Übungen zur Vorlesung

Differentialgeometrische Methoden der Physik 1

von Domenico Giulini

Blatt 2

Aufgabe 1

Die n-dimensionale Einheitssphäre im \mathbb{R}^{n+1} ist definiert durch

$$S^{n} := \{ x \in \mathbb{R}^{n+1} : \langle x, x \rangle = 1 \}. \tag{1}$$

Dabei bezeichne $\langle \cdot, \cdot \rangle$ das gewöhnliche Euklidische Skalarprodukt im \mathbb{R}^{n+1} .

Wir wählen einen Punkt $\mathfrak{n} \in S^{\mathfrak{n}}$ als Pol und betrachten die zugehörige Äquatorialebene

$$\mathsf{E}_{\mathsf{n}} := \{ \mathsf{x} \in \mathbb{R}^{\mathsf{n}+1} : \langle \mathsf{x}, \mathsf{n} \rangle = \mathsf{0} \}. \tag{2}$$

Sei nun x ein von n verschiedener Punkt auf S^n . Wir betrachten die (durch s parametrisierte) Gerade g durch n und x:

$$g(s) = n + s(x - n). \tag{3}$$

Zeigen Sie: Die Gerade schneidet E_n an einem eindeutig bestimmten Punkt ξ , der gegeben ist durch

$$\xi = \frac{x - n\langle n, x \rangle}{1 - \langle n, x \rangle} \,. \tag{4}$$

Wir nennen die Abbildung, die jedem $x \neq n$ auf S^n den so definierten Schnittpunkt $\xi \in E_n$ zuweist, die *stereographische Projektion* vom Pol n und bezeichnen sie mit P_n . Zeigen Sie, dass

$$\begin{split} P_n:S^n-\{n\} &\to E_n\,,\\ x &\mapsto P_n(x)=\xi=\frac{x-n\langle n,x\rangle}{1-\langle n,x\rangle}\,. \end{split} \tag{5}$$

eine Bijektion (injektiv und surjektiv) ist und dass die Umkehrung gegeben ist durch

$$P_n^{-1}: E_n \to S^n - \{n\},$$

$$\xi \mapsto P_n^{-1}(\xi) = x = \frac{2\xi}{\|\xi\|^2 + 1} + n \frac{\|\xi\|^2 - 1}{\|\xi\|^2 + 1}.$$
 (6)

(Tipp: Durch Quadrieren der letzten Gleichheit in (5) können Sie $\langle n, x \rangle$ als Funktion von $\|\xi\|^2$ ausdrücken.)

Betrachten Sie nun die beiden stereographischen Projektionen zu antipodal liegenden Polen n und -n. Der Schnitt der Definitionsbereiche (Kartengebiete) ist $S^n - \{n, -n\}$. Beachten Sie, dass $E_n = E_{-n}$. Zeigen Sie, dass die Übergangsfunktion gegeben ist durch

$$P_n \circ P_{-n}^{-1} : E_n - \{0\} \to E_n - \{0\}, \quad \xi \mapsto \frac{\xi}{\|\xi\|^2}.$$
 (7)

Diese Abbildung nennt man die Inversion an der Einheitssphäre in En.

Aufgabe 2

Wir betrachten zwei Kopien der reellen Zahlen

$$\mathbb{R}_A := \mathbb{R} \times \{A\} \quad \text{und} \quad \mathbb{R}_B := \mathbb{R} \times \{B\}. \tag{8}$$

Auf der Menge $\tilde{M} = \mathbb{R}_A \cup \mathbb{R}_B$ führen wir die Äquivalenzrelation ein:

$$(x, A) \sim (y, B) \Leftrightarrow x < 0, \quad y < 0 \quad \text{und} \quad x = y.$$
 (9)

Die Menge der Äquivalenzklassen sei M und $\pi: \tilde{M} \to M$ die kanonische Projektion, die jedem Element in \tilde{M} seine Äquivalenzklasse zuweist. M sei durch die Festlegung topologisiert, dass $U \subset M$ genau dann offen sein soll wenn $\pi^{-1}(U)$ offen in M ist (bezüglich der Standardtopologie auf \mathbb{R}).

Zeigen Sie, dass M eine Mannigfaltigkeit ist und dass die beiden Punkte $\pi(0,A)$ und $\pi(0,B)$ in M zwar verschieden sind, aber keine disjunkten offenen Umgebungen besitzen und M somit nicht Hausdorff ist. Verallgemeinern Sie dieses Beispiel auf anfänglich n Kopien der reellen Zahlen.

Aufgabe 3

Betrachten Sie folgende Untermenge der Ebene \mathbb{R}^2

$$M = \{(x, y) = (s, 0) \in \mathbb{R}^2 : s \in (-\infty, 0]\}$$

$$\cup \{(x, y) = (s, s) \in \mathbb{R}^2 : s \in (0, \infty)\}$$

$$\cup \{(x, y) = (s, -s) \in \mathbb{R}^2 : s \in (0, \infty)\}.$$
(10)

Versehen Sie diese mit der durch \mathbb{R}^2 induzierten Topologie (eine Menge $U\subset M$ ist offen genau dann, wenn $U=V\cap M$ mit $V\subset \mathbb{R}^2$ offen). Ist M eine Mannigfaltigkeit? Vergleichen Sie dieses Beispiel mit dem aus Aufgabe 2. Was ist der Unterschied?