Publications of Holger Frahm

MONOGRAPH

Essler, F. H. L., Frahm, H., Göhmann, F., Klümper, A., and Korepin, V. E. (2005). The One-Dimensional Hubbard model.
Cambridge University Press. doi.org/10.1017/CBO9780511534843

More...

Book Cover Book Cover Book Cover

PAPERS

Zeige Ergebnisse 1 - 20 von 98
1 2 3 4 5 Last

Frahm, H., & Westerfeld, D. (2021). Density matrices in integrable face models. SciPost Physics, 11(3), [057]. doi.org/10.21468/SciPostPhys.11.3.057

Borcherding, D., & Frahm, H. (2019). Condensates of interacting non-Abelian SO(5)Nf anyons. Journal of High Energy Physics, 2019(10), [54]. doi.org/10.1007/JHEP10(2019)054

Frahm, H., Morin-Duchesne, A., & Pearce, P. A. (2019). Extended T-systems, Q matrices and T-Q relations for sℓ(2) models at roots of unity. Journal of Physics A: Mathematical and Theoretical, 52(28), [285001]. doi.org/10.1088/1751-8121/ab2490

Frahm, H., Hobuß, K., & Martins, M. J. (2019). On the critical behaviour of the integrable q-deformed OSp(3|2) superspin chain. Nuclear Physics B, 946, [114697]. doi.org/10.1016/j.nuclphysb.2019.114697

Borcherding, D., & Frahm, H. (2018). Condensation of non-Abelian SU(3) Nf anyons in a one-dimensional fermion model. Journal of Physics A: Mathematical and Theoretical, 51(49), [495002]. doi.org/10.1088/1751-8121/aaea9b

Borcherding, D., & Frahm, H. (2018). Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model. Journal of Physics A: Mathematical and Theoretical, 51(19), [195001]. doi.org/10.1088/1751-8121/aaba1e

Finch, P. E., Flohr, M., & Frahm, H. (2018). Zn clock models and chains of so(n)2 non-Abelian anyons: Symmetries, integrable points and low energy properties. Journal of Statistical Mechanics: Theory and Experiment, 2018(2), [023103]. doi.org/10.1088/1742-5468/aaa788

Frahm, H., & Martins, M. J. (2018). The fine structure of the finite-size effects for the spectrum of the OSp(n|2m) spin chain. Nuclear Physics B, 930, 545-562. doi.org/10.1016/j.nuclphysb.2018.03.016, doi.org/10.15488/3390

Frahm, H., & Hobuß, K. (2017). Spectral flow for an integrable staggered superspin chain. Journal of Physics A: Mathematical and Theoretical, 50(29), [294002]. doi.org/10.1088/1751-8121/aa77e7

Braylovskaya, N., Finch, P. E., & Frahm, H. (2016). Exact solution of the D3 non-Abelian anyon chain. Physical Review B, 94(8), [085138]. doi.org/10.1103/PhysRevB.94.085138, doi.org/10.15488/5075

Frahm, H., & Martins, M. J. (2015). Finite-size effects in the spectrum of the OSp(3|2) superspin chain. Nuclear Physics B, 894, 665-684. doi.org/10.1016/j.nuclphysb.2015.03.021

Frahm, H., & Karaiskos, N. (2015). Non-Abelian SU(3)k anyons: Inversion identities for higher rank face models. Journal of Physics A: Mathematical and Theoretical, 48(48), [484001]. doi.org/10.1088/1751-8113/48/48/484001

Finch, P. E., Flohr, M., & Frahm, H. (2014). Integrable anyon chains: From fusion rules to face models to effective field theories. Nuclear Physics B, 889, 299-332. doi.org/10.1016/j.nuclphysb.2014.10.017, doi.org/10.15488/89

Finch, P. E., Frahm, H., Lewerenz, M., Milsted, A., & Osborne, T. J. (2014). Quantum phases of a chain of strongly interacting anyons. Physical Review B - Condensed Matter and Materials Physics, 90(8), [081111]. doi.org/10.1103/PhysRevB.90.081111, doi.org/10.15488/5076

Frahm, H., & Karaiskos, N. (2014). Inversion identities for inhomogeneous face models. Nuclear Physics B, 887, 423-440. doi.org/10.1016/j.nuclphysb.2014.08.013, doi.org/10.15488/88

Finch, P. E., & Frahm, H. (2013). The D(D3)-anyon chain: Integrable boundary conditions and excitation spectra. New Journal of Physics, 15, [053035]. doi.org/10.1088/1367-2630/15/5/053035

Frahm, H., & Seel, A. (2013). The staggered six-vertex model: Conformal invariance and corrections to scaling. Nuclear Physics B, 879(1), 382-406. doi.org/10.1016/j.nuclphysb.2013.12.015, doi.org/10.15488/949

Grabinski, A. M., & Frahm, H. (2013). Truncation identities for the small polaron fusion hierarchy. New Journal of Physics, 15, [043026]. doi.org/10.1088/1367-2630/15/4/043026, doi.org/10.15488/395

Karaiskos, N., Grabinski, A. M., & Frahm, H. (2013). Bethe ansatz solution of the small polaron with nondiagonal boundary terms. Journal of Statistical Mechanics: Theory and Experiment, 2013(7), [P07009]. doi.org/10.1088/1742-5468/2013/07/P07009

Tiegel, A. C., Dargel, P. E., Hallberg, K. A., Frahm, H., & Pruschke, T. (2013). Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain. Physical Review B - Condensed Matter and Materials Physics, 87(7), [075122]. doi.org/10.1103/PhysRevB.87.075122, doi.org/10.15488/5077

CONFERENCE PROCEEDINGS

Finch, P. E., & Frahm, H. (2012). Collective states of D(D3) non-abelian anyons. in Low Dimensional Physics and Gauge Principles: Matinyan Festschrift (S. 134-145). World Scientific Publishing Co. Pte Ltd. doi.org/10.1142/9789814440349_0010

Frahm, H., Essler, F. H. L., & Saleur, H. (2005). The integrable sl(2/1) superspin chain and the spin quantum Hall effect. in B. Kramer (Hrsg.), Advances in Solid State Physics (Band 45, S. 185-196). (Advances in Solid State Physics; Band 45). Springer Berlin Heidelberg. doi.org/10.1007/11423256_15

Zeitler, U., Hapke-Wurst, I., Sarkar, D., Haug, R. J., Frahm, H., Pierz, K., & Jansen, A. G. M. (2002). High Magnetic Fields in Semiconductor Nanostructures: Spin Effects in Single InAs Quantum Dots. in B. Kramer (Hrsg.), Advances in Solid State Physics (Band 42, S. 3-12). [Chapter 1] (Advances in Solid State Physics; Band 42). Springer Berlin Heidelberg. doi.org/10.1007/3-540-45618-X_1

Meyer, J. M., Hapke-Wurst, I., Zeitler, U., Haug, R. J., Frahm, H., Jansen, A. G. M., & Pierz, K. (2001). Spin effects in InAs quantum dots: Tunneling experiments in tilted magnetic fields. in N. Miura, & T. Ando (Hrsg.), Proceedings of the 25th International Conference on the Physics of Semiconductors Part I: Osaka, Japan, September 17–22, 2000 (S. 845-846). (Springer Proceedings in Physics; Band 87).

Frahm, H. (1997). Lösbare Modelle und konforme Invarianz: Kritische Eigenschaften korrelierter Elektronen in einer Dimension. in Jahrbuch der Akademie der Wissenschaften in Göttingen (S. 52-63). Vandenhoeck and Ruprecht GmbH and Co. KG.

Frahm, H., Its, A. R., & Korepin, V. E. (1996). An operator-valued Riemann-Hilbert problem associated with the XXX model. in D. Levi, L. Vinet, & P. Winternitz (Hrsg.), Symmetries and Integrability of Difference Equations (S. 133-142). (CRM Proceedings & Lecture Notes; Band 9).

Frahm, H., & Schadschneider, A. (1995). On the Bethe Ansatz Soluble Degenerate Hubbard Model. in D. Baeriswyl, D. K. Campbell, J. M. P. Carmelo, F. Guinea, & E. Louis (Hrsg.), The Hubbard Model: Its Physics and Mathematical Physics (S. 21-28). (NATO ASI Series B; Band 343). Plenum Press. doi.org/10.1007/978-1-4899-1042-4_2

Frahm, H., & Korepin, V. E. (1994). Critical Exponents in the One-Dimensional Hubbard Model. in S. Randbjar-Daemi, & Y. Lu (Hrsg.), Quantum Field Theory and Condensed Matter Physics: Proceedings of the Fourth Trieste Conference (S. 57-69). World Scientific Publishing Co. Pte Ltd. doi.org/10.1142/S0217979294000142

Frahm, H. (1991). On the construction of integrable XXZ Heisenberg models with arbitrary spin. in Inverse Scattering and Applications (S. 41-45). (Contemporary Mathematics; Band 122). doi.org/10.1090/conm/122/1135854

Mikeska, H. J., & Frahm, H. (1987). Chaos in a Driven Quantum Spin System. in E. R. Pike, & L. A. Lugiato (Hrsg.), Chaos, Noise and Fractals (S. 117-136). Adam Hilger. doi.org/10.1201/9781003069553-9

Mikeska, H. J., & Frahm, H. (1987). The Kicked Quantum Spin: A Model System for Quantum Chaos. in Magnetic Excitations and Fluctuations II (S. 75-78). [Chapter 16] (Springer Proceedings in Physics; Band 23). doi.org/10.1007/978-3-642-73107-5_16

Mikeska, H. J., & Frahm, H. (1987). Towards a Quantitative Theory of Solitons in One-Dimensional Magnets: Quantum Effects, Out-of-Plane Fluctuations and the Specific Heat. in A. R. Bishop, D. K. Campbell, P. Kumar, & S. E. T. (Hrsg.), Nonlinearity in Condensed Matter (S. 53-58). [Chapter 5] (Springer Series in Solid-State Sciences; Band 69). Springer Berlin Heidelberg. doi.org/10.1007/978-3-642-83033-4_5