• Zielgruppen
  • Suche
 

AG Frahm > Recent Publications


Preprint

Daniel Borcherding and Holger Frahm (2017): Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model
arXiv: 1706.09822

Eddy Ardonne, Peter E. Finch, and Matthew Titsworth (2016): Classification of metaplectic fusion categories
arXiv: 1608.03762

Paper

Holger Frahm and Konstantin Hobuß (2017): Spectral flow for an integrable staggered superspin chain, J. Phys. A: Math. Theor. 50 294002
DOI: 10.1088/1751-8121/aa77e7
arXiv: 1703.08054

Jean Avan, Anastasia Doikou, and Nikos Karaiskos (2016): Scattering in twisted Yangians, J. Phys. Conf. Ser. 610 012007
DOI: 10.1088/1742-6596/670/1/012007
arXiv: 1510.01575

Natalia Braylovskaya, Peter E. Finch, and Holger Frahm (2016): Exact solution of the \(D_3\) non-Abelian anyon chain, Phys. Rev. B 94 085138
DOI: 10.1103/PhysRevB.94.085138
arXiv: 1606.00793

Holger Frahm and Nikos Karaiskos (2015): Non-Abelian \(SU(3)_k\) anyons: inversion identities for higher rank face models, J. Phys. A: Math. Theor. 48 484001
DOI: 10.1088/1751-8113/48/48/484001
arXiv: 1506.00822

Jean Avan, Anastasia Doikou, and Nikos Karaiskos:
The \(sl(N)\) twisted Yangian: bulk-boundary scattering & defects
J. Stat. Mech. (2015) P05024 [arXiv:1412.6480]

Holger Frahm and Márcio J. Martins:
Finite-size effects in the spectrum of the \(OSp(3|2)\) superspin chain
Nucl. Phys. B 894 (2015) 665-684 [arXiv:1502.05305]

Jean Avan, Anastasia Doikou, and Nikos Karaiskos:
Scattering matrices in the \(sl(3)\) twisted Yangian
J. Stat. Mech. (2015) P02007 [arXiv:1410.5991]

Peter E. Finch, Michael Flohr, and Holger Frahm:
Integrable anyon chains: from fusion rules to face models to effective field theories
Nucl. Phys. B 889 (2014) 299-332 [arXiv:1408.1282]

Holger Frahm and Nikos Karaiskos:
Inversion identities for inhomogeneous face models
Nucl. Phys. B 887 (2014) 423-440 [arXiv:1407.6883]

Peter E. Finch, Holger Frahm, Marius Lewerenz, Ashley Milsted, and Tobias J. Osborne:
Quantum phases of a chain of strongly interacting anyons
Phys. Rev. B 90 (2014) 081111(R) [arXiv:1404.2439]

Holger Frahm and Alexander Seel:
The staggered six-vertex model: conformal invariance and corrections to scaling
Nucl. Phys. B 879 [FS] (2014) 382-406 [arXiv:1311.6911]

Nikos Karaiskos:
Fermionic reflection matrices
J. Stat. Mech. (2013) P11008 [arXiv:1306.4146]

Nikos Karaiskos, André M. Grabinski, and Holger Frahm:
Bethe Ansatz solution of the small polaron with nondiagonal boundary terms
J. Stat. Mech. (2013) P07009 [arXiv:1304.2659]

Peter E. Finch and Holger Frahm:
The \(D(D_3)\)-anyon chain: integrable boundary conditions and excitation spectra
New J. Phys. 15 (2013) 053035 [arXiv:1211.4449]

André M. Grabinski and Holger Frahm:
Truncation identities for the small polaron fusion hierarchy
New J. Phys. 15 (2013) 043026 [arXiv:1211.6328]

Anastasia Doikou and Nikos Karaiskos:
Transmission amplitudes from Bethe ansatz equations
JHEP 02 (2013) 142 [arXiv:1212.0195]

A. C. Tiegel, P. E. Dargel, K. A. Hallberg, H. Frahm, and T. Pruschke:
Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain
Phys. Rev. B 87 (2013) 075122 [arXiv:1212.3963]

Peter E. Finch:
From spin to anyon notation: The XXZ Heisenberg model as a \(D_3\) (or \(su(2)_4\)) anyon chain
J. Phys. A: Math. Theor. 46 (2013) 055305 [arXiv:1201.4470]

Peter E. Finch and Holger Frahm:
Collective states of \(D(D_3)\) non-Abelian anyons
in: «Low Dimensional Physics and Gauge Principles», V. G. Gurzadyan, A. Klümper, and A. G. Sedrakyan (Eds.), World Scientific, Singapore, (2013), pp. 134-145 [Abstract]

Holger Frahm, Jan H. Grelik, and Alexander Seel:
Persistent currents in open spin chains
(Talk at the Workshop Classical and Quantum Integrable Systems CQIS-2011, Protvino, January 2011)
Theor. Math. Phys. 171 (2012) 715-724

Holger Frahm and Márcio J. Martins:
Phase Diagram of an Integrable Alternating \(U_q[sl(2|1)]\) Superspin Chain
Nucl. Phys. B 862 [FS] (2012) 504-552 [arXiv:1202.4676]

Peter E. Finch and Holger Frahm:
Collective states of interacting \(D(D_3)\) non-Abelian anyons
J. Stat. Mech. (2012) L05001 [arXiv:1108.3228]