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Is there a general area theorem for black holes?
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The general validity of the area law for black holes is still an open problem. We
first show in detail how to complete the usually incompletely stated textbook proofs
under the assumption of piecewiseC2-smoothness for the surface of the black hole.
Then we prove that a black hole surface necessarily contains points where it is not
C1 ~called ‘‘cusps’’! at any time before caustics of the horizon generators show up,
like, e.g., in merging processes. This implies that caustics never disappear in the
past and that black holes without initial cusps will never develop such. Hence black
holes which will undergo any nontrivial processes anywhere in the future will
always show cusps. Although this does not yet imply a strict incompatibility with
piecewiseC2 structures, it indicates that the latter are likely to be physically un-
natural. We conclude by calling for a purely measure theoretic proof of the area
theorem. ©1998 American Institute of Physics.@S0022-2488~98!01612-0#

I. INTRODUCTION

It seems to be widely accepted as fact that the surface area of a black hole cannot d
with time. However, the proofs offered in standard textbooks, like Refs. 1–3, are basically co
with the remark that this law follows from the nonconvergence of the generators of the f
event horizon. It would indeed follow from this remark and some elementary differential geo
ric considerations if the horizon were a sufficiently smooth submanifold. Mathematically the
absolutely no reason why this should be true in general,4 which means that extra assumptions mu
be invoked~implicitly ! in the textbooks arguments. However, not much precise information se
to exist in the literature concerning these extra assumptions. Perhaps the clearest state
given in Ref. 4, where the authors mention that in the textbook proofs of the area the
‘‘something close toC2 differentiability ‘almost everywhere’ of the event horizon seems to h
been assumed.’’ The textbooks themselves do not mention any such condition. Below we
explicitly how to complete the textbook argumentation under the assumption of piece
C2-smoothness. But this clearly does not imply its necessity.

General considerations only prove the horizon to be locally Lipschitz continuous~denoted by
C12!.1 Mathematically this implies~pointwise! differentiability almost everywhere~with respect
to the Lebesgue measures defined by the charts, see Ref. 5 Theorem 3.1.6!, but it still allows the
points of nondifferentiability to be densely distributed.4 Hence horizons exist which are nowhe
C1. Given these mathematical facts, it is of interest to learn whatphysicalconditions imply a
breakdown ofC1 differentiability. We prove that a black hole whose surface isC1 at one time can
never merge with other black holes and, more generally, never encounter new null genera
its future event horizon. In other words, an initialC1-condition basically rules out any interestin
physical process to happen in the future. Hence the only dynamically interesting holes for
the area law is actually proven are those whose surfaces are piecewiseC2 but notC1. Presumably
this class does not contain many, if any, physically realistic members. Cusps on the surf
colliding black holes can be clearly seen in numerical studies,6 but no analytic proof of their
general existence seems to have been given so far.

Given the widely believed connection of the area law with thermodynamic properties of
holes on one side, and the widely expressed hope that this connection may be of heuristic v
understanding certain aspects of quantum gravity on the other, it seems important to kn
most general conditions under which the area law is valid.

a!Electronic mail: giulini@physik.unizh.ch
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II. NOTATION, FACTS, AND ASSUMPTIONS

We assume space–time~M,g! to be strongly asymptotically predictable~in the sense of Ref. 3!
and globally hyperbolic.~It would be sufficient to restrict to a globally hyperbolic portion, as
Thm. 12.2.6 of Ref. 3.! I1 ~scri-plus! denotes future null infinity,J2(I1) its causal past andB
ªM2J2(I1) the black hole region. Its boundary,]B5:H, is the future event horizon.H is a
closed, imbedded, achronal three-dimensionalC12-submanifold ofM ~Proposition 6.3.1 in Ref.
1!. H is generated by null geodesics without future endpoints. Past endpoints occur only
null geodesics—necessarily coming fromJ2(I1)—join onto H. Such points are called ‘‘caus
tics.’’ Only at a caustic can a point of the horizon be intersected by more than one generato
all generators that intersect a caustic enter the horizon at this point. Once a null geode
joined ontoH it will never encounter a caustic again~i.e., not intersect another generator! and
never leaveH. See Box 34.1 in Ref. 2 for a lucid discussion and partial proofs of these statem
Hence there are two different processes through which the area of a black hole may increas
new generators can join the horizon and, second, the already existing generators can m
diverge.

Caustic points wheren ~possibly infinite! new generators join in are said to be of multiplici
n. In Ref. 7 it is proven thatH is not differentiable atp iff p is a caustic of multiplicityn>2, and
that caustics of multiplicity 1 are contained in the closure of those of higher multiplicity
particular,H cannot be of classC1 at any caustic point. Points whereH is not C1 will be called
‘‘cusps.’’ By definition, beingC1 at p implies thatH is differentiable in a whole neighborhoodU
of p. Conversely, it was shown that differentiability in some open neighborhoodU of p implies
thatH is C1 in U ~Ref. 7, Prop. 3.3!, so that the set of points whereH is C1 is open. It follows that
beingC1 at p is in fact equivalent to being differentiable in some neighborhood ofp. Hence the set
of cusps is the closure of the set of points whereH is nondifferentiable~caustics of multiplicity
>2! and hence also the closure of the set of all caustics.

Let S be a suitably smooth~usuallyC2! Cauchy surface, thenBªBùS is called the black-
hole region at timeS andHªHùS5]B the ~future-event-! horizon at timeS. A connected
componentBi of B is called a black hole at timeS. Its surface isHi5]Bi , which is a two-
dimensional, imbeddedC12-submanifold ofS. We have seen that in generalH may contain all
kinds of singularities which would render standard differential geometric methods inapplic
Adding the hypothesis of piecewiseC2-smoothness circumvents this problem.

By exp:TM→M we denote the exponential map. Recall that expp(v)ªg(1), whereg is the

unique geodesic with initial conditionsg(0)5pPM andġ(0)5vPTp(M ). For eachp it is well
defined forv in some open neighborhood of 0PTp(M ). One hasg(t)5expp(tv). We shall assume
the Lorentizian metricg of M to beC2, hence the connection~i.e., the Christoffel symbols! is C1

and, therefore, the map exp is alsoC1. The last assertion is e.g., proven in Ref. 8.

III. LOCAL FORMULATION OF THE AREA LAW

We consider twoC2 Cauchy surfaces withS8 to the future ofS. The corresponding blackhol
regions and surfaces are denoted as above, with a prime distinguishing those onS8. We make the
assumptionthatH is piecewiseC2, i.e., each connected componentHi of H is the union of open
subsetsHi

k which areC2 submanifolds ofM and whose two-dimensional measure exhaust tha
Hi : m(Hi2økHi

k)50, wherem is the measure onH induced from the metricg.
For each pointpPHi

k there is a unique future- and outward-pointing null direction perp
dicular to Hi

k , which we generate by some future directedl (p)PTp(M ). We can choose a
C1-field p° l (p) of such vectors overHi

k . The geodesicsgp : t°gp(t)ªexpp(tl(p)) are genera-
tors of H without future endpoint. Therefore, eachgp cuts S8 in a unique pointp8PH8 at a
unique parameter valuet5t(p). By appropriately choosing the affine parametrizations ofgp asp
varies overHi

k we can arrange the mapt to be alsoC1. Hencep°m(p)ªt(p) l (p) is a null
vector field of classC1 overHi

k . We can now define the map

F i
k :Hi

k→H8, p°F i
k~p!ªexpp~m~p!!, ~1!

which satisfies the following.
Lemma 1:F i

k is ~i! C1, ~ii ! injective, ~iii ! not measure-decreasing.
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~i! follows from the fact that the functionsm and exp areC1. Injectivity must hold, since
otherwise some of the generators ofH throughHi

k would cross in the future. By being no
measure-decreasing we mean the following: Letm andm8 be the measures onH andH8 induced
by the space–time metricg. Thenm@U#<m8@F i

k(U)# for eachmeasurableU,Hi
k . Assuming

the weak energy condition, this is a consequence of thenowherenegative divergence for the futur
geodesic congruencep°gp ~Lemma 9.2.2 in Ref. 1!, as we will now show.

Proof of ~iii !: SetHi
k
ªøp,t expp(tl(p)), ;pPHi

k and;tPR1 , which is aC1-submanifold of
M ~the future ofHi

k in H!. Let l be the unique~up to a constant scale! future directed null geodesic
~i.e., “ l l 50! vector field onHi

k parallel to the generators. Then 0<¹ml m5pn
m¹ml n, wherep

denotes the map given by theg-orthogonal projectionT(M )uH
i
k→T(Hi

k), followed by the quotient

mapT(Hi
k)→T(Hi

k)/span$ l %. Note that tangent spaces ofC1-cross sections ofHi
k at the pointp

are naturally identified withTp(Hi
k)/span$ l (p)%. Sincepn

ml n50, we also havepn
m¹mkn>0 for

k5l l and anyC1-function l: Hi
k→R1 . Hence this inequality is valid for any future pointin

C1-vector-field k on Hi
k parallel to the generators. Given that, lett°f t be the flow ofk and

A(t)ªm t@f t(U)#ª*f t(U)dm t , then Ȧ(t)5*f t(U)pn
m(t)¹mkn(t)dm t>0, where p(t) projects

onto T(f t(Hi
k)), k(t)5d/(dt8)u t85tf t8 and m t5measure onf t(Hi

k). Now choosek such that
f t515F i

k , thenm8@F i
k(U)#2m@U#5*0

1dtȦ(t)>0. h

Part~iii ! of Lemma 1 is the local version of the area law. By turning it into a global statem
about areas one usually abandons some of its information. The most trivial global implicat
that the total sum of areas cannot decrease. A more refined version is as follows: Recall tha
holes cannot bifurcate in the future~Proposition 9.2.5 of Ref. 1!. Hence all surface elementsHi

k of
the i th black hole at timeS are mapped viaF i

k into the surfaceH8 i of a singleblack hole at time
S8. We callH8 i ~i.e., the connected component ofS8ùH into whichHi is mapped! the devel-
opment ofHi at timeS8. Lemma 1 now implies that its area cannot be less than that ofHi . The
nonbifurcation result implies that if the numberN8 of black holes at timeS8 is bigger than the
numberN at timeS, then there is an intermediate formation ofK>N82N new black holes. That
these black holes are ‘‘new,’’ i.e., not present at timeS, means that all generators ofH which
intersectH81ø¯øH8K must have past endpoints somewhere betweenS andS8. A black hole at
time S8 which is smaller than any black hole at timeS must also be new in this sense. Hence o
way to express an area law would be as follows:

Assertion (Area Law):Consider two Cauchy surfaces,S andS8, with S8 to the future ofS.
Then the area of the developmentH8 i of anyHi cannot be less than that ofHi . In particular,
black holes at timeS8 whose area is smaller than that of any black at timeS must have been
formed in the meantime.

Presently we do not have a proof that this statement is true in general. But since i
statement about measures, we suggest that it should be possible to give a proof without in
fiducial ~and probably irrelevant! differentiability assumptions.

IV. CONSEQUENCES

The previous discussion allows one to show that black holes whose surface isC1 at one
instant cannot undergo any nontrivial change in the future, like merging processes or any
process involving the incorporation of new generators. This we shall now explain in more d
Let H1 be the surface a black hole at timeS. We assumeH1 to be a compact, two-dimensiona
C1-submanifold. As before,S8 is to the future ofS andH85HùS8. We can construct a map
F1 :H1→H8, just analogous to the construction ofF i

k above, but now defined onall of H1 . The
C1-condition onH1 now implies thatF1 is C0. F1 is also injective for the same reason as giv
for F i

k . SinceH1 is connected, its image underF1 is also connected. LetH81,H8 be the
connected part containing the image ofF1 . We show

Lemma 2:F1 :H1→H81 is a homeomorphism.
Proof: F1 is a closed map, because ifU,H1 is closed⇒U is compact~sinceH1 is compact!

⇒U8ªF1(U) is compact~sinceF1 is continuous! ⇒U8 is closed~sinceH18 is Hausdorff!. From
this it follows thatF1 is a homeomorphism onto its image. ButF1 is also open; this follows
directly from Brouwer’s theorem on the invariance-of-domain, which states that any contin
injective map from an openX,Rn into Rn is open ~Proposition 7.4 in Ref. 9!. This clearly
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generalizes to manifolds. Hence the imageF1(H1),H18 is open, closed and connected, and hen
all of H18 . h

Surjectivity of F1 implies that all generators ofH which intersectH18 also intersectH1 .
Hence nowhere in its future willH1 be joined by new generators. Similar to the definition ofHi

k

above, letH1,H denote the future ofH1 in H; then it follows thatH1 is free of caustics and
thereforeC1. Hence we have

Proposition 1:Let the surface of a black hole at timeS be without cusps. Then this black ho
will never encounter cusps to the future ofS, in particular, it will not merge with other black
holes.

Another equivalent formulation, emphasizing that cusps will not die out in the past,
follows:

Proposition 2:At no time to the past of a cusp onH will the surface of a black hole be withou
cusps.

It is sometimes suggested that caustics just exist for some finite time interval during whic
actual processes take place, like collision and coalescence of black holes or the infall of
through the horizon~see e.g., Ref. 2, 34.5!. Proposition 2 shows that this is not quite the rig
picture.
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