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Abstract 

We consider alterations to Newtonian gravity satisfying the principle that all energies contribute to the active gravitational 
mass. We discuss earlier attempts and point out their inconsistency with this principle. A consistent prescription is derived 
and discussed. @ 1997 Elsevier Science B.V. 

1. Introduction 

The issue addressed in this Letter arises if one 
wishes to model the self-coupling of the gravitational 
field within Newtonian gravity. Simple non-linear 
alterations of Newton’s field equation are often em- 

ployed as simplified models for general relativity. The 
purpose of this Letter is to show how this can be done 
and to point out certain flaws in the usually accepted 
prescription, as for example given in Refs. [ 1,2]. 

To be more precise, we recall that the Newtonian 
gravitational field, cp, and the density of (ponderable) 

matter, p, obey 

A9 = 4n-Gp, (1.1) 

where G is Newton’s gravitational constant. The force 
per unit volume is given by 

f = -pvq (1.2) 

’ E-mail: giulini@sun2.ruf.uni-freiburgde. 

Together these equations imply that in order to build 

up a field p from 50 = 0 one has to invest the work 

t 1.3) 

If we add the assumption that all energy acts as active 
gravitational mass, according to E = mc2, and also 
think of the integrand in ( 1.3) as representing energy 
density, we might be tempted to consider the modified 
equation 

llVPll2) (1.4) 

with the aim to incorporate into Newtonian gravity the 
following heuristic 

Principle (P). All energy acts as source for the 
gravitational field. 

Note that a priori we do not know what “energy” is 
in the theory to be formulated, so that P should be read 
as requirement of self-consistency. In the next section 
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we follow a standard practice by introducing the notion 
of “energy” through the mechanism of coupling the 
gravitational field to mass distributions and calculating 

the work that the field performs on them. Using energy 

conservation then leads to an expression for the field 

energy. 
A field equation satisfying P must be non-linear. 

One might wonder whether ( 1.4) gives a Newtonian 
model that satisfies P. If it were true that it shared this 

qualitative feature with general relativity one might 
profitably employ this single scalar equation to study 
certain qualitative features of general relativity in a 
mathematically simpler environment. In fact, ( 1.4) is 

often proposed in pedagogical discussions to precisely 
this end [ l-31. For example, in Refs. [ 2,3] the au- 

thors suggest that some useful lessons concerning the 

energy-regulating power of the gravitational field can 
be learned from model theories of charged particles 
based on ( 1.4). In passing we remark that ( 1.4) can 
be written in a linear form by making the field redef- 

inition @ := exp( p/2c2), 

27rG 
A$ = - 

c2 PA (1.5) 

where the boundary conditions rp( r + co) = 0 trans- 

late to $(r --t DC?) = 1. In the following we shall for 
simplicity always assume p to have compact support 

B c lR3. 
In Section 3 we discuss what is wrong with a theory 

based on ( 1.2)) ( 1.4) and suggest a different and con- 

sistent theory in Section 4. Section 5 briefly discusses 
some properties of spherically symmetric solutions to 
the latter. In Section 2 we summarize some facts from 
Newtonian gravity. We employ the standard summa- 
tion convention for repeated indices in up-down po- 
sitions and use the Euclidean metric &, to raise and 
lower indices. V, denotes the partial derivative with 
respect to xa. Three-component vectors are also writ- 
ten in boldface italic, 4, with g - 7 = .$=v” denoting 
the scalar product. 

2. Newtonian recollections 

To see what is wrong with ( I .4) it is helpful to first 
give a derivation of ( 1.3). Consider a one-parameter 
family of diffeomorphisms s H (T, such that ~~3 = id 
and ( d/ds)]da,(x) = c(x). We wish to use us to 

redistribute the matter by dragging it along this flow. 
Pulling back the 3-form p dV by the inverse diffeomor- 
phisms we obtain ps dV := (g;‘) * (p dV) and hence 
for the Lie derivative of the density p along J 

(2.1) 

where here and in the following we use the variational 
symbol, 6, for the derivative at s = 0 and call it “the 
variation” of the quantity in question. 

The variation of the work done to the system is 
easily determined using ( 1.2)) 

SA = - 
s 

g. f dV = - 
s 

qoV - (pc) dV (2.2) 

Iw ’ B 

Eqs. (2.1), (2.2) imply 

SA = 
s 

qoSp dV (2.3) 

B 

This equation is independent of the field equation. 
If we assume adiabaticity, i.e. the validity of (1 .l) 
throughout the motion, we can use ( 1.1) to eliminate 
6p and write (2.3) solely in terms of p. The result 

( 1.3) then easily follows. 
From ( 1.1) , ( 1.2) it follows that the force per unit 

mass may be derived from a symmetric stress tensor, 
fcl = -Vbtab, where 

(2.4) 

SA=-S/,~adV=J6Vbt,adV 

W) R’ 

= J v’“&b’ t,b dV (2.5) 

Here we assumed l/5( r i co) I] < ar for some real 
constant a and that derivatives of p fall off as fast as 
r-‘. Vector fields which satisfy V(a<b) = 0 (Killing 
equation) generate rigid motions and are given by 
c(x) = k (translations) and g(x) = k x x (rota- 
tions), for constant k. For those 6A = 0, as it must 
be by the principle of action = reaction. Otherwise the 
system would self-accelerate. 
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Finally we define the gravitational mass as the total 
flux of the gravitational field q out to infinity, 

1 
M, := lim - 

T-M 47rG 
n - Vqo do. (2.6) 

S,’ denotes a two-sphere of radius r, n its (outward 

pointing) normal, and do the surface element on SF. 
The limit of integrals in (1.14) is sometimes abbrevi- 
ated by Js2 . 

3. Why inconsistent? 

Since in Newtonian theory M, = M, := 5 p dV, M, 
only depends on the amount but not on the distribu- 
tion of matter and clearly P cannot be satisfied. Now, 
replacing ( 1.1) by ( 1.4)) one obtains the following 

formula for the variation 6M,, 

(3.1) 

where we have used ( 1.4) N times to replace Aq. 
For a regular matter distribution p will be bounded, 

say sp( X) < K ,Yx E R3. Also, the integral over 
(1/4rG)6(Ap) just represents SM, so that the 

last term on the right-hand side is majorized by 
$(K/c2) N SM,. It vanishes in the limit N + co. 
In this limit the sum on the right side is just the 
exponential function. Thus we obtain the result 

SM, = 
s 
6p exp(p/c2) dY (3.2) 

B 

which, recalling (2.3)) deviates from SA/c2 by all the 
higher-than-linear terms in the expansion of the expo- 
nential. Hence ( 1.2), ( 1.4) violates P. This is not re- 
ally surprising, since ( 1.3) was derived under the as- 

sumption of ( 1 .l ), ( 1.2). Changing it to ( 1.2), ( 1.4) 
also invalidates ( 1.3). A correct procedure must iter- 
ate the step that led from ( 1.1) to ( 1.4). For exam- 
ple, the next (second) step would be to determine a 
modified expression for the gravitational field energy 
from ( 1.2)) ( 1.4) and then change ( 1.4) accordingly. 

Eventually this procedure should converge to a self- 
consistent field equation. However, as we will see in 
the next section, such a self-consistent field equation 

can actually be guessed directly. 
At the end of this section we also point out another 

flaw in the combination ( 1.2)) ( 1.4). Using ( 1.5) to 
replace p in ( 1.2) one easily derives 

fO = -exp(-P/c2)vb(exp(P/c2) tab) (3.3) 

with t,b from (2.4). From this expression it follows 
that the force density is not the divergence of a stress 
tensor. There are many ways to isolate the part that 
obstructs the right-hand side of (2.11) to be written 
as the divergence of a symmetric tensor. Two obvious 

ways are 

(3.4a) 

= -Vb [(I + +2)t,b] + &--+%P~. 
(3.4b) 

The system ( 1.2), ( 1.4) thus potentially violates the 
principle action = reaction 2 . 

4. A consistent modification 

Eq. (3.2) was derived assuming (1.4) but not 
( 1.2). If we maintain ( 1.4), (.5) but define 4 = 

c2 exp(qp/c2) (rather than 4p) to be the gravitational 
potential, then (3.2) just expresses the validity of P, 
i.e. c2SM, = SA with SA given by (2.3). Throughout 
the gravitational field is always defined as minus the 
gradient of the potential, so that ( 1.2) and ( 1.4), 
( 1.5) get replaced by 

f = -PV4, (4.1) 

(4.2) 

Note that formally (4.2) is just a rewritten version of 

( 1.4) in terms of 4. What changes its physical con- 
tent is that now -04 = and not -VP = -c2V+/4 
is the gravitational field. To be sure, for calculations 

2 To manifestly show a violation one should prove the existence 
of a regular solution to ( 1.4) with p(r + co) = 0 for which 

s f,&“ # 0 for some generator .$ of a rigid motion. 
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it is still easier to use the linear equation ( 1 S) whose 
solutions determine solutions to (4.2) by setting $J = 

c~I++~. C$ must satisfy the boundary conditions 4( r + 
co) = c2. The Newtonian approximation is obtained 

from expanding C$ = c2 + p + 0( (p2) and keeping 
only linear terms in (4.2). Note that in the expression 
(2.6) for M, we must write 4 instead of q. But for 
r -+ co only the linear term in 9 contributes to the 

surface integral so that (3.2) is still valid. This is why 
(3.2) indeed expresses the validity of P for (4.1)) 

(4.2). To be sure, once (4.1), (4.2) are established, 
the equation c26M, = 6A is most easily proven di- 
rectly. For completeness we give a short direct proof 

in the appendix. The point of our derivation of (3.2) 

was that it suggested the definition of C#J in terms of (o 
and hence (4.2). It is interesting to note that (4.2) is 

precisely the equation that Einstein already proposed 
before the advent of general relativity in 1912 [4]. 

Eqs. (4.1), (4.2) also manifestly imply the prin- 
ciple action = reaction in the sense above. Indeed, 

we now have f. = -p exp( p/c2) V,rp. Replacing 
-pV,p by the right-hand side of (3.3) just cancels 
the exponential function outside the derivative so that 
the remaining divergence can be rewritten in terms of 
(p. This leads to the desired formula, fa = -Vbt,b, 

with 

1 
tab = m (; [(vd#‘)(‘176& - f&zb~~V(fj~*]). 

(4.3) 

We may interpret the two terms on the right-hand side 
of (4.2) as energy densities due to ponderable mat- 
ter and the gravitational field respectively. The sum of 
both determines the convergence A+ of the gravita- 
tional field -04. Both terms are positive since C#J is 
positive. This is in contrast to ( 1.4), where the New- 
tonian gravitational field energy was negative definite, 

which is usually said to have its origin in the attractiv- 
ity of gravity. But of course here gravity is also attrac- 

tive. What is different here is that the (rest) energy of 
matter depends on the value of the gravitational po- 
tential at its location. This allows that a contraction 
of a matter distribution enhances the field energy al- 
though the total energy decreases. This is achieved by 
displacing the matter into regions of smaller gravita- 
tional potential and thereby sufficiently decreasing the 
matter part of the energy. 

The total gravitational energy is given by 

I&&l := c%z, = J &d”+& ~ J Ilwll’ d” 
4 

B Iw3 

_. -. -%atter + held 7 (4.4) 

where the expression for Afield can also be written in 
terms of an integral over B (the support of p) only. 
To see this we recall that for large distances from the 
source we have the expansions for 4 and Cc, 

4 GM, 2 = 1 - (721 +o(r-3, 

cc, = 1 - 2 +O(r-2) 

(4Sa) 

so that E,,I can also be expressed as an integral of 
( c4/271-G)A$ = c2p$ (using ( 1 S) ) over B. Replac- 

ing Et,,,1 by this expression in Afield = Etotal - Em,,,,, 
one obtains 

(4.6) 

5. Solution for homogeneous spherical star 

In this section we determine the gravitational field 
for the externally prescribed mass distribution 

p= 3M,/4rR3, for r < R, 

= 0, for r > R, (5.1) 

where M, is the total (“bare”) mass of matter: M,, = 

S B p dV. It will be convenient to introduce the “matter 
radius” 72, and the “gravitational radius” R,, 

(5.2) 

and the abbreviation 

W= (5.3) 

We use (1.5), set g(r) = ,y(r)/r, and obtain 

x” = w2,y, for I -C R, 

=o for r > R. (5.4) 

The general solution which makes 4 (and hence $) 
finite at r = 0 is 
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$(r) = K sinh;wr), for r < R, 

(5.5) 

The integration constants K and R, are determined 

by the requirement that 4 (and hence 11/) should be 
continuously differentiable at r = R, 

R, = 2R 1 - tan;;R’) , 

K= ’ 
w cosh(wR) ’ 

(5.6) 

(5.7) 

Fixing the radius R in (4.6) gives us RR as a function 
of R,, i.e. the gravitational mass as a function of the 

bare mass. In terms of the dimensionless quantities 
y = 72,/R and x = R,/R this reads 

7 (5.8) 

which for x 3 0 maps monotonically [O, co] -+ 
[0,2].Forsmallxonehasf(n) =x-$x2+&x3+ 
0(x4). The fact that f(x) < 2 V’x E Iw+ means that 

the gravitational mass is bounded by a quantity de- 
pending only on the geometry (here R) of the mass 

distribution, 

M, < R$t (5.9) 

Note that this is achieved with all contributions to the 
gravitational mass on the right-hand side of (3.3) be- 
ing positive. No subtractions are taking place. Rather, 

high matter densities p are suppressed by the small 
potentials 4 produced by them (i.e. “red-shifted” in 
general relativistic terminology). This can be seen in 

detail from the following expressions, 

(5.lOa) 

(5.10b) 

E !$ tanh(wR) 
matteI = 

UR 
+ tanh2(wR) - I 

(5.11a) 

67L 
5R + OW;/R*) (5.11b) 

3Rc4 
Efietd = - 

G 

1 _ tanh(wR) 

6JR 
- f tanh*( wR) 

> 
(5.12a) 

(5.12b) 

where the second expressions on the right-hand sides 
are expansions of the first in terms of l&,/R. Also, 

recall that R,c4/G = M,c*. Note the familiar :-term 
in (5. lob) for the Newtonian binding energy. 

Decreasing R for fixed R, we see from (5.10b)- 
(5.12b) that to first approximation this enhances the 

field energy and at the same time decreases the matter 

energy twice as fast, so as to decrease the total energy 

by the same amount as that by which the field energy 
increased. Clearly the total energy must decrease in 
accordance with the attractivity of the gravitational 
interaction. 

Coming back to (5.9) we next show that it remains 
valid for any spherically symmetric matter distribu- 
tion. In particular, it remains valid for more realis- 
tic matter distributions (of compact support r < R) 
which are determined by a coupled system of (4.2) 

with some equations of state for the matter. The proof 
is simply this: For r 2 R (5.4) is solved by x+(r) = 

r - R,/2 and by some function x_(r) for r 6 R. 
Continuity and differentiability of 4 at r = R is equiv- 
alent to 

x_(R) = R - ;R,, (5.13) 

x’-(R) = 1. (5.14) 

Suppose x(R) < 0, then x” = (21~G/c*)px with 
p 3 0 implies x”(r-) < 0 for all r < R, with strict 

inequality if r lies in the support of p. Eqs. (5.13), 
(5.14) now imply that the curve r --f x- (r) lies be- 

low the curve r + r - ;R, for r < R, which in 

turn implies x( r = 0) < -i’R8 < 0, where the last 
inequality just expresses the positivity of the gravita- 

tional mass. But this contradicts the regularity of the 
gravitational potential which requires a finite value of 
@(r = 0) and thus ,y(r = 0) = 0. Hence we must 
have x(R) > 0 or, by (5.13), R, < 2R. 

Finally we mention that in Ref. [2] solutions to 
( 1.4) where found with c2p being given by the elec- 
trostatic field energy of a point charge. Rewritten in 
terms of 4 these solutions obviously translate into so- 
lutions of (4.2). A very interesting observation of Ref. 
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[ 21 then was that the bare mass, measured by the flux 
of (1/4r)Vq through an infinitesimal small sphere 
centered at the charge, is negative and &rite. Unfortu- 
nately this is no longer true in our theory where we 
have to use $ rather then C,D in the expression for the 

bare mass. The simple calculation gives a negatively 
diverging result, the reason being the exponential in- 

crease of 4 with p. This implies that the finite bare 
mass obtained in Ref. [ 21 cannot be understood as a 

direct consequence of P, but so far only as an arti- 
fact of ( 1.4)) which violates P. But P should certainly 

be satisfied in any model of general relativity, in par- 
ticular if it is used to study questions concerning the 
energy regulating power of the gravitational field. 

Appendix A 

In this appendix we wish to give a short direct proof 
that (4.2) satisfies P, i.e. that 6A = c26M,. 

Using the generally valid Eq. (2.3), now with C$ 
replacing cp, we must eliminate p via (3.3). This is 

most easily done if we set 4 = c*@* and use ( 1 S). 
We obtain 

SA=&/$~S[~] dV 

R3 

= &/ [$A(S$) - (A$)S$] dV 

R’ 

(A.1) 

= & 
s 

n. [$V(St,b) - (V#,) Sfi] do. 

5-L 

(A.2) 

Now, the conditions for large r imply that VIc/ falls 
off as fast as l/r2 and S$ as fast as l/r. Hence the 

second term in the last bracket does not contribute. 
Therefore we may reverse its sign and obtain 

SA = &s .I (n - vti)$ dV 

Sk 

C2 
z-S n+5dV=c2SM,. 

41rG s 
Sk 
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