

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

Spin(7)-instantons & other Yang-Mills solutions on cylinders over coset spaces with G_2 -structure

Alexander Haupt University of Hamburg

11th Nordic String Theory Meeting 2017, Hannover 10-Feb-2017

JHEP 1603(2016)038 & WIP

Outline

Introduction

- Motivation
- Yang-Mills instantons in d = 4
- Instantons in d > 4 & YM with torsion

2 YM theory & instantons on 8d Z(G/H)

- Quick review of 7d G_2 & 8d Spin(7)-structures
- Set-up: gauge field ansatz
- Solutions: old & new

3 Conclusions

Outline

Introduction

- Motivation
- Yang-Mills instantons in d = 4
- Instantons in d > 4 & YM with torsion

2 YM theory & instantons on 8d Z(G/H)

- Quick review of 7d G₂- & 8d Spin(7)-structures
- Set-up: gauge field ansatz
- Solutions: old & new

3 Conclusions

Outline

Introduction

- Motivation
- Yang-Mills instantons in d = 4
- Instantons in d > 4 & YM with torsion

2 YM theory & instantons on 8d Z(G/H)

- Quick review of 7d G₂- & 8d Spin(7)-structures
- Set-up: gauge field ansatz
- Solutions: old & new

3 Conclusions

- In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, d = 10 supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications": M¹⁰ = M¹⁰⁻ⁿ × X_n
- Of particular interest are solutions that preserve some amount of **supersymmetry**
- Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and** *G*-structure manifolds

- construct new instanton/YM solutions on various *G*-structure manifolds
- Ind embeddings into string theory (het. SUGRA)

- In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, d = 10 supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications": M¹⁰ = M¹⁰⁻ⁿ × X_n
- Of particular interest are solutions that preserve some amount of **supersymmetry**
- Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and** *G*-structure manifolds

- construct new instanton/YM solutions on various *G*-structure manifolds
- Ind embeddings into string theory (het. SUGRA)

- In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, d = 10 supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications": M¹⁰ = M¹⁰⁻ⁿ × X_n
- Of particular interest are solutions that preserve some amount of **supersymmetry**
- Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and** *G*-structure manifolds

- construct new instanton/YM solutions on various *G*-structure manifolds
- **2** find embeddings into string theory (het. SUGRA)

- In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, d = 10 supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications": M¹⁰ = M¹⁰⁻ⁿ × X_n
- Of particular interest are solutions that preserve some amount of **supersymmetry**
- Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and** *G*-structure manifolds

- construct new instanton/YM solutions on various *G*-structure manifolds
- **2** find embeddings into string theory (het. SUGRA)

- In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, d = 10 supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications": M¹⁰ = M¹⁰⁻ⁿ × X_n
- Of particular interest are solutions that preserve some amount of **supersymmetry**
- Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and** *G*-structure manifolds

- construct new instanton/YM solutions on various *G*-structure manifolds
- **2** find embeddings into string theory (het. SUGRA)

- In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, d = 10 supergravity coupled to super Yang-Mills theory
- In phenomenological applications, one often considers "string compactifications": M¹⁰ = M¹⁰⁻ⁿ × X_n
- Of particular interest are solutions that preserve some amount of **supersymmetry**
- Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and** *G*-structure manifolds

- construct new instanton/YM solutions on various *G*-structure manifolds
- **②** find embeddings into string theory (het. SUGRA)

Introduction YM theory & instantons on 8d Z(G/H)Conclusions Motivation Yang-Mills instantons in d = 4Yang-Mills instantons in d > 4

Definition

A Yang-Mills instanton is a gauge connection^{*)} on Euclidean \mathcal{M}^4 , whose curvature F is **self-dual**, i.e. *F = F.

^{*)}connection ${}^{A}\nabla$ on a principal *K*-bundle over \mathcal{M}^{4} (gauge group *K*)

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), . . .]

Properties

- Solutions of YM-eq. $(0 \stackrel{\text{BI}}{=} DF = D * F \implies D * F = 0)$
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: **BPST instanton** (1975) for $\mathcal{M} = \mathbb{R}^4$, K = SU(2)

Widespread applications in maths & physics

- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about structure of YM-vacuum (crit. pts. of YM-action; appear in path int. as leading qu. corr.)

Introduction YM theory & instantons on 8d Z(G/H)Conclusions Motivation Yang-Mills instantons in d = 4Yang-Mills instantons in d > 4

Definition

A Yang-Mills instanton is a gauge connection^{*)} on Euclidean \mathcal{M}^4 , whose curvature F is **self-dual**, i.e. *F = F.

*)connection ${}^{A}\nabla$ on a principal K-bundle over \mathcal{M}^{4} (gauge group K)

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), . . .]

Properties

- Solutions of YM-eq. $(0 \stackrel{BI}{=} DF = D * F \implies D * F = 0)$
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: **BPST instanton** (1975) for $\mathcal{M} = \mathbb{R}^4$, $\mathcal{K} = SU(2)$

Widespread applications in maths & physics

- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about **structure of YM-vacuum** (crit. pts. of YM-action; appear in path int. as leading qu. corr.)

Introduction YM theory & instantons on 8d Z(G/H)Conclusions Motivation Yang-Mills instantons in d = 4Yang-Mills instantons in d > 4

Definition

A Yang-Mills instanton is a gauge connection^{*)} on Euclidean \mathcal{M}^4 , whose curvature F is **self-dual**, i.e. *F = F.

*)connection ${}^{A}\nabla$ on a principal K-bundle over \mathcal{M}^{4} (gauge group K)

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), . . .]

Properties

- Solutions of YM-eq. $(0 \stackrel{BI}{=} DF = D * F \implies D * F = 0)$
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: **BPST instanton** (1975) for $\mathcal{M} = \mathbb{R}^4$, $\mathcal{K} = SU(2)$

Widespread applications in maths & physics

- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about structure of YM-vacuum (crit. pts. of YM-action; appear in path int. as leading qu. corr.)

 Introduction
 Motivation

 YM theory & instantons on 8d Z(G/H) Yang-Mills instantons in d = 4

 Conclusions
 Yang-Mills instantons in d > 4

Definition

In higher dimensions, the instanton equation is generalized to

 $*F = -F \wedge *Q_{\mathcal{M}}$,

with some globally well-defined 4-form $Q_{\mathcal{M}}$.

[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), ...]

Properties

- Need additional structure on *M* to have *Q_M* ↔ *G*-structure manifolds (i.e. struct. grp. *G* ⊂ *SO*(*d*), e.g. *SU*(3) in *d* = 6)
- Instanton eq. \implies **YM with torsion** $D * F + F \land *H = 0$. Torsion 3-form $*H := d * Q_M$ (ordinary YM if Q_M co-closed).

H appears naturally in string theory (curvature of NS 2-form)

Alternative defs (in many phys. applic.: 3 defs. equivalent)

- $F \cdot \epsilon = 0$ (BPS eq. in string theory)
- $F \in \mathfrak{g}$ (i.e. $F \in \Gamma(\mathfrak{g}\mathcal{M} \otimes \operatorname{End}(E))$, often in math. lit)

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)

 Introduction
 Motivation

 YM theory & instantons on 8d Z(G/H) Yang-Mills instantons in d = 4

 Conclusions
 Yang-Mills instantons in d > 4

Definition

In higher dimensions, the instanton equation is generalized to

 $*F = -F \wedge *Q_{\mathcal{M}}$,

with some globally well-defined 4-form $Q_{\mathcal{M}}$.

[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), ...]

Properties

- Need additional structure on *M* to have *Q_M* ↔ *G*-structure manifolds (i.e. struct. grp. *G* ⊂ *SO*(*d*), e.g. *SU*(3) in *d* = 6)
- Instanton eq. \implies **YM** with torsion $D * F + F \land *H = 0$. Torsion 3-form $*H := d * Q_M$ (ordinary YM if Q_M co-closed).

H appears naturally in string theory (curvature of NS 2-form)

Alternative defs (in many phys. applic.: 3 defs. equivalent)

- $F \cdot \epsilon = 0$ (BPS eq. in string theory)
- $F \in \mathfrak{g}$ (i.e. $F \in \Gamma(\mathfrak{g}\mathcal{M} \otimes \operatorname{End}(E))$, often in math. lit)

 Introduction
 Motivation

 YM theory & instantons on 8d Z(G/H) Yang-Mills instantons in d = 4

 Conclusions
 Yang-Mills instantons in d > 4

Definition

In higher dimensions, the instanton equation is generalized to

 $*F = -F \wedge *Q_{\mathcal{M}}$,

with some globally well-defined 4-form $Q_{\mathcal{M}}$.

[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), ...]

Properties

- Need additional structure on *M* to have *Q_M* ↔ *G*-structure manifolds (i.e. struct. grp. *G* ⊂ *SO*(*d*), e.g. *SU*(3) in *d* = 6)
- Instanton eq. \implies **YM** with torsion $D * F + F \land *H = 0$. Torsion 3-form $*H := d * Q_M$ (ordinary YM if Q_M co-closed).

H appears naturally in string theory (curvature of NS 2-form)

Alternative defs (in many phys. applic.: 3 defs. equivalent)

- $F \cdot \epsilon = 0$ (BPS eq. in string theory)
- $F \in \mathfrak{g}$ (i.e. $F \in \Gamma(\mathfrak{g}\mathcal{M} \otimes \operatorname{End}(E))$, often in math. lit)

 Introduction
 G

 YM theory & instantons on 8d Z(G/H)
 S

 Conclusions
 S

G₂- & Spin(7)-structures Set-up Solutions: old & new

Scope of rest of talk

- G/H is a 7d compact coset space w/ G_2 or SU(3)-structure
- Cylinder **metric**: $g = d\tau \otimes d\tau + \delta_{ab}e^a \otimes e^b$ (a, b = 1, ..., 7)
- $\{e^{\mu}\} = \{e^0 = \mathsf{d}\tau, e^a\}$ is a local ONB of $\mathcal{T}^*(\mathbb{R} \times G/H)$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? ightarrow reduce to ODEs (gradient flow eqs.) in au
- Further motivation
 - Soln in gauge sector of **heterotic flux compactifications** (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]

Introduction G₂- & S YM theory & instantons on 8d Z(G/H) Set-up Conclusions Solution

G₂- & Spin(7)-structures Set-up Solutions: old & new

Scope of rest of talk

- G/H is a 7d compact coset space w/ G_2 or SU(3)-structure
- Cylinder **metric**: $g = d\tau \otimes d\tau + \delta_{ab}e^a \otimes e^b$ (a, b = 1, ..., 7)
- $\{e^{\mu}\} = \{e^0 = \mathsf{d} au, e^a\}$ is a local ONB of $\mathcal{T}^*(\mathbb{R} imes G/H)$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? ightarrow reduce to ODEs (gradient flow eqs.) in au
- Further motivation
 - Soln in gauge sector of **heterotic flux compactifications** (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]

G₂- & Spin(7)-structures Set-up Solutions: old & new

Scope of rest of talk

- G/H is a 7d compact coset space w/ G_2 or SU(3)-structure
- Cylinder metric: $g = d\tau \otimes d\tau + \delta_{ab}e^a \otimes e^b$ (a, b = 1, ..., 7)
- $\{e^{\mu}\} = \{e^{0} = \mathsf{d}\tau, e^{a}\}$ is a local ONB of $T^{*}(\mathbb{R} \times G/H)$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? ightarrow reduce to ODEs (gradient flow eqs.) in au
- Further motivation
 - Soln in gauge sector of **heterotic flux compactifications** (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]

G₂- & Spin(7)-structures Set-up Solutions: old & new

Scope of rest of talk

- G/H is a 7d compact coset space w/ G_2 or SU(3)-structure
- Cylinder metric: $g = d\tau \otimes d\tau + \delta_{ab}e^a \otimes e^b$ (a, b = 1, ..., 7)
- $\{e^{\mu}\} = \{e^0 = \mathsf{d}\tau, e^a\}$ is a local ONB of $T^*(\mathbb{R} \times G/H)$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? ightarrow reduce to ODEs (gradient flow eqs.) in au
- Further motivation
 - Soln in gauge sector of **heterotic flux compactifications** (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]

G₂- & Spin(7)-structures Set-up Solutions: old & new

Scope of rest of talk

- G/H is a 7d compact coset space w/ G_2 or SU(3)-structure
- Cylinder metric: $g = d\tau \otimes d\tau + \delta_{ab}e^a \otimes e^b$ (a, b = 1, ..., 7)
- $\{e^{\mu}\} = \{e^0 = \mathsf{d} au, e^a\}$ is a local ONB of $T^*(\mathbb{R} imes {\mathcal G} / {\mathcal H})$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in au
- Further motivation
 - Soln in gauge sector of **heterotic flux compactifications** (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009-...)]

G₂- & Spin(7)-structures Set-up Solutions: old & new

Scope of rest of talk

- G/H is a 7d compact coset space w/ G_2 or SU(3)-structure
- Cylinder metric: $g = d\tau \otimes d\tau + \delta_{ab}e^a \otimes e^b$ (a, b = 1, ..., 7)
- $\{e^{\mu}\} = \{e^0 = \mathsf{d} au, e^a\}$ is a local ONB of $T^*(\mathbb{R} imes {\mathcal G} / {\mathcal H})$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? \rightarrow reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
 - Soln in gauge sector of **heterotic flux compactifications** (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]

 Introduction
 G₂- & S

 YM theory & instantons on 8d Z(G/H)
 Set-up

 Conclusions
 Solution

G₂- & Spin(7)-structures Set-up Solutions: old & new

Scope of rest of talk

- G/H is a 7d compact coset space w/ G_2 or SU(3)-structure
- Cylinder metric: $g = d\tau \otimes d\tau + \delta_{ab}e^a \otimes e^b$ (a, b = 1, ..., 7)
- $\{e^{\mu}\} = \{e^0 = \mathsf{d} au, e^a\}$ is a local ONB of $T^*(\mathbb{R} imes {\mathcal G} / {\mathcal H})$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? ightarrow reduce to ODEs (gradient flow eqs.) in au
- Further motivation
 - Soln in gauge sector of **heterotic flux compactifications** (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]

 Introduction
 G2- & 2

 YM theory & instantons on 8d Z(G/H)
 Set-up

 Conclusions
 Solution

 G_2 - & Spin(7)-structures Set-up Solutions: old & new

7d *G*₂-structures:

- G_2 -str. def. by **3-form** P (Hodge dual **4-form** $Q := *_7 P$)
- *G*₂-structures distinguished/classified by **4 torsion classes**:

 $dP = au_0 \, Q + 3 \, au_1 \wedge P + *_7 au_3 \,, \qquad dQ = 4 \, au_1 \wedge Q + au_2 \wedge P$

Important examples:

Туре	TCs	Properties
parallel		$dP = 0, \ dQ = 0$
nearly parallel		$\mathrm{d}P= au_0Q,\mathrm{d}Q=0$
cocalibrated/semi-p.		$\mathrm{d}P= au_0Q+st_7 au_3,\mathrm{d}Q=0$

- Z(G/H) inherits Spin(7)-str. def. by **self-dual 4-form** Ψ $\Psi = P \wedge d\tau - Q$
- Spin(7)-structures distinguished by **2 torsion classes**
- Dictionary: 7d G₂-structures ↔ Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G₂-str. → 8d loc. conf. Spin(7)-str. on cyl

7d G₂-structures:

- G₂-str. def. by **3-form** P (Hodge dual **4-form** $Q := *_7 P$)
- *G*₂-structures distinguished/classified by **4 torsion classes**:

 $\mathrm{d} P = \tau_0 \, Q + 3 \, \tau_1 \wedge P + *_7 \tau_3 \,, \qquad \mathrm{d} Q = 4 \, \tau_1 \wedge Q + \tau_2 \wedge P$

• Important examples:

Туре	TCs	Properties
parallel		$dP = 0, \ dQ = 0$
nearly parallel		${ m d} P= au_0Q,{ m d} Q=0$
cocalibrated/semi-p.		$d P = au_0 Q + *_7 au_3, d Q = 0$

- Z(G/H) inherits Spin(7)-str. def. by self-dual 4-form Ψ $\Psi = P \wedge d\tau - Q$
- Spin(7)-structures distinguished by **2 torsion classes**
- Dictionary: 7d G₂-structures ↔ Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G₂-str. → 8d loc. conf. Spin(7)-str. on cyl

7d G₂-structures:

- G_2 -str. def. by **3-form** P (Hodge dual **4-form** $Q := *_7 P$)
- *G*₂-structures distinguished/classified by **4 torsion classes**:

 $\mathrm{d} P = \tau_0 \, Q + 3 \, \tau_1 \wedge P + *_7 \tau_3 \,, \qquad \mathrm{d} Q = 4 \, \tau_1 \wedge Q + \tau_2 \wedge P$

Important examples:

Туре	TCs	Properties
parallel	Ø	$dP = 0, \ dQ = 0$
nearly parallel	$ au_0$	$d P = au_0 Q$, $d Q = 0$
cocalibrated/semi-p.	$ au_0 \oplus au_3$	$d P = au_0 Q + *_7 au_3, d Q = 0$

- Z(G/H) inherits Spin(7)-str. def. by **self-dual 4-form** Ψ $\Psi = P \wedge d\tau - Q$
- Spin(7)-structures distinguished by **2 torsion classes**
- Dictionary: 7d G₂-structures ↔ Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G₂-str. → 8d loc. conf. Spin(7)-str. on cyl

7d G₂-structures:

- G_2 -str. def. by **3-form** P (Hodge dual **4-form** $Q := *_7 P$)
- *G*₂-structures distinguished/classified by **4 torsion classes**:

 $\mathrm{d} P = \tau_0 \, Q + 3 \, \tau_1 \wedge P + *_7 \tau_3 \,, \qquad \mathrm{d} Q = 4 \, \tau_1 \wedge Q + \tau_2 \wedge P$

Important examples:

Туре	TCs	Properties
parallel	Ø	$dP = 0, \ dQ = 0$
nearly parallel	$ au_0$	$d P = au_0 Q$, $d Q = 0$
cocalibrated/semi-p.	$ au_0 \oplus au_3$	$d P = au_0 Q + *_7 au_3, d Q = 0$

- Z(G/H) inherits Spin(7)-str. def. by self-dual 4-form Ψ $\Psi = P \wedge d\tau - Q$
- Spin(7)-structures distinguished by **2 torsion classes**
- Dictionary: 7d G₂-structures ↔ Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G₂-str. → 8d loc. conf. Spin(7)-str. on cy

7d G₂-structures:

- G_2 -str. def. by **3-form** P (Hodge dual **4-form** $Q := *_7 P$)
- *G*₂-structures distinguished/classified by **4 torsion classes**:

 $\mathrm{d} P = \tau_0 \, Q + 3 \, \tau_1 \wedge P + *_7 \tau_3 \,, \qquad \mathrm{d} Q = 4 \, \tau_1 \wedge Q + \tau_2 \wedge P$

• Important examples:

Туре	TCs	Properties
parallel	Ø	$dP = 0, \ dQ = 0$
nearly parallel	$ au_0$	$d P = au_0 Q$, $d Q = 0$
cocalibrated/semi-p.	$ au_0 \oplus au_3$	$d P = au_0 Q + *_7 au_3, d Q = 0$

- Z(G/H) inherits Spin(7)-str. def. by self-dual 4-form Ψ $\Psi = P \wedge d\tau - Q$
- Spin(7)-structures distinguished by 2 torsion classes
- Dictionary: 7d G₂-structures ↔ Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G₂-str. → 8d loc. conf. Spin(7)-str. on cyl.

7d G₂-structures:

- G_2 -str. def. by **3-form** P (Hodge dual **4-form** $Q := *_7 P$)
- *G*₂-structures distinguished/classified by **4 torsion classes**:

 $\mathrm{d} P = \tau_0 \, Q + 3 \, \tau_1 \wedge P + *_7 \tau_3 \,, \qquad \mathrm{d} Q = 4 \, \tau_1 \wedge Q + \tau_2 \wedge P$

Important examples:

Туре	TCs	Properties
parallel	Ø	$dP = 0, \ dQ = 0$
nearly parallel	$ au_0$	$d P = au_0 Q$, $d Q = 0$
cocalibrated/semi-p.	$ au_0\oplus au_3$	$d P = au_0 Q + *_7 au_3, d Q = 0$

- Z(G/H) inherits Spin(7)-str. def. by self-dual 4-form Ψ $\Psi = P \wedge d\tau - Q$
- Spin(7)-structures distinguished by 2 torsion classes
- Dictionary: 7d G₂-structures ↔ Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G₂-str. → 8d loc. conf. Spin(7)-str. on cyl.

Introduction G₂- & Spin(7)-structures YM theory & instantons on 8d Z(G/H) Conclusions Solutions: old & new

• Back to YM theory on Z(G/H)

• "Natural" G-invariant ansatz on Z(G/H):

 $A=e^{i}I_{i}+e^{a}X_{a}(au)$ (temporal gauge: no dau term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

Notation:

- Lie algebra decomposes: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ $(\mathfrak{m} \leftrightarrow G/H)$
- Lie algebra generators of \mathfrak{g} split: $\{I_A\} = \{I_i\} \cup \{I_a\}$
- Lie algebra:

 $[I_i, I_j] = f_{ij}^k I_k, \ [I_i, I_a] = f_{ia}^b I_b, \ [I_a, I_b] = f_{ab}^i I_i + f_{ab}^c I_c$

• $X_a(\tau) \in \mathfrak{g}$ and $\{e^i = e^i_a e^a\}$ LI 1-forms on G/H dual to $\{I_i\}$

• G-invariance condition:

Introduction G_2 - & Spin(7)-structures YM theory & instantons on 8d Z(G/H) Conclusions Solutions: old & new

- Back to YM theory on Z(G/H)
- "Natural" *G*-invariant ansatz on Z(G/H):

 $A = e^{i}I_{i} + e^{a}X_{a}(\tau)$ (temporal gauge: no d τ term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

Notation:

- Lie algebra decomposes: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ $(\mathfrak{m} \leftrightarrow G/H)$
- Lie algebra generators of \mathfrak{g} split: $\{I_A\} = \{I_i\} \cup \{I_a\}$
- Lie algebra:

 $[I_i, I_j] = f_{ij}^k I_k, \ [I_i, I_a] = f_{ia}^b I_b, \ [I_a, I_b] = f_{ab}^i I_i + f_{ab}^c I_c$

• $X_a(\tau) \in \mathfrak{g}$ and $\{e^i = e^i_a e^a\}$ LI 1-forms on G/H dual to $\{l_i\}$

• G-invariance condition:

Introduction G_2 - & Spin(7)-structures YM theory & instantons on 8d Z(G/H) Conclusions Solutions: old & new

- Back to YM theory on Z(G/H)
- "Natural" *G*-invariant ansatz on Z(G/H):

 $A = e^{i}I_{i} + e^{a}X_{a}(\tau)$ (temporal gauge: no d τ term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

Notation:

- Lie algebra decomposes: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ $(\mathfrak{m} \leftrightarrow G/H)$
- Lie algebra generators of \mathfrak{g} split: $\{I_A\} = \{I_i\} \cup \{I_a\}$
- Lie algebra:

 $[I_i, I_j] = f_{ij}^k I_k, \ [I_i, I_a] = f_{ia}^b I_b, \ [I_a, I_b] = f_{ab}^i I_i + f_{ab}^c I_c$

• $X_a(\tau) \in \mathfrak{g}$ and $\{e^i = e^i_a e^a\}$ LI 1-forms on G/H dual to $\{I_i\}$

• G-invariance condition:

Introduction G₂- & Spin(7)-structures YM theory & instantons on 8d Z(G/H) Conclusions Solutions: old & new

- Back to YM theory on Z(G/H)
- "Natural" *G*-invariant ansatz on Z(G/H):

 $A = e^i I_i + e^a X_a(\tau)$ (temporal gauge: no dau term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

Notation:

- Lie algebra decomposes: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ $(\mathfrak{m} \leftrightarrow G/H)$
- Lie algebra generators of \mathfrak{g} split: $\{I_A\} = \{I_i\} \cup \{I_a\}$
- Lie algebra:

 $[I_i, I_j] = f_{ij}^k I_k, \ [I_i, I_a] = f_{ia}^b I_b, \ [I_a, I_b] = f_{ab}^i I_i + f_{ab}^c I_c$

• $X_a(\tau) \in \mathfrak{g}$ and $\{e^i = e^i_a e^a\}$ LI 1-forms on G/H dual to $\{I_i\}$

• G-invariance condition:

Introduction G_2 - & Spin(7)-structures YM theory & instantons on 8d Z(G/H) Conclusions Solutions: old & new

• Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2 -structure

• Consider **Spin**(7)-instantons $(Q_M = \Psi = *\Psi)$:

• Insert ansatz for A (note $(\dot{\cdot}) := \frac{d}{d\tau}(\cdot)$): $\dot{X}_a + \frac{1}{2} P_a{}^{bc} \left(f_{bc}^i I_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0$

- **Can't be solved in general** (depends on choice of f_{BC}^{A})!
- Single field reduction $X_a(\tau) = \phi(\tau)I_a$ common sol. $\forall G/H$

• w/ additional assumptions on f_{BC}^A :

 $\dot{\phi} = rac{lpha \sigma}{2} \phi(\phi-1)$

2 static solutions: φ = 0, 1.
 Interpolating tanh-kink:

 $\phi(\tau) = \frac{1}{2} \left(1 - \tanh\left[\frac{lpha \sigma}{4}(\tau - \tau_0)
ight]
ight)$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]

Introduction YM theory & instantons on 8d Z(G/H) Conclusions Solutions: old & new

• Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2 -structure

 $*F = -F \wedge \Psi$

• Consider **Spin**(7)-instantons $(Q_M = \Psi = *\Psi)$:

• Insert ansatz for A (note $(\dot{\cdot}) := \frac{d}{d\tau}(\cdot)$): $\dot{X}_a + \frac{1}{2} P_a{}^{bc} \left(f_{bc}^i l_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0$

- **Can't be solved in general** (depends on choice of f_{BC}^{A})!
- Single field reduction $X_a(\tau) = \phi(\tau)I_a$ common sol. $\forall G/H$

• w/ additional assumptions on f_{BC}^A :

 $\dot{\phi}=rac{lpha\sigma}{2}\phi(\phi-1)$

2 static solutions: φ = 0, 1.
 Interpolating tanh-kink:

 $\phi(\tau) = \frac{1}{2} \left(1 - \tanh\left[\frac{lpha \sigma}{4}(\tau - \tau_0)
ight]
ight)$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]

Introduction G₂- & Spin(7)-structures YM theory & instantons on 8d Z(G/H) Conclusions Solutions: old & new

• Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2 -structure

 $*F = -F \wedge \Psi$

- Consider **Spin**(7)-instantons $(Q_M = \Psi = *\Psi)$:
- Insert ansatz for A (note $(\dot{\cdot}) := \frac{d}{d\tau}(\cdot)$): $\dot{X}_a + \frac{1}{2}P_a{}^{bc}\left(f_{bc}^iI_i + f_{bc}^dX_d - [X_b, X_c]\right) = 0$
- **Can't be solved in general** (depends on choice of f_{BC}^{A})!
- Single field reduction $X_a(\tau) = \phi(\tau)I_a$ common sol. $\forall G/H$
- w/ additional assumptions on f_{BC}^A :

 $\dot{\phi} = \frac{\alpha\sigma}{2}\phi(\phi-1)$

2 static solutions: φ = 0, 1.
 Interpolating tanh-kink:

 $\phi(\tau) = \frac{1}{2} \left(1 - \tanh\left[\frac{\alpha\sigma}{4}(\tau - \tau_0)\right] \right)$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
- Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2 -structure
- Consider **Spin**(7)-instantons $(Q_M = \Psi = *\Psi)$:

• Insert ansatz for A (note $(\dot{\cdot}) := \frac{d}{d\tau}(\cdot)$):

 $\dot{X}_a + \frac{1}{2} P_a^{bc} \left(f_{bc}^i I_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0$

 $*F = -F \wedge \Psi$

- Can't be solved in general (depends on choice of f_{BC}^{A})!
- Single field reduction $X_a(\tau) = \phi(\tau)I_a$ common sol. $\forall G/H$

• w/ additional assumptions on f_{BC}^A :

• 2 static solutions: $\phi = 0, 1$. Interpolating tanh-kink:

 $\phi(\tau) = \frac{1}{2} \left(1 - \tanh\left[\frac{\alpha\sigma}{4}(\tau - \tau_0)\right] \right)$

- Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2 -structure
- Consider **Spin**(7)-instantons $(Q_M = \Psi = *\Psi)$:

• Insert ansatz for A (note $(\dot{\cdot}) := \frac{d}{d\tau}(\cdot)$):

 $\dot{X}_a + \frac{1}{2} P_a^{bc} \left(f_{bc}^i I_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0$

 $*F = -F \wedge \Psi$

- Can't be solved in general (depends on choice of f_{BC}^{A})!
- Single field reduction $X_a(\tau) = \phi(\tau)I_a$ common sol. $\forall G/H$

• w/ additional assumptions on f_{BC}^A :

2 static solutions: φ = 0, 1.
 Interpolating tanh-kink:

 $\phi(\tau) = \frac{1}{2} \left(1 - \tanh\left[\frac{\alpha\sigma}{4}(\tau - \tau_0)\right] \right)$

- Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2 -structure
- Consider **Spin**(7)-instantons $(Q_M = \Psi = *\Psi)$:

• Insert ansatz for A (note $(\dot{\cdot}) := \frac{d}{d\tau}(\cdot)$):

 $\dot{X}_a + \frac{1}{2} P_a^{bc} \left(f_{bc}^i I_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0$

 $*F = -F \wedge \Psi$

- Can't be solved in general (depends on choice of f_{BC}^{A})!
- Single field reduction $X_a(\tau) = \phi(\tau)I_a$ common sol. $\forall G/H$
- w/ additional assumptions on f_{BC}^A :

 $\dot{\phi} = rac{lpha \sigma}{2} \phi(\phi - 1)$

2 static solutions: φ = 0, 1.
 Interpolating tanh-kink:

 $\phi(\tau) = \frac{1}{2} \left(1 - \tanh\left[\frac{\alpha\sigma}{4}(\tau - \tau_0)\right] \right)$

- Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2 -structure
- Consider **Spin**(7)-instantons $(Q_M = \Psi = *\Psi)$:
- Insert ansatz for A (note $(\cdot) := \frac{d}{d\tau}(\cdot)$):

 $\dot{X}_a + \frac{1}{2} P_a^{bc} \left(f_{bc}^i I_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0$

 $*F = -F \wedge \Psi$

- Can't be solved in general (depends on choice of f_{BC}^{A})!
- Single field reduction $X_a(\tau) = \phi(\tau)I_a$ common sol. $\forall G/H$
- w/ additional assumptions on f_{BC}^A :
- 2 static solutions: φ = 0, 1.
 Interpolating tanh-kink:

$$\phi(au) = rac{1}{2} \left(1 - anh \left[rac{lpha \sigma}{4} (au - au_0)
ight]
ight)$$

Other (known) universal YM-solutions:

- Now, consider **YM-eq.** w/ torsion $D * F + F \wedge *H = 0$
- Insert ansatz for A:

 $\sum_{a} [X_{a}, \dot{X}_{a}] = 0$ Gauss-law constraint

$$\begin{split} \ddot{X}_{a} &= \left(\frac{1}{2}(f_{acd} - H_{acd})f_{bcd} - f_{aci}f_{bci}\right)X_{b} \\ &- \frac{1}{2}(3f_{abc} - H_{abc})[X_{b}, X_{c}] - [X_{b}, [X_{b}, X_{a}]] - \frac{1}{2}H_{abc}f_{ibc}I_{i} \end{split}$$

• Single field reduction + other assumptions ($H \propto \kappa P$, ...):

$$\ddot{\phi} = rac{1}{2}(1+lpha)\phi(\phi-1)\left(\phi-rac{(\kappa+2)lpha-1}{lpha+1}
ight)$$

• Newtonian mech. of pt. particle w/ quartic potential

- $\alpha = 0$ $\rightarrow \phi^4 \text{ kink/anti-kink } \phi = \pm \tanh \frac{\tau \tau_0}{2}$
- $(\alpha,\kappa) = (3/5,1) \rightarrow$ Spin(7)-instantons

Introduction YM theory & instantons on 8d Z(G/H) Conclusions Solutions: old & new

Other (known) universal YM-solutions:

- Now, consider **YM-eq.** w/ torsion $D * F + F \wedge *H = 0$
- Insert ansatz for A:

 $\sum_{a} [X_a, \dot{X}_a] = 0$ Gauss-law constraint

$$\begin{split} \ddot{X}_{a} &= \left(\frac{1}{2}(f_{acd} - H_{acd})f_{bcd} - f_{aci}f_{bci}\right)X_{b} \\ &- \frac{1}{2}(3f_{abc} - H_{abc})[X_{b}, X_{c}] - [X_{b}, [X_{b}, X_{a}]] - \frac{1}{2}H_{abc}f_{ibc}I_{i} \end{split}$$

• Single field reduction + other assumptions $(H \propto \kappa P, ...)$: $\ddot{\alpha} = \frac{1}{(1 + \alpha)}\phi(\phi - 1)(\phi - \frac{(\kappa+2)\alpha - 1}{(1 + \alpha)})$

 $\phi = \frac{1}{2}(1+\alpha)\phi(\phi-1)\left(\phi - \frac{(n+2)\alpha-1}{\alpha+1}\right)$

 $\bullet\,$ Newtonian mech. of pt. particle w/ quartic potential

- $\alpha = 0$ $\rightarrow \phi^4 \text{ kink/anti-kink } \phi = \pm \tanh \frac{\tau \tau_0}{2}$
- $(\alpha,\kappa) = (3/5,1) \rightarrow$ Spin(7)-instantons

Other (known) universal YM-solutions:

- Now, consider **YM-eq.** w/ torsion $D * F + F \wedge *H = 0$
- Insert ansatz for A:

 $\sum_{a} [X_a, \dot{X}_a] = 0$ Gauss-law constraint

$$\begin{split} \ddot{X}_{a} &= \left(\frac{1}{2}(f_{acd} - H_{acd})f_{bcd} - f_{aci}f_{bci}\right)X_{b} \\ &- \frac{1}{2}(3f_{abc} - H_{abc})[X_{b}, X_{c}] - [X_{b}, [X_{b}, X_{a}]] - \frac{1}{2}H_{abc}f_{ibc}I_{i} \end{split}$$

• Single field reduction + other assumptions ($H \propto \kappa P$, ...):

$$\ddot{\phi} = \frac{1}{2}(1+\alpha)\phi(\phi-1)\left(\phi-\frac{(\kappa+2)\alpha-1}{\alpha+1}\right)$$

 $\bullet\,$ Newtonian mech. of pt. particle w/ quartic potential

- $\alpha = 0$ $\rightarrow \phi^4 \text{ kink/anti-kink } \phi = \pm \tanh \frac{\tau \tau_0}{2}$
- $(\alpha,\kappa) = (3/5,1) \rightarrow \text{Spin}(7)\text{-instantons}$

Case-by-case analysis:

Consider multi-field configurations ...

- ... on cylinders over **three** 7d cosets with nearly parallel *G*₂-structure
 - Berger space $SO(5)/SO(3)_{max}$
 - Squashed 7-sphere $Sp(2) \times Sp(1)/Sp(1)^2$
 - (Aloff-Wallach spaces $SU(3)/U(1)_{k,l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])
- ... and on cylinders over **four** 7d cosets with SU(3)-structure $(SU(3) \subset G_2$, special case of G_2 -struct.)
 - $(SO(5)/SO(3)_{A+B})$
 - $(N^{pqr} = (SU(3) \times U(1))/(U(1) \times U(1)))$
 - $M^{pqr} = (SU(3) \times SU(2) \times U(1)) / (SU(2) \times U(1) \times U(1))$
 - $Q^{pqr} = (SU(2) \times SU(2) \times SU(2))/(U(1) \times U(1))$

• Present some of the new solutions in the following

Case-by-case analysis:

Consider multi-field configurations ...

- ... on cylinders over **three** 7d cosets with nearly parallel *G*₂-structure
 - Berger space $SO(5)/SO(3)_{max}$
 - Squashed 7-sphere $Sp(2) \times Sp(1)/Sp(1)^2$
 - (Aloff-Wallach spaces $SU(3)/U(1)_{k,l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])
- ... and on cylinders over **four** 7d cosets with SU(3)-structure $(SU(3) \subset G_2$, special case of G_2 -struct.)
 - (SO(5)/SO(3)_{A+B})
 - $(N^{pqr} = (SU(3) \times U(1))/(U(1) \times U(1)))$
 - $M^{pqr} = (SU(3) \times SU(2) \times U(1))/(SU(2) \times U(1) \times U(1))$
 - $Q^{pqr} = (SU(2) \times SU(2) \times SU(2))/(U(1) \times U(1))$

• Present some of the new solutions in the following

Case-by-case analysis:

Consider multi-field configurations ...

- ... on cylinders over **three** 7d cosets with nearly parallel *G*₂-structure
 - Berger space $SO(5)/SO(3)_{max}$
 - Squashed 7-sphere $Sp(2) \times Sp(1)/Sp(1)^2$
 - (Aloff-Wallach spaces $SU(3)/U(1)_{k,l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])
- ... and on cylinders over **four** 7d cosets with SU(3)-structure $(SU(3) \subset G_2$, special case of G_2 -struct.)
 - (*SO*(5)/*SO*(3)_{A+B})
 - $(N^{pqr} = (SU(3) \times U(1))/(U(1) \times U(1)))$
 - $M^{pqr} = (SU(3) \times SU(2) \times U(1))/(SU(2) \times U(1) \times U(1))$
 - $Q^{pqr} = (SU(2) \times SU(2) \times SU(2))/(U(1) \times U(1))$
- Present some of the new solutions in the following

- 1st step to determine multi-field sol: solve G-inv. cond. [I_i, X_a] = f^b_{ia}X_b
- Berger space: *G*-inv. cond. $\implies X_a = \phi I_a$ (back to single field case: **nothing new**)
- Squashed S^7 : *G*-inv. cond. \implies 2 real fields ϕ_1 , ϕ_2
 - Instanton eq.: $\phi_1=\pm\phi_2\equiv\pm\phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:
 - **(instanton branch**" (φ₁ = ±φ₂ ≡ ±φ)
 → single-field case (Spin(7)-instantons + φ⁴ (anti-)kink)
 - $\phi_2 = (\kappa + 3)/2, \ \phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau \tau_0) \right]$ flat direction + single rescaled ϕ^4 (anti-)kink

- 1st step to determine multi-field sol: solve *G*-inv. cond. [*l_i*, *X_a*] = *f_{ia}^bX_b*
- Berger space: *G*-inv. cond. $\implies X_a = \phi I_a$ (back to single field case: **nothing new**)
- Squashed S⁷: G-inv. cond. ⇒ 2 real fields φ₁, φ₂
 Instanton eq.: φ₁ = ±φ₂ ≡ ±φ (again, back to old case)
 YM-eq. ⇒ 2 branches:
 - **(instanton branch**" (φ₁ = ±φ₂ ≡ ±φ)
 → single-field case (Spin(7)-instantons + φ⁴ (anti-)kink)
 - $\phi_2 = (\kappa + 3)/2$, $\phi_1(\tau) = \pm \sqrt{c_{\kappa}} \tanh \left[\frac{\sqrt{c_{\kappa}}}{2} (\tau \tau_0) \right]$ flat direction + single rescaled ϕ^4 (anti-)kink

- 1st step to determine multi-field sol: solve *G*-inv. cond. [*I_i*, *X_a*] = *f_{ia}^bX_b*
- Berger space: *G*-inv. cond. $\implies X_a = \phi I_a$ (back to single field case: **nothing new**)
- Squashed S^7 : G-inv. cond. \implies 2 real fields ϕ_1 , ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:
 - **① "instanton branch"** $(\phi_1 = \pm \phi_2 \equiv \pm \phi)$ → single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)
 - 2 $\phi_2 = (\kappa + 3)/2, \ \phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau \tau_0) \right]$ flat direction + single rescaled ϕ^4 (anti-)kink

- 1st step to determine multi-field sol: solve *G*-inv. cond. [*I_i*, *X_a*] = *f_{ia}^bX_b*
- Berger space: *G*-inv. cond. $\implies X_a = \phi I_a$ (back to single field case: **nothing new**)
- Squashed S^7 : G-inv. cond. \implies 2 real fields ϕ_1 , ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:
 - "instanton branch" $(\phi_1 = \pm \phi_2 \equiv \pm \phi)$ → single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)
 - **2** $\phi_2 = (\kappa + 3)/2, \ \phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left\lfloor \frac{\sqrt{c_\kappa}}{2} (\tau \tau_0) \right\rfloor$ flat direction + single rescaled ϕ^4 (anti-)kink

- 1st step to determine multi-field sol: solve *G*-inv. cond. [*I_i*, *X_a*] = *f_{ia}^bX_b*
- Berger space: *G*-inv. cond. $\implies X_a = \phi I_a$ (back to single field case: **nothing new**)
- Squashed S^7 : G-inv. cond. \implies 2 real fields ϕ_1 , ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:
 - **"instanton branch"** $(\phi_1 = \pm \phi_2 \equiv \pm \phi)$ \rightarrow single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)
 - 2 $\phi_2 = (\kappa + 3)/2, \ \phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left\lfloor \frac{\sqrt{c_\kappa}}{2} (\tau \tau_0) \right\rfloor$ flat direction + single rescaled ϕ^4 (anti-)kink

- 1st step to determine multi-field sol: solve *G*-inv. cond. [*I_i*, *X_a*] = *f_{ia}^bX_b*
- Berger space: *G*-inv. cond. $\implies X_a = \phi I_a$ (back to single field case: **nothing new**)
- Squashed S^7 : G-inv. cond. \implies 2 real fields ϕ_1 , ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:
 - "instanton branch" $(\phi_1 = \pm \phi_2 \equiv \pm \phi)$ \rightarrow single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)
 - 2 $\phi_2 = (\kappa + 3)/2, \ \phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau \tau_0) \right]$ flat direction + single rescaled ϕ^4 (anti-)kink

- 1st step to determine multi-field sol: solve *G*-inv. cond. [*I_i*, *X_a*] = *f_{ia}^bX_b*
- Berger space: *G*-inv. cond. $\implies X_a = \phi I_a$ (back to single field case: **nothing new**)
- Squashed S^7 : G-inv. cond. \implies 2 real fields ϕ_1 , ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:
 - "instanton branch" $(\phi_1 = \pm \phi_2 \equiv \pm \phi)$ \rightarrow single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)
 - **2** $\phi_2 = (\kappa + 3)/2, \ \phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau \tau_0) \right]$ flat direction + single rescaled ϕ^4 (anti-)kink

 Introduction
 O

 YM theory & instantons on 8d Z(G/H) S

 Conclusions
 S

G₂- & Spin(7)-structures Set-up Solutions: old & new

- 1st example: $Z(M^{pqr})$, $M^{pqr} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)}$
 - SU(3)-structure only for $p = \pm q$, r = 0. W.l.o.g. take M^{110}
 - G-inv. cond. \implies 5 real fields $\phi_1, ..., \phi_5$
 - Gauss-law constraint $\implies \phi_4 \sim \phi_1, \ \phi_5 \sim \phi_2$
 - Analytical sector $\phi_3 = 1/(2\sqrt{2})$ (+ fixing of other parameters). Remaining 2d motion:

G₂- & Spin(7)-structures Set-up Solutions: old & new

- 1st example: $Z(M^{pqr})$, $M^{pqr} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, r = 0. W.l.o.g. take M^{110}
 - G-inv. cond. \implies 5 real fields $\phi_1, ..., \phi_5$
 - Gauss-law constraint $\implies \phi_4 \sim \phi_1, \ \phi_5 \sim \phi_2$
 - Analytical sector $\phi_3 = 1/(2\sqrt{2})$ (+ fixing of other parameters). Remaining 2d motion:

- 1st example: $Z(M^{pqr})$, $M^{pqr} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, r = 0. W.I.o.g. take M^{110}
 - G-inv. cond. \implies 5 real fields ϕ_1 , ..., ϕ_5
 - Gauss-law constraint $\implies \phi_4 \sim \phi_1, \phi_5 \sim \phi_2$
 - Analytical sector $\phi_3 = 1/(2\sqrt{2})$ (+ fixing of other parameters). Remaining 2d motion:

- 1st example: $Z(M^{pqr})$, $M^{pqr} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, r = 0. W.I.o.g. take M^{110}
 - G-inv. cond. \implies 5 real fields $\phi_1, ..., \phi_5$
 - Gauss-law constraint $\implies \phi_4 \sim \phi_1, \ \phi_5 \sim \phi_2$
 - Analytical sector $\phi_3 = 1/(2\sqrt{2})$ (+ fixing of other parameters). Remaining 2d motion:

Introduction G_2 - & Spin(7)-structures YM theory & instantons on 8d Z(G/H)Conclusions

Solutions: old & new

- 1st example: $Z(M^{pqr})$, $M^{pqr} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)}$
 - SU(3)-structure only for $p = \pm q$, r = 0. W.l.o.g. take M^{110}
 - G-inv. cond. \implies 5 real fields ϕ_1, \dots, ϕ_5
 - Gauss-law constraint $\implies \phi_4 \sim \phi_1, \phi_5 \sim \phi_2$
 - Analytical sector $\phi_3 = 1/(2\sqrt{2})$ (+ fixing of other parameters). Remaining 2d motion:

Analytical multi-field solutions (of YM w/ torsion) Blue: finite-energy (physical) YM-configs. Green: $E \to \infty$.

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure only for $p = \pm q$, $q = \pm r$. W.I.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields $\phi_1, ..., \phi_7$
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1, \ \phi_6 \sim \phi_2, \ \phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

• 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi=c_7^{\pm}egin{pmatrix}\pm anh\left[rac{c_7^{-1}}{2}(au- au_{0,1})
ight]\\pm anh\left[rac{c_7^{-1}}{2}(au- au_{0,2})
ight]\\pm anh\left[rac{c_7^{-1}}{2}(au- au_{0,2})
ight]\end{pmatrix}$$

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
 - *G*-inv. cond. \implies 7 real fields $\phi_1, ..., \phi_7$
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1, \ \phi_6 \sim \phi_2, \ \phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

• 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi=c_7^{\pm}egin{pmatrix}\pm anh\left[rac{c_7^{\pm}}{2}(au- au_{0,1})
ight]\\pm anh\left[rac{c_7^{\pm}}{2}(au- au_{0,2})
ight]\\pm anh\left[rac{c_7^{\pm}}{2}(au- au_{0,2})
ight]\end{pmatrix}$$

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr}), Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields ϕ_1 , ..., ϕ_7
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1, \ \phi_6 \sim \phi_2, \ \phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

• 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi=c_7^{\pm}egin{pmatrix}\pm anh\left[rac{c_7^{-1}}{2}(au- au_{0,1})
ight]\\pm anh\left[rac{c_7^{-1}}{2}(au- au_{0,2})
ight]\\pm anh\left[rac{c_7^{-1}}{2}(au- au_{0,2})
ight]\end{pmatrix}$$

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr}), Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields $\phi_1, ..., \phi_7$
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

• 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi = c_7^{\pm} egin{pmatrix} \pm anh \left[rac{c_7^{\pm}}{2}(au - au_{0,1})
ight] \ \pm anh \left[rac{c_7^{\pm}}{2}(au - au_{0,2})
ight] \ \pm anh \left[rac{c_7^{\pm}}{2}(au - au_{0,2})
ight] \end{pmatrix}$$

YM theory & instantons on 8d Z(G/H) Conclusions

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields $\phi_1, ..., \phi_7$
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$

• Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

• 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi=c_7^{\pm}egin{pmatrix}\pm anh\left[rac{c_7^{\pm}}{2}(au- au_{0,1})
ight]\\pm anh\left[rac{c_7^{\pm}}{2}(au- au_{0,2})
ight]\\pm anh\left[rac{c_7^{\pm}}{2}(au- au_{0,2})
ight]\end{pmatrix}$$

 Introduction
 O

 YM theory & instantons on 8d Z(G/H) S

 Conclusions
 S

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr}), Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields ϕ_1 , ..., ϕ_7
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

• 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi = c_7^\pm egin{pmatrix} \pm anh \left[rac{c_7^\pm}{2}(au- au_{0,1})
ight] \ \pm anh \left[rac{c_7^\pm}{2}(au- au_{0,2})
ight] \ \pm anh \left[rac{c_7^\pm}{2}(au- au_{0,2})
ight] \end{pmatrix}$$

 Introduction
 O

 YM theory & instantons on 8d Z(G/H) S

 Conclusions
 S

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr}), Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields ϕ_1 , ..., ϕ_7
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

 $\bullet\,$ 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi=c_7^\pmegin{pmatrix}\pm anh\left[rac{c_7^\pm}{2}(au- au_{0,1})
ight]\\pm anh\left[rac{c_7^\pm}{2}(au- au_{0,2})
ight]\\pm anh\left[rac{c_7^\pm}{2}(au- au_{0,3})
ight]\end{pmatrix}$$

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr}), Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields ϕ_1 , ..., ϕ_7
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

 $\bullet\,$ 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi = c_7^{\pm} \begin{pmatrix} \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,1}) \right] \\ \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,2}) \right] \\ \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,3}) \right] \end{pmatrix}$$

G₂- & Spin(7)-structures Set-up Solutions: old & new

Non-trivial multi-field solution II ([AH (2016)]):

- 2nd example: $Z(Q^{pqr}), Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
 - SU(3)-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields ϕ_1 , ..., ϕ_7
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1 , ϕ_2 , ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^{2} + \frac{1}{8} \left(\phi_{\alpha}^{2} - (c_{7}^{\pm})^{2} \right)^{2} \right\}, \qquad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

 $\bullet\,$ 3-vector of independent rescaled ϕ^4 kinks-/anti-kinks

$$\phi=c_7^\pm egin{pmatrix}\pm anh\left[rac{c_7^\pm}{2}(au- au_{0,1})
ight]\\pm anh\left[rac{c_7^\pm}{2}(au- au_{0,2})
ight]\\pm anh\left[rac{c_7^\pm}{2}(au- au_{0,3})
ight]
ight)$$

- Interpolates between $(\pm c_7^\pm,\pm c_7^\pm,\pm c_7^\pm)$ as $au o \pm \infty$
- Finite energy (physically allowed)

Summary

- **1** Higher-dim. **YM instantons** obey $*F = -F \wedge *Q_M$
- **2** Higher-dim. **YM theory w/ torsion**: $D * F + F \wedge *H = 0$
- **3** Both arise naturally in S.T. together with G-structure
- Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$ -str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in ℝⁿ w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ ℝ^{1,1} × ℝ × G/H + domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])

Summary

- **1** Higher-dim. **YM instantons** obey $*F = -F \wedge *Q_M$
- **2** Higher-dim. **YM theory w/ torsion**: $D * F + F \wedge *H = 0$
- **3** Both arise naturally in S.T. together with G-structure
- Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$ -str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in ℝⁿ w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ ℝ^{1,1} × ℝ × G/H + domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])

Summary

- **1** Higher-dim. **YM instantons** obey $*F = -F \wedge *Q_M$
- **2** Higher-dim. **YM theory w/ torsion**: $D * F + F \wedge *H = 0$
- **3** Both arise naturally in S.T. together with G-structure
- Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$ -str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in ℝⁿ w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ ℝ^{1,1} × ℝ × G/H + domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])

Summary

- **1** Higher-dim. **YM instantons** obey $*F = -F \wedge *Q_M$
- **2** Higher-dim. **YM theory w/ torsion**: $D * F + F \wedge *H = 0$
- **3** Both arise naturally in S.T. together with G-structure
- Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$ -str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in ℝⁿ w/ quartic potential (+ constraints)
 - $\bullet\,$ found plethora of new numerical & analytical solutions

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ ℝ^{1,1} × ℝ × G/H + domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])

Summary

- **1** Higher-dim. **YM instantons** obey $*F = -F \wedge *Q_M$
- **2** Higher-dim. **YM theory w/ torsion**: $D * F + F \wedge *H = 0$
- **3** Both arise naturally in S.T. together with G-structure
- Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$ -str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in ℝⁿ w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ ℝ^{1,1} × ℝ × G/H + domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])
Introduction YM theory & instantons on 8d Z(G/H)Conclusions

Summary

- **1** Higher-dim. **YM instantons** obey $*F = -F \wedge *Q_M$
- **2** Higher-dim. **YM theory w/ torsion**: $D * F + F \wedge *H = 0$
- **3** Both arise naturally in S.T. together with G-structure
- Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$ -str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in ℝⁿ w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

Open Problems & WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ ℝ^{1,1} × ℝ × G/H + domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])

Thank you for your attention.