SCALAR FIELD THEORY

In the lecture, we discussed the Feynman rules for the scalar field. The following exercises shall help you to gain a bit of praxis with these rules.

[H1] Loops [5 pts]
Derive the amplitude of the diagram

from first principles within the Schwinger formalism, i.e. directly from

\[Z[J, \lambda] = Z[0, 0] \exp \left(-\frac{i}{4!} \lambda \int d^4w \frac{\delta^4}{\delta J(w)^4} \right) \exp \left(-\frac{i}{2} \int \int d^4xd^4y J(x)D(x-y)J(y) \right). \]

Show in particular that there is a symmetry factor of 1/2. Your result should read

\[\frac{1}{2} \left(-i\lambda \right)^2 \int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - m^2 + i\epsilon} \frac{i}{(k_1 + k_2 - k)^2 - m^2 + i\epsilon}. \] (1)

[H2] Diagrams [5 pts]
Draw all diagrams up to order \(\lambda^2 \), in which two particles \(\varphi \) interact and finally four particles \(\varphi \) survive. Use the Feynman rules to write down the corresponding amplitudes in momentum space.

[H3] Real Particles [5 pts]
Lorentz invariance implies that we may choose \(k_1 + k_2 = (E, \vec{0}) \) in (1) by going into the center of mass system of the two incoming particles. The integral can then be studies as a function of the energy \(E \). Show that the two internal intermediate particles can only become real, if \(E > 2m \). Interpret this in physical terms.

[H4] Wick Contractions [3 pts]
Extract out of (1) the terms of order \(\lambda^1 \) and four external lines. Hint: This is done be replacing

\[\exp \left(-\frac{i}{4!} \lambda \int d^4w \frac{\delta^4}{\delta J(w)^4} \right) \mapsto \frac{i}{4!} \lambda \int d^4w \frac{\delta^4}{\delta J(w)^4}, \]

\[\exp \left(-\frac{i}{2} \int \int d^4xd^4y J(x)D(x-y)J(y) \right) \mapsto \frac{i^4}{4!2^4} \left(\int \int d^4xd^4y J(x)D(x-y)J(y) \right)^4. \]

Introduce the abbreviations \(J_a = J(x_a), \int_a = \int d^4x_a \), and \(D_{ab} = D(x_a - x_b) \). Your result shoud then be proportional to

\[i\lambda \int_w \frac{\delta^4}{\delta J_w^4} \int \int \int \int \int \int D_{ax}D_{bf}D_{cg}D_{dh}J_aJ_bJ_cJ_dJ_fJ_gJ_h. \]

The four functional derivatives \((\delta/\delta J_w) \) hit the eight \(J \)'s in all possible combinations producing many terms which you should write out. In the end, there are three different graphs, one connected one, and two disconnected ones.