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Is there a general area theorem for black holes?
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The general validity of the area law for black holes is still an open problem. We
first show in detail how to complete the usually incompletely stated textbook proofs
under the assumption of piecewi8-smoothness for the surface of the black hole.
Then we prove that a black hole surface necessarily contains points where it is not
C! (called “cusps”) at any time before caustics of the horizon generators show up,
like, e.g., in merging processes. This implies that caustics never disappear in the
past and that black holes without initial cusps will never develop such. Hence black
holes which will undergo any nontrivial processes anywhere in the future will
always show cusps. Although this does not yet imply a strict incompatibility with
piecewiseC? structures, it indicates that the latter are likely to be physically un-
natural. We conclude by calling for a purely measure theoretic proof of the area
theorem. ©1998 American Institute of PhysidsS0022-24888)01612-(

I. INTRODUCTION

It seems to be widely accepted as fact that the surface area of a black hole cannot decrease
with time. However, the proofs offered in standard textbooks, like Refs. 1-3, are basically content
with the remark that this law follows from the nonconvergence of the generators of the future
event horizon. It would indeed follow from this remark and some elementary differential geomet-
ric considerations if the horizon were a sufficiently smooth submanifold. Mathematically there is
absolutely no reason why this should be true in gerfardlich means that extra assumptions must
be invoked(implicitly) in the textbooks arguments. However, not much precise information seems
to exist in the literature concerning these extra assumptions. Perhaps the clearest statement is
given in Ref. 4, where the authors mention that in the textbook proofs of the area theorem
“something close taC? differentiability ‘almost everywhere’ of the event horizon seems to have
been assumed.” The textbooks themselves do not mention any such condition. Below we show
explicity how to complete the textbook argumentation under the assumption of piecewise
C2-smoothness. But this clearly does not imply its necessity.

General considerations only prove the horizon to be locally Lipschitz contingemsted by
C'7).! Mathematically this impliegpointwise differentiability almost everywheréwith respect
to the Lebesgue measures defined by the charts, see Ref. 5 Theoremtitlibstill allows the
points of nondifferentiability to be densely distributtélence horizons exist which are nowhere
C!. Given these mathematical facts, it is of interest to learn vggssical conditions imply a
breakdown ofC? differentiability. We prove that a black hole whose surfac€lsat one time can
never merge with other black holes and, more generally, never encounter new null generators for
its future event horizon. In other words, an init@t-condition basically rules out any interesting
physical process to happen in the future. Hence the only dynamically interesting holes for which
the area law is actually proven are those whose surfaces are piec@nlisg notC*. Presumably
this class does not contain many, if any, physically realistic members. Cusps on the surface of
colliding black holes can be clearly seen in numerical stutliest no analytic proof of their
general existence seems to have been given so far.

Given the widely believed connection of the area law with thermodynamic properties of black
holes on one side, and the widely expressed hope that this connection may be of heuristic value in
understanding certain aspects of quantum gravity on the other, it seems important to know the
most general conditions under which the area law is valid.
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II. NOTATION, FACTS, AND ASSUMPTIONS

We assume space—tini#,g) to be strongly asymptotically predictakfie the sense of Ref.)3
and globally hyperbolic(lt would be sufficient to restrict to a globally hyperbolic portion, as in
Thm. 12.2.6 of Ref. 3.7" (scri-plug denotes future null infinity)~(Z") its causal past anB
:=M—J"(Z") the black hole region. Its boundaryB=":H, is the future event horizorH is a
closed, imbedded, achronal three-dimensid®4l -submanifold ofM (Proposition 6.3.1 in Ref.
1). H is generated by null geodesics without future endpoints. Past endpoints occur only where
null geodesics—necessarily coming frali (Z*)—join onto H. Such points are called “caus-
tics.” Only at a caustic can a point of the horizon be intersected by more than one generator, and
all generators that intersect a caustic enter the horizon at this point. Once a null geodesic has
joined ontoH it will never encounter a caustic againe., not intersect another generatand
never leaveH. See Box 34.1 in Ref. 2 for a lucid discussion and partial proofs of these statements.
Hence there are two different processes through which the area of a black hole may increase: First,
new generators can join the horizon and, second, the already existing generators can mutually
diverge.

Caustic points whera (possibly infinit¢ new generators join in are said to be of multiplicity
n. In Ref. 7 it is proven thaH is not differentiable ap iff p is a caustic of multiplicityn=2, and
that caustics of multiplicity 1 are contained in the closure of those of higher multiplicity. In
particular,H cannot be of clas€! at any caustic point. Points whekkis not C* will be called
“cusps.” By definition, beingC?! at p implies thatH is differentiable in a whole neighborhodd
of p. Conversely, it was shown that differentiability in some open neighbortwbad p implies
thatH is C! in U (Ref. 7, Prop. 3.8 so that the set of points whekis C! is open. It follows that
beingC! atp is in fact equivalent to being differentiable in some neighborhogal bfence the set
of cusps is the closure of the set of points whelrés nondifferentiablgcaustics of multiplicity
=2) and hence also the closure of the set of all caustics.

Let 3 be a suitably smootkusually C?) Cauchy surface, theB:=BN3. is called the black-
hole region at time, and H:=HNZX =48 the (future-event} horizon at time3. A connected
component3; of B is called a black hole at tim&. Its surface isH;=dB;, which is a two-
dimensional, imbedde@!~-submanifold ofS. We have seen that in genefdl may contain all
kinds of singularities which would render standard differential geometric methods inapplicable.
Adding the hypothesis of piecewig?-smoothness circumvents this problem.

By expTM—M we denote the exponential map. Recall that @Jp=2(1), wherey is the
unique geodesic with initial conditiong(0)=pe M and -7(0)= veT,(M). For eachp it is well
defined forv in some open neighborhood o0 ,(M). One hasy(t) = exp,(tv). We shall assume
the Lorentizian metrig of M to beC?, hence the connectidie., the Christoffel symbojss C*
and, therefore, the map exp is al€d. The last assertion is e.g., proven in Ref. 8.

lll. LOCAL FORMULATION OF THE AREA LAW

We consider twaC? Cauchy surfaces witR’ to the future ofS. The corresponding blackhole
regions and surfaces are denoted as above, with a prime distinguishing thb$e\bie make the
assumptiorthat { is piecewiseC?, i.e., each connected componégtof 7 is the union of open
subsetsH* which areC? submanifolds oM and whose two-dimensional measure exhaust that of
H: w(H— UkHik)ZO, whereu is the measure ofit induced from the metrig.

For each poinpeHik there is a unique future- and outward-pointing null direction perpen-
dicular to H:‘, which we generate by some future directég) e T,(M). We can choose a
Cfield p—I(p) of such vectors ovefH!‘. The geodesicy,: t— y,(t) :=exp,(tl(p)) are genera-
tors of H without future endpoint. Therefore, eagh cutsX’ in a unique pointp’ e H' at a
unique parameter value= 7(p). By appropriately choosing the affine parametrizationgpésp
varies overH!‘ we can arrange the mapto be alsoC!. Hencep—m(p):=7(p)!(p) is a null
vector field of clas€C* over H{. We can now define the map

DM M, p>®f(p)=exp,(m(p)), 1)

which satisfies the following.
Lemma 1:@!‘ is (i) C, (ii) injective, (iii) not measure-decreasing.
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(i) follows from the fact that the functions and exp areC'. Injectivity must hold, since
otherwise some of the generators ldf through H!‘ would cross in the future. By being not
measure-decreasing we mean the following: ketndu’ be the measures gt and?’ induced
by the space—time metrig. Then M[U]S,u’[(b}‘(U)] for each measurabldJCH!‘. Assuming
the weak energy condition, this is a consequence oftiveherenegative divergence for the future
geodesic congruenge—y, (Lemma 9.2.2 in Ref. J1 as we will now show.

Proof of (i ): SetHik::Up,I expy(tl(p)), Vpe H!‘ andVte R, , which is aC!-submanifold of
M (the future of’Hik in H). Let| be the uniqudup to a constant scaléuture directed null geodesic
(i.e., V,1=0) vector field onHik parallel to the generators. ThensW ,|#=a4V |”, wherew
denotes the map given by tigeorthogonal projectioﬁ'(M)|Hik—>T(H!‘), followed by the quotient

map T(H ) —T(HX)/sparl}. Note that tangent spaces 6f-cross sections dfl¥ at the pointp
are naturally identified witth(H!‘)/spar{I(p)}. Since m1"=0, we also haver,V k"=0 for
k=Xl and anyC!-function \: H*—R, . Hence this inequality is valid for any future pointing
Cl-vector-fieldk on Hik parallel to the generators. Given that, tet ¢, be the flow ofk and
A(t)::Mt[fpt(U)]::f@(U)th, then A(t)=f(,,t(u)a-rﬁ(t)vﬂk”(t)dutao, where 7 (t) projects
onto T(¢(HY)), k(t)=d/(dt")| —i¢by and u,=measure onp(HX). Now choosek such that
br=1= D, thenp[P(U)]- u[U]= [odtA(t)=0. O
Part(iii) of Lemma 1 is the local version of the area law. By turning it into a global statement
about areas one usually abandons some of its information. The most trivial global implication is
that the total sum of areas cannot decrease. A more refined version is as follows: Recall that black
holes cannot bifurcate in the futu(@roposition 9.2.5 of Ref.)1Hence all surface elememé( of
theith black hole at time are mapped vid)ik into the surfacé’; of a singleblack hole at time
3. We callH'; (i.e., the connected component Bf NH into which H; is mapped the devel-
opment ofH; at time2,’. Lemma 1 now implies that its area cannot be less than that, ofThe
nonbifurcation result implies that if the numbiF of black holes at tim&.’ is bigger than the
numberN at timeZ, then there is an intermediate formationko=N’—N new black holes. That
these black holes are “new,” i.e., not present at tifhemeans that all generators bif which
intersecti’ ;U --UH'¢ must have past endpoints somewhere betvieandz,’. A black hole at
time X’ which is smaller than any black hole at tidemust also be new in this sense. Hence one
way to express an area law would be as follows:
Assertion (Area Law)Consider two Cauchy surfaces,and.’, with X' to the future of2.
Then the area of the developmerit; of any H; cannot be less than that &f;. In particular,
black holes at time&,’ whose area is smaller than that of any black at tihenust have been
formed in the meantime.
Presently we do not have a proof that this statement is true in general. But since it is a
statement about measures, we suggest that it should be possible to give a proof without invoking
fiducial (and probably irrelevantdifferentiability assumptions.

IV. CONSEQUENCES

The previous discussion allows one to show that black holes whose surf&@keds one
instant cannot undergo any nontrivial change in the future, like merging processes or any other
process involving the incorporation of new generators. This we shall now explain in more detail.
Let H, be the surface a black hole at tifie We assumé+; to be a compact, two-dimensional
C!-submanifold. As beforel’ is to the future ofS andH'=HNX'. We can construct a map
®,:H,—H', just analogous to the constructionCDf above, but now defined aall of H;. The
C!-condition on?; now implies thatb, is C°. @, is also injective for the same reason as given
for <I>ik. Since H; is connected, its image unddr, is also connected. Let';CH' be the
connected part containing the image®f. We show

Lemma 2:®,:H,—H', is a homeomorphism.

Proof: @, is a closed map, becauseUiC H; is closed=U is compacisinceH is compack
=U":=®,(U) is compacisince®, is continuous=U" is closed(since’H; is Hausdorff. From
this it follows that®; is a homeomorphism onto its image. Bl is also open; this follows
directly from Brouwer’s theorem on the invariance-of-domain, which states that any continuous
injective map from an opelXCR" into R" is open (Proposition 7.4 in Ref. © This clearly
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generalizes to manifolds. Hence the imalggH,) C H; is open, closed and connected, and hence
all of H; . O

Surjectivity of @, implies that all generators dfl which intersectH; also intersectH; .
Hence nowhere in its future willi; be joined by new generators. Similar to the definitiorHgf
above, letH;CH denote the future ot{, in H; then it follows thatH, is free of caustics and
thereforeC'. Hence we have

Proposition 1:Let the surface of a black hole at tinkebe without cusps. Then this black hole
will never encounter cusps to the future Bf in particular, it will not merge with other black
holes.

Another equivalent formulation, emphasizing that cusps will not die out in the past, is as
follows:

Proposition 2:At no time to the past of a cusp ¢hwill the surface of a black hole be without
cusps.

It is sometimes suggested that caustics just exist for some finite time interval during which the
actual processes take place, like collision and coalescence of black holes or the infall of matter
through the horizor(see e.g., Ref. 2, 34.5Proposition 2 shows that this is not quite the right
picture.
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