Quantum corrections in AdS/dCFT

Matthias Wilhelm, Niels Bohr Institute

Nordic String Meeting 2017, Hannover February 10th, 2017
[1606.01886], [1611.04603]
with I. Buhl-Mortensen, M. de Leeuw, A. C. Ipsen, C. Kristjansen
(1) Motivation
(2) Defect theory \& framework for quantum corrections

3 One-point functions
(4) Conclusion and outlook

Motivation

Conformal field theories:

- Phenomenologically relevant
- Highly constrain the form of correlation functions
- Success of understanding standard AdS/CFT setup and $\mathcal{N}=4$ SYM theory, in particular due to integrability

Conformal field theories:

- Phenomenologically relevant
- Highly constrain the form of correlation functions
- Success of understanding standard AdS/CFT setup and $\mathcal{N}=4$ SYM theory, in particular due to integrability

Defect CFTs:

- Equally relevant
- New features:
- Non-vanishing one-point functions
- Non-vanishing two-point functions between operators of different scaling dimensions
- New aspects of gauge gravity correspondence: AdS/dCFT
(1) Motivation
(2) Defect theory \& framework for quantum corrections

(3) One-point functions

(4) Conclusion and outlook

String-theory construction

D5-D3 probe brane set-up [Karch, Randall (2000)]

D3 brane $\sim \mathbb{R}^{1,3}$
D5 brane $\sim A d S_{4} \times S^{2}$ with flux k through S^{2}

Gauge theory

$$
x_{3}<0: \operatorname{SU}(N-k)
$$

- $S U(N)$ broken by x_{3}-dependent vacuum expectation values for scalars
- 3D fundamental hypermultiplet on defect

$$
S=S_{\mathcal{N}=4}+S_{D=3}
$$

[DeWolfe, Freedman, Ooguri (2001)], [Erdmenger, Guralnik, Kirsch (2002)]

Classical solution

Classical fields

$$
\phi_{1,2,3}^{\mathrm{cl}} \neq 0 \quad \phi_{4,5,6}^{\mathrm{cl}}=0 \quad \psi^{\mathrm{cl}}=\bar{\psi}^{\mathrm{cl}}=0 \quad A_{\mu}^{\mathrm{cl}}=0
$$

Equations of motion [Constable, Myers, Tafjord (1999)]

$$
\frac{\partial^{2}}{\partial x_{3}^{2}} \phi_{i}^{\mathrm{cl}}=\left[\phi_{j}^{\mathrm{cl}},\left[\phi_{j}^{\mathrm{cl}}, \phi_{i}^{\mathrm{cl}}\right]\right]
$$

x_{3} : distance to defect

Solution via k-dimensional irreducible representation of the $\operatorname{SU}(2)$ Lie algebra:

$$
\phi_{i}^{c l}=-\frac{1}{x_{3}}\left(\begin{array}{cc}
\left(t_{i}\right)_{k \times k} & 0_{k \times(N-k)} \\
0_{(N-k) \times k} & 0_{(N-k) \times(N-k)}
\end{array}\right)
$$

t_{1}, t_{2}, t_{3} with $\left[t_{i}, t_{j}\right]=i \epsilon_{i j k} t_{k}$
Also satisfies Nahm equation [Nahm (1979)]

Action

Action of $\mathcal{N}=4$ SYM theory

$$
\begin{aligned}
S_{\mathcal{N}=4}=\frac{2}{g_{\mathrm{YM}}^{2}} \int \mathrm{~d}^{4} x \operatorname{tr}\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right. & -\frac{1}{2} \mathrm{D}_{\mu} \phi_{i} \mathrm{D}^{\mu} \phi_{i}+\frac{i}{2} \bar{\psi} \Gamma^{\mu} \mathrm{D}_{\mu} \psi \\
& \left.+\frac{1}{2} \bar{\psi} \Gamma^{i}\left[\phi_{i}, \psi\right]+\frac{1}{4}\left[\phi_{i}, \phi_{j}\right]\left[\phi_{i}, \phi_{j}\right]\right]
\end{aligned}
$$

Expand around classical solution

$$
\phi_{i}=\phi_{i}^{\mathrm{cl}}+\tilde{\phi}_{i} \quad i=1,2,3
$$

Gauge fix with $S_{\mathrm{gf}}=-\frac{1}{2} \operatorname{tr}\left(G^{2}\right), G=\partial_{\mu} A^{\mu}+i\left[\tilde{\phi}_{i}, \phi_{i}^{\mathrm{c}}\right]$

$$
S_{\mathcal{N}=4}+S_{\mathrm{gf}}=S_{\mathrm{kin}}+S_{\mathrm{m}}+S_{\text {cubic }}+S_{\text {quartic }}
$$

[Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)]

Mass terms

Mass term

$$
\begin{aligned}
S_{\mathrm{m}}=\frac{2}{g_{\mathrm{YM}}^{2}} \int \mathrm{~d}^{4} x \operatorname{tr}[& +\frac{1}{2}\left[\phi_{i}^{\mathrm{cl}}, \tilde{\phi}_{j}\right]\left[\phi_{i}^{\mathrm{cl}}, \tilde{\phi}_{j}\right]+\frac{1}{2}\left[\phi_{i}^{\mathrm{cl}}, \phi_{j}^{\mathrm{cl}}\right]\left[\tilde{\phi}_{i}, \tilde{\phi}_{j}\right] \\
& +\frac{1}{2}\left[\phi_{i}^{\mathrm{cl}}, \tilde{\phi}_{j}\right]\left[\tilde{\phi}_{i}, \phi_{j}^{\mathrm{cl}}\right]+\frac{1}{2}\left[\phi_{i}^{\mathrm{cl}}, \tilde{\phi}_{i}\right]\left[\phi_{j}^{\mathrm{cl}}, \tilde{\phi}_{j}\right] \\
& +\frac{1}{2}\left[A_{\mu}, \phi_{i}^{\mathrm{cl}}\right]\left[A^{\mu}, \phi_{i}^{\mathrm{cl}}\right]+2 i\left[A^{\mu}, \tilde{\phi}_{i}\right] \partial_{\mu} \phi_{i}^{\mathrm{cl}} \\
& \left.+\frac{1}{2} \bar{\psi} \Gamma^{i}\left[\phi_{i}^{\mathrm{cl}}, \psi\right]-\bar{c}\left[\phi_{i}^{\mathrm{cl}}\left[\phi_{i}^{\mathrm{cl}}, c\right]\right]\right]
\end{aligned}
$$

Properties:

- Non-diagonal in colour
- Mixing between the $\tilde{\phi}_{1}, \tilde{\phi}_{2}, \tilde{\phi}_{3}$ and A_{3} as well as between the fermion flavours
- Mass proportional to $1 / x_{3}$ via $\phi_{i}^{c l}$

Diagonalising the mass matrix

Easy example: $A_{0}=\left(\begin{array}{cc}A_{0, k \times k} & A_{0, k \times(N-k)} \\ A_{0,(N-k) \times k} & A_{0,(N-k) \times(N-k)}\end{array}\right)$

Mass term:

$$
\begin{aligned}
-\frac{1}{2 x_{3}^{2}} \operatorname{tr}\left(A_{0}\left[t_{i},\left[t_{i}, A^{0}\right]\right]\right)= & -\frac{1}{2 x_{3}^{2}} \operatorname{tr}\left(A_{0, k \times k}\left[t_{i},\left[t_{i}, A_{k \times k}^{0}\right]\right]\right) \\
& +\frac{1}{x_{3}^{2}} \operatorname{tr}(A_{0, k \times(N-k)} A_{(N-k) \times k}^{0} \underbrace{t_{i} t_{i}}_{\frac{k^{2}-1}{4}})
\end{aligned}
$$

$L^{2}=L_{i} L_{i}$ with $L_{i}=\mathrm{ad}_{t_{i}}$ is the Laplacian on the fuzzy sphere:
\Rightarrow Can be diagonalised by fuzzy spherical harmonics \hat{Y}_{ℓ}^{m}

Mass terms of $\left\{\tilde{\phi}_{1}, \tilde{\phi}_{2}, \tilde{\phi}_{3}, A_{3}\right\}$ and the fermions also contain $\sigma_{i} L_{i}$
\rightarrow Similar to spin-orbital interaction of the hydrogen atom!

Eigenvalues (for $x_{3}=1$) and multiplicities in terms of $\nu=\sqrt{m^{2}+\frac{1}{4}}$

Multiplicity	$\nu\left(\tilde{\phi}_{4,5,6}, A_{0,1,2}, c\right)$	$m\left(\psi_{1,2,3,4}\right)$	$\nu\left(\tilde{\phi}_{1,2,3}, A_{3}\right)$
$\ell=1, \ldots, k-1$	$\ell+\frac{1}{2}$	$\ell+1$	$\ell+\frac{3}{2}$
$\ell+1$	$\ell+\frac{1}{2}$	ℓ	$\ell-\frac{1}{2}$
$(k-1)(N-k)$	$\frac{k}{2}$	$\frac{k+1}{2}$	$\frac{k+2}{2}$
$(k+1)(N-k)$	$\frac{k}{2}$	$\frac{k-1}{2}$	$\frac{k-2}{2}$
$(N-k)(N-k)$	$\frac{1}{2}$	0	$\frac{1}{2}$

[Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)]

Propagators

Scalar propagator with x_{3}-dependent mass term

$$
\left(-\partial_{\mu} \partial^{\mu}+\frac{m^{2}}{\left(x_{3}\right)^{2}}\right) K(x, y)=\frac{g_{\mathrm{YM}}^{2}}{2} \delta(x-y)
$$

Standard scalar propagator $K_{\text {AdS }}(x, y)$ in $A d S_{4}$ with mass \tilde{m}

$$
\left(-\nabla_{\mu} \nabla^{\mu}+\tilde{m}^{2}\right) K_{\text {AdS }}(x, y)=\frac{\delta(x-y)}{\sqrt{g}}
$$

with the metric of $A d S_{4}$ given as $g_{\mu \nu}=\frac{1}{\left(x_{3}\right)^{2}} \eta_{\mu \nu}$

Scalar propagators

$$
K(x, y)=\frac{g_{\mathrm{YM}}^{2}}{2} \frac{K_{\mathrm{AdS}}(x, y)}{x_{3} y_{3}}
$$

upon identifying $\tilde{m}^{2}=m^{2}-2$
[Nagasaki, Tanida, Yamaguchi (2011)], [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)]

(1) Motivation

(2) Defect theory \& framework for quantum corrections
(3) One-point functions
(4) Conclusion and outlook

One-point functions in defect CFTs

New feature of dCFTs: operators \mathcal{O} can have nonvanishing one-point functions [Cardy (1984)]

$$
\langle\mathcal{O}\rangle=\frac{C}{x_{3}^{\Delta}}
$$

Δ : scaling dimension of \mathcal{O}, x_{3} : distance to defect, C : constant

Studied in this dCFT at tree level for BPS operators [Nagasaki, Tanida, Yamaguchi (2011)] and operators in the $\operatorname{SU}(2)$ sector [de Leeuw, Kristjansen, Zarembo (2015)], [Buhl-Mortensen, de Leeuw, Kristjansen, Zarembo (2015)], where integrability was found.

Study loop corrections \rightarrow Start with simplest operator:

$$
\mathcal{O}(x)=\operatorname{tr}\left(Z^{L}\right)(x), \quad Z(x)=\phi_{3}(x)+i \phi_{6}(x)
$$

BPS \rightarrow corrections to C but not to Δ

One-point functions at tree level

Tree-level one-point function of $\mathcal{O}=\operatorname{tr}\left(Z^{L}\right)$ [Nagasaki, Tanida, Yamaguchi (2011)] [de Leeuw, Kristjansen, Zarembo (2015)]

$$
\begin{aligned}
\langle\mathcal{O}\rangle_{\text {tree-level }} & = \\
& =\frac{(-1)^{L}}{x_{3}^{L}} \sum_{i=1}^{k}\left(\frac{k-2 i+1}{2}\right)^{L} \\
& = \begin{cases}0, & L \text { odd } \\
-\frac{2}{x_{3}^{L}(L+1)} B_{L+1}\left(\frac{1-k}{2}\right), & L \text { even }\end{cases}
\end{aligned}
$$

$B_{L+1}(u)$: Bernoulli polynomial

One-loop corrections to one-point functions

One-loop correction: two diagrams

1. Two quantum fields in \mathcal{O} : tadpole diagram

2. One quantum field in \mathcal{O}, one cubic vertex: lollipop diagram

[Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)]

Tadpole diagram

$$
\langle\mathcal{O}\rangle_{1-\text { loop }, \text { tad }}=
$$

Planar limit \rightarrow quantum fields need to be adjacent

Regulate scalar loop $K(x, x)$ in dimensional regularisation in the $d=3-2 \varepsilon$ dimensions parallel to the defect

Result:

$$
\langle\mathcal{O}\rangle_{1 \text {-loop, tad }}=-\frac{\lambda}{16 \pi^{2}} \frac{2 L}{x_{3}^{L}(L-1)} B_{L-1}\left(\frac{1-k}{2}\right)
$$

[Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)]

Lollipop diagram

Lollipop diagram

where

$$
\langle\tilde{Z}\rangle_{1 \text {-loop }}(x)=\tilde{Z}(x) \int \mathrm{d}^{4} y \sum_{\Phi_{1}, \Phi_{2}, \Phi_{3}} V_{3}\left(\Phi_{1}, \stackrel{\left.\Phi_{2}, \Phi_{3}\right)(y)}{ }\right.
$$

Result:

$$
\langle\tilde{Z}\rangle_{1 \text {-loop }}=0 \quad \Rightarrow \quad\langle\mathcal{O}\rangle_{1 \text {-loop,lol }}=0
$$

Crucially depends on the use of a supersymmetry-preserving regularisation scheme à la dimensional reduction!

String-theory calculation

Double-scaling limit suggested in [Nagasaki, Tanida, Yamaguchi (2011)] to compare gauge-theory and string-theory results and thus test AdS/dCFT:

$$
N \rightarrow \infty \quad k \rightarrow \infty \quad k \ll N \quad \frac{\lambda}{k^{2}} \ll 1
$$

Dual description of one-point function of \mathcal{O} [Nagasaki, Yamaguchi (2012)]:

point-like string stretching from boundary of $A d S_{5}$ to D5 brane, calculable in supergravity approximation

Suggests perturbative expansion in $\frac{\lambda}{k^{2}}$

Comparison with string theory

String-theory result [Nagasaki, Yamaguchi (2012)]:

$$
\left.\frac{\langle\mathcal{O}\rangle_{1 \text {-loop }}}{\langle\mathcal{O}\rangle_{\text {tree-level }}}\right|_{\text {string }}=\frac{\lambda}{4 \pi^{2} k^{2}} \frac{L(L+1)}{L-1}
$$

Gauge-theory result:

$$
\left.\frac{\langle\mathcal{O}\rangle_{1 \text {-loop }}}{\langle\mathcal{O}\rangle_{\text {tree-level }}}\right|_{\text {gauge }}=\frac{\lambda}{4 \pi^{2} k^{2}}\left(\frac{L(L+1)}{L-1}+O\left(k^{-2}\right)\right)
$$

Perfect match!
\Rightarrow Non-trivial check of the gauge-gravity duality with partially broken supersymmetry and conformal symmetry
[Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)]

(1) Motivation

(2) Defect theory \& framework for quantum corrections
(3) One-point functions
4. Conclusion and outlook

Conclusions and outlook

Conclusions

- Initiated study of loop corrections in a class of dCFTs based on $\mathcal{N}=4$ SYM theory, which have holographic duals involving background gauge fields with flux k
- Scalars in field theory have x_{3}-dependent vevs in the k-dimensional representation of $S U(2)$
$\rightarrow x_{3}$-dependent non-diagonal mass matrix
\rightarrow Diagonalised mass matrix and found standard $A d S_{4}$ propagators
- One-loop one-point functions of $\operatorname{tr}\left(Z^{L}\right)$
- Match string theory \rightarrow highly non-trivial check of AdS/dCFT

Conclusions and outlook

Conclusions

- Initiated study of loop corrections in a class of dCFTs based on $\mathcal{N}=4$ SYM theory, which have holographic duals involving background gauge fields with flux k
- Scalars in field theory have x_{3}-dependent vevs in the k-dimensional representation of $S U(2)$
$\rightarrow x_{3}$-dependent non-diagonal mass matrix
\rightarrow Diagonalised mass matrix and found standard $A d S_{4}$ propagators
- One-loop one-point functions of $\operatorname{tr}\left(Z^{L}\right)$
- Match string theory \rightarrow highly non-trivial check of AdS/dCFT

Further work based on our framework:

- Finite N for $\operatorname{tr}\left(Z^{L}\right)$, one-loop one-point functions in the $S U(2)$ sector [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)]
- Infinite straight Wilson line \rightarrow particle-interface potential [Nagasaki, Tanida, Yamaguchi (2011)], [de Leeuw, Ipsen, Kristjansen, MW (2016)]
- Circular Wilson loop [Aguilera-Damia, Correa, Giraldo-Rivera (2016)]

Conclusions and outlook

Outlook

- One-loop one-point functions in the $S U(2)$ sector \rightarrow integrability
- Higher loops
- Bulk-boundary two-point functions \rightarrow Related to one-point functions via conformal bootstrap [Liendo, Meneghelli (2016)]
- Bulk-bulk two-point functions \rightarrow Nonvanishing for $\Delta_{1} \neq \Delta_{2}$ \rightarrow Generate CFT data via OPE
- Cusped Wilson loops \rightarrow cusp anomalous dimension
- Polygonal Wilson loops \rightarrow relation to amplitudes?
- Localisation?
- Yangian symmetry for smooth Wilson loops?
- Integrability for particle-interface potential as for quark-antiquark potential?
- ...

Conclusions and outlook

Outlook

- One-loop one-point functions in the $S U(2)$ sector \rightarrow integrability
- Higher loops
- Bulk-boundary two-point functions \rightarrow Related to one-point functions via conformal bootstrap [Liendo, Meneghelli (2016)]
- Bulk-bulk two-point functions \rightarrow Nonvanishing for $\Delta_{1} \neq \Delta_{2}$ \rightarrow Generate CFT data via OPE
- Cusped Wilson loops \rightarrow cusp anomalous dimension
- Polygonal Wilson loops relation to amplitudes?
- Localisation?
- Yangian symmetry for smooth Wilson loops?
- Integrability for particle-interface potential as for quark-antiquark potential?
- ...

