifolds

Overarching aim(s):
(1) construct new instanton $/ \mathrm{YM}$ solutions on various G-structure manifolds
(2) find embeddings into string theory (het. SUGRA)

- In the low-energy limit, heterotic string theory yields $\mathcal{N}=1$, $d=10$ supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications" : $\mathcal{M}^{10}=\mathcal{M}^{10-n} \times X_{n}$
- Of particular interest are solutions that preserve some amount of supersymmetry
- Condition of SUSY preservation leads to appearance of higher-dim. YM-instantons and G-structure manifolds

Overarching aim(s):
(1) construct new instanton/YM solutions on various G-structure manifolds
(3) find embeddings into string theory (het. SUGRA)

- In the low-energy limit, heterotic string theory yields $\mathcal{N}=1$, $d=10$ supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications" : $\mathcal{M}^{10}=\mathcal{M}^{10-n} \times X_{n}$
- Of particular interest are solutions that preserve some amount of supersymmetry
- Condition of SUSY preservation leads to appearance of higher-dim. YM-instantons and G-structure manifolds

Overarching aim(s):
(1) construct new instanton/YM solutions on various G-structure manifolds
(3) find embeddings into string theory (het. SUGRA)

- In the low-energy limit, heterotic string theory yields $\mathcal{N}=1$, $d=10$ supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications" : $\mathcal{M}^{10}=\mathcal{M}^{10-n} \times X_{n}$
- Of particular interest are solutions that preserve some amount of supersymmetry
- Condition of SUSY preservation leads to appearance of higher-dim. YM-instantons and G-structure manifolds

Overarching aim(s):
(1) construct new instanton/YM solutions on various G-structure manifolds
(2) find embeddings into string theory (het. SUGRA)

Definition

A Yang-Mills instanton is a gauge connection*) on Euclidean \mathcal{M}^{4}, whose curvature F is self-dual, i.e. $* F=F$.
${ }^{*}$ connection ${ }^{A} \nabla$ on a principal K-bundle over \mathcal{M}^{4} (gauge group K)
[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), . . .]

Properties

- Solutions of YM-eq. $(0 \stackrel{B I}{=} D F=D * F \Longrightarrow D * F=0)$
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: BPST instanton (1975) for $\mathcal{M}=\mathbb{R}^{4}, K=S U(2)$

Widespread applications in maths \& physics

- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about structure of YM-vacuum (crit. pts. of YM-action; appear in path int. as leading qu. corr.)

Definition

A Yang-Mills instanton is a gauge connection*) on Euclidean \mathcal{M}^{4}, whose curvature F is self-dual, i.e. $* F=F$.
${ }^{*}$ connection ${ }^{A} \nabla$ on a principal K-bundle over \mathcal{M}^{4} (gauge group K)
[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), . . .]

Properties

- Solutions of YM-eq. $(0 \stackrel{\mathrm{BI}}{=} D F=D * F \Longrightarrow D * F=0)$
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: BPST instanton (1975) for $\mathcal{M}=\mathbb{R}^{4}, K=S U(2)$
\square
- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about structure of YM-vacuum (crit. pts. of YM-action; appear in path int. as leading qu. corr.)

Definition

A Yang-Mills instanton is a gauge connection*) on Euclidean \mathcal{M}^{4}, whose curvature F is self-dual, i.e. $* F=F$.
${ }^{*}$ connection ${ }^{A} \nabla$ on a principal K-bundle over \mathcal{M}^{4} (gauge group K)
[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), . . .]

Properties

- Solutions of YM-eq. ($0 \stackrel{\mathrm{BI}}{=} D F=D * F \Longrightarrow D * F=0$)
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: BPST instanton (1975) for $\mathcal{M}=\mathbb{R}^{4}, K=S U(2)$

Widespread applications in maths \& physics

- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about structure of YM-vacuum (crit. pts. of YM-action; appear in path int. as leading qu. corr.)

Definition

In higher dimensions, the instanton equation is generalized to

$$
* F=-F \wedge * Q_{\mathcal{M}},
$$

with some globally well-defined 4-form $Q_{\mathcal{M}}$.
[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), . . .]
Properties

- Need additional structure on \mathcal{M} to have $Q_{\mathcal{M}} \leftrightarrow G$-structure manifolds (i.e. struct. grp. $G \subset S O(d)$, e.g. $S U(3)$ in $d=6$)

H appears naturally in string theory (curvature of NS 2-form)
Aternative defs (in many phys. applic.: 3 defs. equivalent)

[^0]
Definition

In higher dimensions, the instanton equation is generalized to

$$
* F=-F \wedge * Q_{\mathcal{M}}
$$

with some globally well-defined 4-form $Q_{\mathcal{M}}$.
[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), .

Properties

- Need additional structure on \mathcal{M} to have $Q_{\mathcal{M}} \leftrightarrow G$-structure manifolds (i.e. struct. grp. $G \subset S O(d)$, e.g. $S U(3)$ in $d=6$)
- Instanton eq. \Longrightarrow YM with torsion $D * F+F \wedge * H=0$. Torsion 3-form $* H:=\mathrm{d} * Q_{\mathcal{M}}$ (ordinary YM if $Q_{\mathcal{M}}$ co-closed). H appears naturally in string theory (curvature of NS 2-form)

- $F \cdot \epsilon=0$ (BPS eq. in string theory)
\square End (E)), often in math. lit)

Definition

In higher dimensions, the instanton equation is generalized to

$$
* F=-F \wedge * Q_{\mathcal{M}}
$$

with some globally well-defined 4-form $Q_{\mathcal{M}}$.
[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), . . .]

Properties

- Need additional structure on \mathcal{M} to have $Q_{\mathcal{M}} \leftrightarrow G$-structure manifolds (i.e. struct. grp. $G \subset S O(d)$, e.g. $S U(3)$ in $d=6$)
- Instanton eq. \Longrightarrow YM with torsion $D * F+F \wedge * H=0$. Torsion 3-form $* H:=\mathrm{d} * Q_{\mathcal{M}}$ (ordinary YM if $Q_{\mathcal{M}}$ co-closed). H appears naturally in string theory (curvature of NS 2-form)

Alternative defs (in many phys. applic.: 3 defs. equivalent)

- $F \cdot \epsilon=0 \quad$ (BPS eq. in string theory)
- $F \in \mathfrak{g}$ (i.e. $F \in \Gamma(\mathfrak{g} \mathcal{M} \otimes \operatorname{End}(E))$, often in math. lit)

Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on "cylinder" $Z(G / H):=\mathbb{R} \times G / H$.

- G / H is a $7 d$ compact coset space $w / G_{2}{ }^{-}$or $S U(3)$-structure

- $\left\{e^{\mu}\right\}=\left\{e^{0}=\mathrm{d} \tau, e^{a}\right\}$ is a local ONB of $T^{*}(\mathbb{R} \times G / H)$
- Why coset spaces? \rightarrow simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
- Soln in gauge sector of heterotic flux compactifications (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
- Fill a gap in literature on higher-dim YM instantons

Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on "cylinder" $Z(G / H):=\mathbb{R} \times G / H$.

- G / H is a $7 d$ compact coset space w / G_{2} - or $S U(3)$-structure
- Cylinder metric: $g=\mathrm{d} \tau \otimes \mathrm{d} \tau+\delta_{a b} e^{a} \otimes e^{b}(a, b=1, \ldots, 7)$
- $\left\{e^{\mu}\right\}=\left\{e^{0}=\mathrm{d} \tau, e^{a}\right\}$ is a local ONB of $T^{*}(\mathbb{R} \times G / H)$
- Why coset spaces? \rightarrow simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
- Soln in gauge sector of heterotic flux compactifications (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
- Fill a gap in literature on higher-dim YM instantons

Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on "cylinder" $Z(G / H):=\mathbb{R} \times G / H$.

- G / H is a $7 d$ compact coset space w / G_{2} - or $S U(3)$-structure
- Cylinder metric: $g=\mathrm{d} \tau \otimes \mathrm{d} \tau+\delta_{a b} e^{a} \otimes e^{b}(a, b=1, \ldots, 7)$
- Why coset spaces? \rightarrow simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
- Soln in gauge sector of heterotic flux compactifications
- Fill a gap in literature on higher-dim YM instantons

Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on "cylinder" $Z(G / H):=\mathbb{R} \times G / H$.

- G / H is a 7 d compact coset space w / G_{2} - or $S U(3)$-structure
- Cylinder metric: $g=\mathrm{d} \tau \otimes \mathrm{d} \tau+\delta_{a b} e^{a} \otimes e^{b}(a, b=1, \ldots, 7)$
- $\left\{e^{\mu}\right\}=\left\{e^{0}=\mathrm{d} \tau, e^{a}\right\}$ is a local ONB of $T^{*}(\mathbb{R} \times G / H)$
- Why coset spaces? \rightarrow simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
- Soln in gauge sector of heterotic flux compactifications
- Fill a gap in literature on higher-dim YM instantons

Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on "cylinder" $Z(G / H):=\mathbb{R} \times G / H$.

- G / H is a 7 d compact coset space w / G_{2} - or $S U(3)$-structure
- Cylinder metric: $g=\mathrm{d} \tau \otimes \mathrm{d} \tau+\delta_{a b} e^{a} \otimes e^{b}(a, b=1, \ldots, 7)$
- $\left\{e^{\mu}\right\}=\left\{e^{0}=\mathrm{d} \tau, e^{a}\right\}$ is a local ONB of $T^{*}(\mathbb{R} \times G / H)$
- Why coset spaces? \rightarrow simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
- Soln in gauge sector of heterotic flux compactifications
- Fill a gap in literature on higher-dim YM instantons

Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on "cylinder" $Z(G / H):=\mathbb{R} \times G / H$.

- G / H is a 7 d compact coset space w / G_{2} - or $S U(3)$-structure
- Cylinder metric: $g=\mathrm{d} \tau \otimes \mathrm{d} \tau+\delta_{a b} e^{a} \otimes e^{b}(a, b=1, \ldots, 7)$
- $\left\{e^{\mu}\right\}=\left\{e^{0}=\mathrm{d} \tau, e^{a}\right\}$ is a local ONB of $T^{*}(\mathbb{R} \times G / H)$
- Why coset spaces? \rightarrow simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
- Soln in gauge sector of heterotic flux compactifications
- Fill a gap in literature on higher-dim YM instantons

Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on "cylinder" $Z(G / H):=\mathbb{R} \times G / H$.

- G / H is a 7 d compact coset space w / G_{2} - or $S U(3)$-structure
- Cylinder metric: $g=\mathrm{d} \tau \otimes \mathrm{d} \tau+\delta_{a b} e^{a} \otimes e^{b}(a, b=1, \ldots, 7)$
- $\left\{e^{\mu}\right\}=\left\{e^{0}=\mathrm{d} \tau, e^{a}\right\}$ is a local ONB of $T^{*}(\mathbb{R} \times G / H)$
- Why coset spaces? \rightarrow simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
- Soln in gauge sector of heterotic flux compactifications (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
- Fill a gap in literature on higher-dim YM instantons
[Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009-...)]

7d G_{2}-structures:

- G_{2}-str. def. by 3-form P (Hodge dual 4-form $Q:={ }_{7} P$)
- G_{2}-structures distinguished/classified by 4 torsion classes:
- Important examples:

8d Spin(7)-structures:

- Z(G/H) inherits Spin(7)-str. def. by self-dual 4-form ψ
- Spin(7)-structures distinguished by 2 torsion classes
- Dictionary: 7d G2-structures $\leftrightarrow \operatorname{Spin}(7)$-structures on cyl e.g. 7d loc. conf. G 2 -str. $\rightarrow 8$ d loc. conf. Spin(7)-str. on cyl.

7d G_{2}-structures:

- G_{2}-str. def. by 3-form P (Hodge dual 4-form $Q:={ }_{7} P$)
- G_{2}-structures distinguished/classified by 4 torsion classes:

$$
\mathrm{d} P=\tau_{0} Q+3 \tau_{1} \wedge P+*_{7} \tau_{3}, \quad \mathrm{~d} Q=4 \tau_{1} \wedge Q+\tau_{2} \wedge P
$$

- Important examples:

8d Spin(7)-structures:

- $Z(G / H)$ inherits Spin(7)-str. def. by self-dual 4-form ψ
- Spin(7)-structures distinguished by 2 torsion classes
- Dictionary: 7d G2-structures $\leftrightarrow \operatorname{Spin}(7)$-structures on cy|

7d G_{2}-structures:

- G_{2}-str. def. by 3-form P (Hodge dual 4-form $Q:=*_{7} P$)
- G_{2}-structures distinguished/classified by 4 torsion classes:

$$
\mathrm{d} P=\tau_{0} Q+3 \tau_{1} \wedge P+*_{7} \tau_{3}, \quad \mathrm{~d} Q=4 \tau_{1} \wedge Q+\tau_{2} \wedge P
$$

- Important examples:

Type	TCs	Properties
parallel	\emptyset	$\mathrm{d} P=0, \mathrm{~d} Q=0$
nearly parallel	τ_{0}	$\mathrm{~d} P=\tau_{0} Q, \mathrm{~d} Q=0$
cocalibrated/semi-p.	$\tau_{0} \oplus \tau_{3}$	$\mathrm{~d} P=\tau_{0} Q+*_{7} \tau_{3}, \mathrm{~d} Q=0$

8d Spin(7)-structures:

- $Z(G / H)$ inherits Spin(7)-str. def. by self-dual 4-form Ψ
- Spin(7)-structures distinguished by 2 torsion classes
- Dictionary: 7d G2-structures $\leftrightarrow \operatorname{Spin}(7)$-structures on cyl

7d G_{2}-structures:

- G_{2}-str. def. by 3-form P (Hodge dual 4-form $Q:={ }_{7} P$)
- G_{2}-structures distinguished/classified by 4 torsion classes:

$$
\mathrm{d} P=\tau_{0} Q+3 \tau_{1} \wedge P+*_{7} \tau_{3}, \quad \mathrm{~d} Q=4 \tau_{1} \wedge Q+\tau_{2} \wedge P
$$

- Important examples:

Type	TCs	Properties
parallel	\emptyset	$\mathrm{d} P=0, \mathrm{~d} Q=0$
nearly parallel	τ_{0}	$\mathrm{~d} P=\tau_{0} Q, \mathrm{~d} Q=0$
cocalibrated/semi-p.	$\tau_{0} \oplus \tau_{3}$	$\mathrm{~d} P=\tau_{0} Q+*_{7} \tau_{3}, \mathrm{~d} Q=0$

8d Spin(7)-structures:

- $Z(G / H)$ inherits $\operatorname{Spin}(7)$-str. def. by self-dual 4-form Ψ

$$
\Psi=P \wedge \mathrm{~d} \tau-Q
$$

- Spin(7)-structures distinguished by 2 torsion classes
- Dictionary: 7d G_{2}-structures $\leftrightarrow \operatorname{Spin}(7)$-structures on cyl

7d G_{2}-structures:

- G_{2}-str. def. by 3-form P (Hodge dual 4-form $Q:={ }_{7} P$)
- G_{2}-structures distinguished/classified by 4 torsion classes:

$$
\mathrm{d} P=\tau_{0} Q+3 \tau_{1} \wedge P+*_{7} \tau_{3}, \quad \mathrm{~d} Q=4 \tau_{1} \wedge Q+\tau_{2} \wedge P
$$

- Important examples:

Type	TCs	Properties
parallel	\emptyset	$\mathrm{d} P=0, \mathrm{~d} Q=0$
nearly parallel	τ_{0}	$\mathrm{~d} P=\tau_{0} Q, \mathrm{~d} Q=0$
cocalibrated/semi-p.	$\tau_{0} \oplus \tau_{3}$	$\mathrm{~d} P=\tau_{0} Q+*_{7} \tau_{3}, \mathrm{~d} Q=0$

8d Spin(7)-structures:

- $Z(G / H)$ inherits $\operatorname{Spin}(7)$-str. def. by self-dual 4-form Ψ

$$
\Psi=P \wedge \mathrm{~d} \tau-Q
$$

- Spin(7)-structures distinguished by 2 torsion classes

7d G_{2}-structures:

- G_{2}-str. def. by 3-form P (Hodge dual 4-form $Q:=*_{7} P$)
- G_{2}-structures distinguished/classified by 4 torsion classes:

$$
\mathrm{d} P=\tau_{0} Q+3 \tau_{1} \wedge P+*_{7} \tau_{3}, \quad \mathrm{~d} Q=4 \tau_{1} \wedge Q+\tau_{2} \wedge P
$$

- Important examples:

Type	TCs	Properties
parallel	\emptyset	$\mathrm{d} P=0, \mathrm{~d} Q=0$
nearly parallel	τ_{0}	$\mathrm{~d} P=\tau_{0} Q, \mathrm{~d} Q=0$
cocalibrated/semi-p.	$\tau_{0} \oplus \tau_{3}$	$\mathrm{~d} P=\tau_{0} Q+*_{7} \tau_{3}, \mathrm{~d} Q=0$

8d Spin(7)-structures:

- $Z(G / H)$ inherits $\operatorname{Spin}(7)$-str. def. by self-dual 4-form Ψ

$$
\Psi=P \wedge \mathrm{~d} \tau-Q
$$

- Spin(7)-structures distinguished by 2 torsion classes
- Dictionary: 7d G_{2}-structures $\leftrightarrow \operatorname{Spin}(7)$-structures on cyl. e.g. 7d loc. conf. G_{2}-str. $\rightarrow 8$ d loc. conf. Spin(7)-str. on cyl.
- Back to YM theory on $Z(G / H)$
- "Natural" G-invariant ansatz on $Z(G / H)$:

$$
A=e^{i} I_{i}+e^{a} X_{a}(\tau) \quad \text { (temporal gauge: no } \mathrm{d} \tau \text { term) }
$$

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010)

- Notation:
- Lie algebra decomposes: $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$
- Lie algebra generators of \mathfrak{g} split: $\left\{I_{A}\right\}=\left\{I_{i}\right\} \cup\left\{I_{a}\right\}$
- Lie algebra:
- G-invariance condition:

- Back to YM theory on $Z(G / H)$
- "Natural" G-invariant ansatz on $Z(G / H)$:

$$
A=e^{i} I_{i}+e^{a} X_{a}(\tau) \quad \text { (temporal gauge: no } \mathrm{d} \tau \text { term) }
$$

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

- Notation

- Lie algebra decomposes: $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m} \quad(\mathfrak{m} \leftrightarrow G / H)$
- Lie algebra generators of \mathfrak{g} split: $\left\{I_{A}\right\}=\left\{I_{i}\right\} \cup\left\{I_{a}\right\}$
- Lie algebra
- G-invariance condition:
- Back to YM theory on $Z(G / H)$
- "Natural" G-invariant ansatz on $Z(G / H)$:

$$
A=e^{i} I_{i}+e^{a} X_{a}(\tau) \quad \text { (temporal gauge: no } \mathrm{d} \tau \text { term) }
$$

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

- Notation:
- Lie algebra decomposes: $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m} \quad(\mathfrak{m} \leftrightarrow G / H)$
- Lie algebra generators of \mathfrak{g} split: $\left\{I_{A}\right\}=\left\{I_{i}\right\} \cup\left\{I_{a}\right\}$
- Lie algebra:

$$
\left[I_{i}, I_{j}\right]=f_{i j}^{k} I_{k}, \quad\left[I_{i}, I_{a}\right]=f_{i a}^{b} I_{b}, \quad\left[I_{a}, I_{b}\right]=f_{a b}^{i} I_{i}+f_{a b}^{c} I_{c}
$$

- $X_{a}(\tau) \in \mathfrak{g}$ and $\left\{e^{i}=e_{a}^{i} e^{a}\right\}$ LI 1 -forms on G / H dual to $\left\{I_{i}\right\}$
- G-invariance condition:
- Back to YM theory on $Z(G / H)$
- "Natural" G-invariant ansatz on $Z(G / H)$:

$$
A=e^{i} I_{i}+e^{a} X_{a}(\tau) \quad \text { (temporal gauge: no } \mathrm{d} \tau \text { term) }
$$

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

- Notation:
- Lie algebra decomposes: $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m} \quad(\mathfrak{m} \leftrightarrow G / H)$
- Lie algebra generators of \mathfrak{g} split: $\left\{I_{A}\right\}=\left\{I_{i}\right\} \cup\left\{I_{a}\right\}$
- Lie algebra:

$$
\left[I_{i}, I_{j}\right]=f_{i j}^{k} I_{k}, \quad\left[I_{i}, I_{a}\right]=f_{i a}^{b} I_{b}, \quad\left[I_{a}, I_{b}\right]=f_{a b}^{i} I_{i}+f_{a b}^{c} I_{c}
$$

- $X_{a}(\tau) \in \mathfrak{g}$ and $\left\{e^{i}=e_{a}^{i} e^{a}\right\}$ LI 1 -forms on G / H dual to $\left\{l_{i}\right\}$
- G-invariance condition:

$$
\left[\iota_{i}, X_{a}\right]=f_{i a}^{b} X_{b}
$$

- Specialize to $\mathcal{M}=Z(G / H)$ and $7 \mathrm{~d} G / H$ having G_{2}-structure
- Consider Spin(7)-instantons $\left(Q_{\mathcal{M}}=\Psi=* \Psi\right)$)
- Insert ansatz for $A\left(\right.$ note $\left.(\cdot):=\frac{d}{d \tau}(\cdot)\right)$

- Can't be solved in general (depends on choice of $f_{B C}^{A}$)!
- Single field reduction $X_{a}(\tau)=\phi(\tau) I_{a}$ - common sol. $\forall G / H$
- w/ additional assumptions on $f_{B C}^{A}$
- 2 static solutions: $\phi=0,1$. Interpolating tanh-kink:

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
- Specialize to $\mathcal{M}=Z(G / H)$ and $7 \mathrm{~d} G / H$ having G_{2}-structure
- Consider Spin(7)-instantons $\left(Q_{\mathcal{M}}=\Psi=* \Psi\right)$:

$$
* F=-F \wedge \psi
$$

- Insert ansatz for $A\left(\right.$ note $\left.(\cdot):=\frac{d}{d \tau}(\cdot)\right)$
- Can't be solved in general (depends on choice of $f_{B C}^{A}$)!
- Single field reduction $X_{a}(\tau)=\phi(\tau) I_{a}$ - common sol. $\forall G / H$
- $\mathrm{w} /$ additional assumptions on $f_{B C}^{A}$
- 2 static solutions: $\phi=0,1$ Interpolating tanh-kink:
[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
- Specialize to $\mathcal{M}=Z(G / H)$ and $7 \mathrm{~d} G / H$ having G_{2}-structure
- Consider Spin(7)-instantons $\left(Q_{\mathcal{M}}=\Psi=* \Psi\right)$:

$$
* F=-F \wedge \Psi
$$

- Insert ansatz for A (note $\left.(\cdot):=\frac{d}{d \tau}(\cdot)\right)$:

$$
\dot{X}_{a}+\frac{1}{2} P_{a}^{b c}\left(f_{b c}^{i} l_{i}+f_{b c}^{d} X_{d}-\left[X_{b}, X_{c}\right]\right)=0
$$

- Can't be solved in general (depends on choice of $f_{B C}^{A}$)!
- Single field reduction $X_{a}(\tau)=\phi(\tau) I_{a}$ - common sol. $\forall G / H$
- w/ additional assumptions on $f_{B C}^{A}$
- 2 static solutions: $\phi=0,1$. Interpolating tanh-kink:
\square
[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
- Specialize to $\mathcal{M}=Z(G / H)$ and $7 \mathrm{~d} G / H$ having G_{2}-structure
- Consider $\operatorname{Spin}(7)$-instantons $\left(Q_{\mathcal{M}}=\Psi=* \Psi\right)$:

$$
* F=-F \wedge \Psi
$$

- Insert ansatz for A (note $\left.(\cdot):=\frac{d}{d \tau}(\cdot)\right)$:

$$
\dot{X}_{a}+\frac{1}{2} P_{a}^{b c}\left(f_{b c}^{i} l_{i}+f_{b c}^{d} X_{d}-\left[X_{b}, X_{c}\right]\right)=0
$$

- Can't be solved in general (depends on choice of $f_{B C}^{A}$)!
- Single field reduction $X_{a}(\tau)=\phi(\tau) l_{a}$ - common sol.
- w/ additional assumptions on $f_{B C}^{A}$
- 2 static solutions: $\phi=0,1$. Interpolating tanh-kink:
[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
- Specialize to $\mathcal{M}=Z(G / H)$ and $7 \mathrm{~d} G / H$ having G_{2}-structure
- Consider Spin(7)-instantons $\left(Q_{\mathcal{M}}=\Psi=* \Psi\right)$:

$$
* F=-F \wedge \Psi
$$

- Insert ansatz for $A\left(\right.$ note $\left.(\cdot):=\frac{d}{d \tau}(\cdot)\right)$:

$$
\dot{X}_{a}+\frac{1}{2} P_{a}^{b c}\left(f_{b c}^{i} l_{i}+f_{b c}^{d} X_{d}-\left[X_{b}, X_{c}\right]\right)=0
$$

- Can't be solved in general (depends on choice of $f_{B C}^{A}$)!
- Single field reduction $X_{a}(\tau)=\phi(\tau) I_{a}$ - common sol. $\forall G / H$
- $w /$ additional assumptions on $f_{B C}^{A}$
- 2 static solutions: Interpolating tanh-kink:
[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
- Specialize to $\mathcal{M}=Z(G / H)$ and $7 \mathrm{~d} G / H$ having G_{2}-structure
- Consider Spin(7)-instantons $\left(Q_{\mathcal{M}}=\Psi=* \Psi\right)$:

$$
* F=-F \wedge \psi
$$

- Insert ansatz for A (note $\left.(\cdot):=\frac{d}{d \tau}(\cdot)\right)$:

$$
\dot{X}_{a}+\frac{1}{2} P_{a}^{b c}\left(f_{b c}^{i} l_{i}+f_{b c}^{d} X_{d}-\left[X_{b}, X_{c}\right]\right)=0
$$

- Can't be solved in general (depends on choice of $f_{B C}^{A}$)!
- Single field reduction $X_{a}(\tau)=\phi(\tau) I_{a}$ - common sol. $\forall G / H$
- $\mathrm{w} /$ additional assumptions on $f_{B C}^{A}$:

$$
\dot{\phi}=\frac{\alpha \sigma}{2} \phi(\phi-1)
$$

- 2 static solutions: $\phi=0$,
Interpolating tanh-kink:

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
- Specialize to $\mathcal{M}=Z(G / H)$ and $7 \mathrm{~d} G / H$ having G_{2}-structure
- Consider $\operatorname{Spin}(7)$-instantons $\left(Q_{\mathcal{M}}=\Psi=* \Psi\right)$:

$$
* F=-F \wedge \Psi
$$

- Insert ansatz for A (note $\left.(\cdot):=\frac{d}{d \tau}(\cdot)\right)$:

$$
\dot{X}_{a}+\frac{1}{2} P_{a}^{b c}\left(f_{b c}^{i} l_{i}+f_{b c}^{d} X_{d}-\left[X_{b}, X_{c}\right]\right)=0
$$

- Can't be solved in general (depends on choice of $f_{B C}^{A}$)!
- Single field reduction $X_{a}(\tau)=\phi(\tau) I_{a}$ - common sol. $\forall G / H$
- $\mathrm{w} /$ additional assumptions on $f_{B C}^{A}$:

$$
\dot{\phi}=\frac{\alpha \sigma}{2} \phi(\phi-1)
$$

- 2 static solutions: $\phi=0,1$. Interpolating tanh-kink:

$$
\phi(\tau)=\frac{1}{2}\left(1-\tanh \left[\frac{\alpha \sigma}{4}\left(\tau-\tau_{0}\right)\right]\right)
$$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]

Other (known) universal YM-solutions:

- Now, consider YM-eq. w/ torsion $D * F+F \wedge * H=0$
- Insert ansatz for A

Gauss-law constraint

- Single field reduction + other assumptions $(H \propto \kappa P, \ldots)$
- Newtonian mech. of pt. particle w/ quartic potential

- $(\alpha, \kappa)=(3 / 5,1) \rightarrow \operatorname{Spin}(7)$-instantons
[Ivanova, Lechtenfeld, Popov, Rahn (2009)]

Other (known) universal YM-solutions:

- Now, consider YM-eq. w/ torsion $D * F+F \wedge * H=0$
- Insert ansatz for A :

$$
\sum_{a}\left[X_{a}, \dot{X}_{a}\right]=0
$$

Gauss-law constraint

$$
\begin{aligned}
\ddot{X}_{a}=(& \left(\frac{1}{2}\left(f_{a c d}-H_{a c d}\right) f_{b c d}-f_{a c i} f_{b c i}\right) X_{b} \\
& -\frac{1}{2}\left(3 f_{a b c}-H_{a b c}\right)\left[X_{b}, X_{c}\right]-\left[X_{b},\left[X_{b}, X_{a}\right]\right]-\frac{1}{2} H_{a b c} f_{i b c} l_{i}
\end{aligned}
$$

- Single field reduction + other assumptions $(H \propto \kappa P, \ldots)$ - Newtonian mech. of pt. particle w/quartic potential
- $\alpha=0 \quad \rightarrow \phi^{4}$ kink/anti-kink $\phi= \pm \tanh \frac{\tau-\tau_{0}}{2}$
- $(\alpha, \kappa)=(3 / 5,1) \rightarrow$ Spin (7)-instantons
[Ivanova, Lechtenfeld, Popov, Rahn (2009)]

Other (known) universal YM-solutions:

- Now, consider YM-eq. w/ torsion $D * F+F \wedge * H=0$
- Insert ansatz for A :

$$
\sum_{a}\left[X_{a}, \dot{X}_{a}\right]=0 \quad \text { Gauss-law constraint }
$$

$$
\begin{aligned}
\ddot{X}_{a}=(& \left(\frac{1}{2}\left(f_{a c d}-H_{a c d}\right) f_{b c d}-f_{a c i} f_{b c i}\right) X_{b} \\
& -\frac{1}{2}\left(3 f_{a b c}-H_{a b c}\right)\left[X_{b}, X_{c}\right]-\left[X_{b},\left[X_{b}, X_{a}\right]\right]-\frac{1}{2} H_{a b c} f_{i b c} l_{i}
\end{aligned}
$$

- Single field reduction + other assumptions $(H \propto \kappa P, \ldots)$:

$$
\ddot{\phi}=\frac{1}{2}(1+\alpha) \phi(\phi-1)\left(\phi-\frac{(\kappa+2) \alpha-1}{\alpha+1}\right)
$$

- Newtonian mech. of pt. particle w/ quartic potential
- $\alpha=0 \quad \rightarrow \phi^{4}$ kink/anti-kink $\phi= \pm \tanh \frac{\tau-\tau_{0}}{2}$
- $(\alpha, \kappa)=(3 / 5,1) \rightarrow \mathbf{S p i n}(7)$-instantons
[Ivanova, Lechtenfeld, Popov, Rahn (2009)]

Case-by-case analysis:
Consider multi-field configurations ...

- ... on cylinders over three 7d cosets with nearly parallel G_{2}-structure
- Berger space $S O(5) / S O(3)_{\text {max }}$
- Squashed 7 -sphere $S p(2) \times S p(1) / S p(1)^{2}$
- (Aloff-Wallach spaces $S U(3) / U(1)_{k, l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])

- Present some of the new solutions in the following

Case-by-case analysis:
Consider multi-field configurations ...

- ... on cylinders over three 7d cosets with nearly parallel G_{2}-structure
- Berger space $S O(5) / S O(3)_{\max }$
- Squashed 7 -sphere $S p(2) \times S p(1) / S p(1)^{2}$
- (Aloff-Wallach spaces $S U(3) / U(1)_{k, l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])
- ... and on cylinders over four 7d cosets with SU(3)-structure $\left(S U(3) \subset G_{2}\right.$, special case of G_{2}-struct.)
- $\left(S O(5) / S O(3)_{A+B}\right)$
- $\left(N^{p q r}=(S U(3) \times U(1)) /(U(1) \times U(1))\right)$
- $M^{\text {pqr }}=(S U(3) \times S U(2) \times U(1)) /(S U(2) \times U(1) \times U(1))$
- $Q^{p q r}=(S U(2) \times S U(2) \times S U(2)) /(U(1) \times U(1))$
- Present some of the new solutions in the following

Case-by-case analysis:
Consider multi-field configurations ...

- ... on cylinders over three 7d cosets with nearly parallel G_{2}-structure
- Berger space $S O(5) / S O(3)_{\text {max }}$
- Squashed 7 -sphere $S p(2) \times S p(1) / S p(1)^{2}$
- (Aloff-Wallach spaces $S U(3) / U(1)_{k, l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])
- ... and on cylinders over four 7d cosets with SU(3)-structure $\left(S U(3) \subset G_{2}\right.$, special case of G_{2}-struct.)
- $\left(S O(5) / S O(3)_{A+B}\right)$
- $\left(N^{p q r}=(S U(3) \times U(1)) /(U(1) \times U(1))\right)$
- $M^{\text {pqr }}=(S U(3) \times S U(2) \times U(1)) /(S U(2) \times U(1) \times U(1))$
- $Q^{\text {par }}=(S U(2) \times S U(2) \times S U(2)) /(U(1) \times U(1))$
- Present some of the new solutions in the following

Berger space \& squashed S^{7} :

- 1st step to determine multi-field sol: solve G-inv. cond. $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$
- Berger space: G-inv. cond. $\Longrightarrow X_{a}=\phi l_{a}$ (back to single field case: nothing new)
- Squashed $S^{7}: G$-inv. cond. $\Longrightarrow 2$ real fields ϕ_{1}, ϕ_{2}

Berger space \& squashed S^{7} :

- 1st step to determine multi-field sol: solve G-inv. cond. $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$
- Berger space: G-inv. cond. $\Longrightarrow X_{a}=\phi I_{a}$ (back to single field case: nothing new)
- Squashed S $^{7}:$-inv. cond. $\Longrightarrow 2$ real fields ϕ_{1}, ϕ_{2}

Berger space \& squashed S^{7} :

- 1st step to determine multi-field sol: solve G-inv. cond. $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$
- Berger space: G-inv. cond. $\Longrightarrow X_{a}=\phi I_{a}$ (back to single field case: nothing new)
- Squashed $S^{7}: G$-inv. cond. $\Longrightarrow 2$ real fields ϕ_{1}, ϕ_{2}

flat direction + single rescaled ϕ^{4} (anti-)kink

Berger space \& squashed S^{7} :

- 1st step to determine multi-field sol: solve G-inv. cond. $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$
- Berger space: G-inv. cond. $\Longrightarrow X_{a}=\phi I_{a}$ (back to single field case: nothing new)
- Squashed S^{7} : G-inv. cond. $\Longrightarrow 2$ real fields ϕ_{1}, ϕ_{2}
- Instanton eq.: $\phi_{1}= \pm \phi_{2} \equiv \pm \phi$ (again, back to old case)
- YM-eq. $\Longrightarrow 2$ branches:
(1) "instanton branch"
\rightarrow single-field case (Spin (7)-instantons $+\phi^{4}$ (anti-)kink)
flat direction + single rescaled ϕ^{4} (anti-)kink

Berger space \& squashed S^{7} :

- 1st step to determine multi-field sol: solve G-inv. cond. $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$
- Berger space: G-inv. cond. $\Longrightarrow X_{a}=\phi I_{a}$ (back to single field case: nothing new)
- Squashed S^{7} : G-inv. cond. $\Longrightarrow 2$ real fields ϕ_{1}, ϕ_{2}
- Instanton eq.: $\phi_{1}= \pm \phi_{2} \equiv \pm \phi$ (again, back to old case)
- YM-eq. $\Longrightarrow 2$ branches:
© "instanton branch" \rightarrow single-field case (Spin(7)-instantons $+\phi^{4}$ (anti-)kink)
flat direction + single rescaled ϕ^{4} (anti-)kink

Berger space \& squashed S^{7} :

- 1st step to determine multi-field sol: solve G-inv. cond. $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$
- Berger space: G-inv. cond. $\Longrightarrow X_{a}=\phi I_{a}$ (back to single field case: nothing new)
- Squashed S^{7} : G-inv. cond. $\Longrightarrow 2$ real fields ϕ_{1}, ϕ_{2}
- Instanton eq.: $\phi_{1}= \pm \phi_{2} \equiv \pm \phi$ (again, back to old case)
- YM-eq. $\Longrightarrow 2$ branches:
(1) "instanton branch" ($\phi_{1}= \pm \phi_{2} \equiv \pm \phi$)
\rightarrow single-field case (Spin(7)-instantons $+\phi^{4}$ (anti-)kink)
flat direction + single rescaled ϕ^{4} (anti-)kink

Berger space \& squashed S^{7} :

- 1st step to determine multi-field sol: solve G-inv. cond. $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$
- Berger space: G-inv. cond. $\Longrightarrow X_{a}=\phi I_{a}$ (back to single field case: nothing new)
- Squashed S^{7} : G-inv. cond. $\Longrightarrow 2$ real fields ϕ_{1}, ϕ_{2}
- Instanton eq.: $\phi_{1}= \pm \phi_{2} \equiv \pm \phi$ (again, back to old case)
- YM-eq. $\Longrightarrow 2$ branches:
(1) "instanton branch" ($\phi_{1}= \pm \phi_{2} \equiv \pm \phi$) \rightarrow single-field case (Spin(7)-instantons $+\phi^{4}$ (anti-)kink)
(2) $\phi_{2}=(\kappa+3) / 2, \phi_{1}(\tau)= \pm \sqrt{c_{\kappa}} \tanh \left[\frac{\sqrt{c_{k}}}{2}\left(\tau-\tau_{0}\right)\right]$
flat direction + single rescaled ϕ^{4} (anti-)kink

Non-trivial multi-field solution I ([AH (2016)]):

- 1st example: $Z\left(M^{p q r}\right), M^{p q r}=\frac{S U(3) \times S U(2) \times U(1)}{S U(2) \times U(1) \times U(1)}$


```
- G-inv. cond. \(\Longrightarrow 5\) real fields
- Gauss-law constraint
- Analytical sector \(\phi_{3}=1 /(2 \sqrt{2})\) ( + fixing of other parameters)
Remaining 2d motion
```

Non-trivial multi-field solution I ([AH (2016)]):

- 1st example: $Z\left(M^{p q r}\right), M^{p q r}=\frac{S U(3) \times S U(2) \times U(1)}{S U(2) \times U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, r=0$. W.I.o.g. take M^{110}
- Gauss-law constraint
- Analytical sector $\phi_{3}=1 /(2 \sqrt{2})$ (+ fixing of other parameters) Remaining 2d motion

Non-trivial multi-field solution I ([AH (2016)]):

- 1st example: $Z\left(M^{p q r}\right), M^{p q r}=\frac{S U(3) \times S U(2) \times U(1)}{S U(2) \times U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, r=0$. W.I.o.g. take M^{110}
- G-inv. cond. $\Longrightarrow 5$ real fields $\phi_{1}, \ldots, \phi_{5}$
- Analytical sector $\phi_{3}=1 /(2 \sqrt{2})$ (+ fixing of other parameters) Remaining 2d motion:

Non-trivial multi-field solution I ([AH (2016)]):

- 1st example: $Z\left(M^{p q r}\right), M^{p q r}=\frac{S U(3) \times S U(2) \times U(1)}{S U(2) \times U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, r=0$. W.I.o.g. take M^{110}
- G-inv. cond. $\Longrightarrow 5$ real fields $\phi_{1}, \ldots, \phi_{5}$
- Gauss-law constraint $\Longrightarrow \phi_{4} \sim \phi_{1}, \phi_{5} \sim \phi_{2}$

Remaining 2d motion:

Non-trivial multi-field solution I ([AH (2016)]):

- 1st example: $Z\left(M^{p q r}\right), M^{p q r}=\frac{S U(3) \times S U(2) \times U(1)}{S U(2) \times U(1) \times U(1)}$
- SU(3)-structure only for $p= \pm q, r=0$. W.I.o.g. take M^{110}
- G-inv. cond. $\Longrightarrow 5$ real fields $\phi_{1}, \ldots, \phi_{5}$
- Gauss-law constraint $\Longrightarrow \phi_{4} \sim \phi_{1}, \phi_{5} \sim \phi_{2}$
- Analytical sector $\phi_{3}=1 /(2 \sqrt{2})$ (+ fixing of other parameters). Remaining 2d motion:

Analytical multi-field solutions (of $\mathrm{YM} \mathrm{w} /$ torsion)
Blue: finite-energy (physical) YM-configs. Green: $E \rightarrow \infty$.

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.I.o.g. take Q^{111} - G-inv. cond. $\Longrightarrow 7$ real fields
- Gauss-law constraint
- and $\phi_{1}^{2}=\phi_{2}^{2}=\phi_{3}^{2}$ (uninteresting) or $\phi_{4}=(2 \lambda+3) /(2 \sqrt{2})$
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g.

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks

- Interpolates between $\left(\pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}\right)$as $\tau \rightarrow \pm \infty$
- Finite energy (physically allowed)

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.l.o.g. take Q^{111}
- G-inv. cond
- Gauss-law constraint
- and $\phi_{1}^{2}=\phi_{2}^{2}=\phi_{3}^{2}$ (uninteresting)
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g.

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks

- Interpolates between $\left(\pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}\right)$as $\tau \rightarrow \pm \infty$
- Finite energy (physically allowed)

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.I.o.g. take Q^{111}
- G-inv. cond. $\Longrightarrow 7$ real fields $\phi_{1}, \ldots, \phi_{7}$
- Gauss-law constraint
- and $\phi_{1}^{2}=\phi_{2}^{2}=\phi_{3}^{2}$ (uninteresting)
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g.

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks

- Interpolates between $\left(\pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}\right)$as $\tau \rightarrow \pm \infty$
- Finite energy (physically allowed)

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.I.o.g. take Q^{111}
- G-inv. cond. $\Longrightarrow 7$ real fields $\phi_{1}, \ldots, \phi_{7}$
- Gauss-law constraint $\Longrightarrow \phi_{5} \sim \phi_{1}, \phi_{6} \sim \phi_{2}, \phi_{7} \sim \phi_{3}$
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g.

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks

- Interpolates between $\left(\pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}\right)$as $\tau \rightarrow \pm \infty$
- Finite energy (physically allowed)

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.l.o.g. take Q^{111}
- G-inv. cond. $\Longrightarrow 7$ real fields $\phi_{1}, \ldots, \phi_{7}$
- Gauss-law constraint $\Longrightarrow \phi_{5} \sim \phi_{1}, \phi_{6} \sim \phi_{2}, \phi_{7} \sim \phi_{3}$
- and $\phi_{1}^{2}=\phi_{2}^{2}=\phi_{3}^{2}$ (uninteresting) or $\phi_{4}=(2 \lambda+3) /(2 \sqrt{2})$
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks

- Interpolates between $\left(\pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}\right)$as $\tau \rightarrow \pm \infty$
- Finite energy (physically allowed)

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.l.o.g. take Q^{111}
- G-inv. cond. $\Longrightarrow 7$ real fields $\phi_{1}, \ldots, \phi_{7}$
- Gauss-law constraint $\Longrightarrow \phi_{5} \sim \phi_{1}, \phi_{6} \sim \phi_{2}, \phi_{7} \sim \phi_{3}$
- and $\phi_{1}^{2}=\phi_{2}^{2}=\phi_{3}^{2}$ (uninteresting) or $\phi_{4}=(2 \lambda+3) /(2 \sqrt{2})$
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g.

$$
\mathcal{L}=\sum_{\alpha=1}^{3}\left\{\frac{1}{2} \dot{\phi}_{\alpha}^{2}+\frac{1}{8}\left(\phi_{\alpha}^{2}-\left(c_{7}^{ \pm}\right)^{2}\right)^{2}\right\}, \quad c_{7}^{ \pm}:=\sqrt{9 \pm 2 \sqrt{15}}
$$

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks

- Interpolates between $\left(\pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}\right)$as $\tau \rightarrow \pm \infty$
- Finite energy (physically allowed)

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.l.o.g. take Q^{111}
- G-inv. cond. $\Longrightarrow 7$ real fields $\phi_{1}, \ldots, \phi_{7}$
- Gauss-law constraint $\Longrightarrow \phi_{5} \sim \phi_{1}, \phi_{6} \sim \phi_{2}, \phi_{7} \sim \phi_{3}$
- and $\phi_{1}^{2}=\phi_{2}^{2}=\phi_{3}^{2}$ (uninteresting) or $\phi_{4}=(2 \lambda+3) /(2 \sqrt{2})$
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g.

$$
\mathcal{L}=\sum_{\alpha=1}^{3}\left\{\frac{1}{2} \dot{\phi}_{\alpha}^{2}+\frac{1}{8}\left(\phi_{\alpha}^{2}-\left(c_{7}^{ \pm}\right)^{2}\right)^{2}\right\}, \quad c_{7}^{ \pm}:=\sqrt{9 \pm 2 \sqrt{15}}
$$

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks

$$
\phi=c_{7}^{ \pm}\left(\begin{array}{l}
\pm \tanh \left[\begin{array} { l }
{ [\frac { c _ { 7 } ^ { \pm } } { 2 } (\tau - \tau _ { 0 , 1 })] } \\
{ \pm \operatorname { t a n h } }
\end{array} \left[\begin{array}{c}
c_{7}^{ \pm} \\
2 \\
\left(\tau-\tau_{0,2}\right) \\
\pm \tanh
\end{array}\left[\frac{c_{7}^{ \pm}}{2}\left(\tau-\tau_{0,3}\right)\right]\right.\right.
\end{array}\right)
$$

- Interpolates between (
- Finite energy (physically allowed)

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.l.o.g. take Q^{111}
- G-inv. cond. $\Longrightarrow 7$ real fields $\phi_{1}, \ldots, \phi_{7}$
- Gauss-law constraint $\Longrightarrow \phi_{5} \sim \phi_{1}, \phi_{6} \sim \phi_{2}, \phi_{7} \sim \phi_{3}$
- and $\phi_{1}^{2}=\phi_{2}^{2}=\phi_{3}^{2}$ (uninteresting) or $\phi_{4}=(2 \lambda+3) /(2 \sqrt{2})$
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g.

$$
\mathcal{L}=\sum_{\alpha=1}^{3}\left\{\frac{1}{2} \dot{\phi}_{\alpha}^{2}+\frac{1}{8}\left(\phi_{\alpha}^{2}-\left(c_{7}^{ \pm}\right)^{2}\right)^{2}\right\}, \quad c_{7}^{ \pm}:=\sqrt{9 \pm 2 \sqrt{15}}
$$

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks
- Interpolates between $\left(\pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}\right)$as $\tau \rightarrow \pm \infty$
- Finite energy (physically allowed)

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z\left(Q^{p q r}\right), Q^{p q r}=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}$
- $S U(3)$-structure only for $p= \pm q, q= \pm r$. W.l.o.g. take Q^{111}
- G-inv. cond. $\Longrightarrow 7$ real fields $\phi_{1}, \ldots, \phi_{7}$
- Gauss-law constraint $\Longrightarrow \phi_{5} \sim \phi_{1}, \phi_{6} \sim \phi_{2}, \phi_{7} \sim \phi_{3}$
- and $\phi_{1}^{2}=\phi_{2}^{2}=\phi_{3}^{2}$ (uninteresting) or $\phi_{4}=(2 \lambda+3) /(2 \sqrt{2})$
- Remaining dynamics in $\phi_{1}, \phi_{2}, \phi_{3}$ decouples, e.g.

$$
\mathcal{L}=\sum_{\alpha=1}^{3}\left\{\frac{1}{2} \dot{\phi}_{\alpha}^{2}+\frac{1}{8}\left(\phi_{\alpha}^{2}-\left(c_{7}^{ \pm}\right)^{2}\right)^{2}\right\}, \quad c_{7}^{ \pm}:=\sqrt{9 \pm 2 \sqrt{15}}
$$

- 3-vector of independent rescaled ϕ^{4} kinks-/anti-kinks
- Interpolates between ($\pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}, \pm c_{7}^{ \pm}$) as $\tau \rightarrow \pm \infty$
- Finite energy (physically allowed)

Summary

(1) Higher-dim. YM instantons obey $* F=-F \wedge * Q_{\mathcal{M}}$
(2) Higher-dim. YM theory w/ torsion: $D * F+F \wedge * H=0$
(3) Both arise naturally in S.T. together with G-structure
(9) Studied on $Z(G / H)=\mathbb{R} \times G / H . G / H: 7 d, G_{2} / S U(3)$-str.:

- (1) reduces to gradient flow eqs
- (2) reduces to Newtonian mechanics of pt. particle moving in \mathbb{R}^{n} w/ quartic potential (+ constraints)
- found plethora of new numerical \& analytical solutions

Open Problems \& WIP

Summary

(1) Higher-dim. YM instantons obey $* F=-F \wedge * Q_{\mathcal{M}}$
(2) Higher-dim. YM theory w/ torsion: $D * F+F \wedge * H=0$
(3) Both arise naturally in S.T. together with G-structure
(4) Studied on $Z(G / H)=\mathbb{R} \times G / H . G / H: 7 \mathrm{~d}, G_{2} / S U(3)$-str.

- (1) reduces to gradient flow eqs
- (2) reduces to Newtonian mechanics of pt. particle moving in \mathbb{R}^{n} w/ quartic potential (+ constraints)
- found plethora of new numerical \& analytical solutions

Open Problems \& WP

Summary

(1) Higher-dim. YM instantons obey $* F=-F \wedge * Q_{\mathcal{M}}$
(2) Higher-dim. YM theory w/ torsion: $D * F+F \wedge * H=0$
(3) Both arise naturally in S.T. together with G-structure
(9) Studied on $Z(G / H)=\mathbb{R} \times G / H . G / H: 7 d, G_{2} / S U(3)$-str.

- (1) reduces to gradient flow eqs
- (2) reduces to Newtonian mechanics of pt. particle moving in $\mathbb{R}^{n} \mathrm{w} /$ quartic potential (+ constraints)
- found plethora of new numerical \& analytical solutions

Open Problems \& WP

Summary

(1) Higher-dim. YM instantons obey $* F=-F \wedge * Q_{\mathcal{M}}$
(2) Higher-dim. YM theory w/ torsion: $D * F+F \wedge * H=0$
(3) Both arise naturally in S.T. together with G-structure
(9) Studied on $Z(G / H)=\mathbb{R} \times G / H . G / H: 7 d, G_{2} / S U(3)$-str.:

- (1) reduces to gradient flow eqs
- (2) reduces to Newtonian mechanics of pt. particle moving in \mathbb{R}^{n} w/ quartic potential (+ constraints)
- found plethora of new numerical \& analytical solutions

[^1]
Summary

(1) Higher-dim. YM instantons obey $* F=-F \wedge * Q_{\mathcal{M}}$
(2) Higher-dim. YM theory w/ torsion: $D * F+F \wedge * H=0$
(3) Both arise naturally in S.T. together with G-structure
(9) Studied on $Z(G / H)=\mathbb{R} \times G / H . G / H: 7 d, G_{2} / S U(3)$-str.:

- (1) reduces to gradient flow eqs
- (2) reduces to Newtonian mechanics of pt. particle moving in \mathbb{R}^{n} w/ quartic potential (+ constraints)
- found plethora of new numerical \& analytical solutions

Open Problems \& WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ $\mathbb{R}^{1,1} \times \mathbb{R} \times G / H+$ domain wall structure (?) (analog of

Summary

(1) Higher-dim. YM instantons obey $* F=-F \wedge * Q_{\mathcal{M}}$
(2) Higher-dim. YM theory w/ torsion: $D * F+F \wedge * H=0$
(3) Both arise naturally in S.T. together with G-structure
(9) Studied on $Z(G / H)=\mathbb{R} \times G / H . G / H: 7 d, G_{2} / S U(3)$-str.:

- (1) reduces to gradient flow eqs
- (2) reduces to Newtonian mechanics of pt. particle moving in \mathbb{R}^{n} w/ quartic potential (+ constraints)
- found plethora of new numerical \& analytical solutions

Open Problems \& WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA $w / \mathbb{R}^{1,1} \times \mathbb{R} \times G / H+$ domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])

Thank you for your attention.

[^0]: Alexander Haupt (U. Hamburg)

[^1]: Open Problems \& WIP

