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Abstract

The modifications induced in the standard weak-lensing formula if Newtonian gravity differs from inverse square

law at large distances are studied. The possibility of putting bounds on the mass of gravitons from lensing data is

explored. A bound on graviton mass, estimated to be about 100 Mpc�1 is obtained from analysis of some recent data on

gravitational lensing.

� 2004 Elsevier B.V. All rights reserved.
Ever since the successful unification of weak

and e.m. interactions into an ‘electroweak’ theory,

hopes have been raised for extensions of these

ideas to strong interactions (Grand Unified The-

ories) and even further to a full unified theory

including Gravitation as well. One of the foremost

difficulties in incorporating gravity with the elec-

troweak theory concerns the so called ‘hierarchy’
problem namely the huge difference in the scales of

the electroweak theory which is �1 TeV, with that

of quantum gravity which is much higher at 1019

GeV. During the last 4 years, an attractive idea has

been introduced [1] to overcome the hierarchy
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problem based on a higher dimensional space time

scenario. In the earliest of such approaches, space-

time is ð4þ nÞ dimensional with the n-extra spatial

dimensions compact. Matter through Standard

Model (SM) fields is proposed to be confined to

the 4-dimensional slice while gravity being the

metric field is all over. There is only one basic

Planck scale in the theory comparable to the TeV-
scale electroweak scale. The weakness of gravita-

tional interactions in our 4-dimensional world

comes about through the celebrated relation:

M2
Pl;4�dim ¼ M2þn

Pl;ð4þnÞ�dimR
n ð1Þ

where R is the size of the compact dimensions. The

law of gravity remains practically unchanged with

a 4-dimensional Planck scale for distances r � R,
whereas for r � R the gravitational law changes to

a 1
r1þn potential with a scale determined by M4þn

Pl .

Thus, as far as the validity of Newton’s law is
concerned, deviations can be explored in the small
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distance region, lower than the current experi-

mental limits [9].

Subsequently, Randall and Sundrum (RS) [2]

proposed a somewhat different higher dimensional

scenario which once again solves the hierarchy
problem. The RS construction is in a total of 5-

dimensions, with the fifth dimension in the form of

a compact torus with opposite points identified. At

the fixed points of the S1=Z2 orbifold, one has two

3-branes wherein the SM fields are confined at one

end and a ‘hidden’ world is confined in the other.

It is further assumed that there is a negative ten-

sion in our brane and a positive tension in the
other and also a bulk cosmological constant. With

the tensions in the brane and bulk finely tuned, one

can solve the 5-dimensional Einstein equations to

get a non-factorizable metric with an exponential

‘warp’ factor. The five dimensional Planck scale in

this model is comparable to our Planck scale but

the ‘warp’ factor effectively reduces all mass scales

in our theory including the vev of the scalar field in
the electroweak theory to the TeV range. The

hierarchy problem is thus solved indirectly. Once

again in this theory there are no deviations of the

gravitation law at large distance.

The RS scenario above is in a matter free uni-

verse. In the presence of matter, complications

arise in the form of the theory not being able to

reproduce standard cosmological results like the
dependence of the Hubble constant on the matter

density. This arises essentially because, in this

model, we live in the negative tension brane. It is in

this context, that extensions of the RS scenario

have been proposed [4] wherein there are more

branes and we live in a positive tension brane. The

most notable feature of these extensions is the

possibility of deviations from Newtonian gravity at
large distances. Thus, in the model of Kogan et al.,

in addition to a massless graviton one also has a

massive graviton with a tiny mass which is coupled

strongly relative to the massless one. The effective

Planck scale that we see, MPl, gets related to the

Planck scale of the theory, M , by the relation:

1

M2
Pl

¼ 1

M2
� 1

�
þ 1

w2

�
ð2Þ

where w is the ‘warp’ factor typical of the RS kind

of scenario. Since w is a small number compared to
unity, gravity is essentially dominated by the

graviton with a tiny mass rather than by the

massless one. This would imply that at large dis-

tances gravity will fall like an Yukawa potential

rather than a pure 1=r law. The theory is unable to
give any estimate of the mass of this graviton.

Laboratory experiments to put bounds on this of

course are useless since we know that Newtonian

gravity works very well at least up to planetary

scales. One thus has to look into possible cosmo-

logical measurables to detect possible violations of

Newtonian gravity law.

In a number of other models which have a
modification of gravity at large distances [5], the

transition can be modelled as a Yukawa modifi-

cation of the Newtonian potential, and can be

analysed as if one has a finite graviton mass.

It is in the context of the motivation outlined

above that we address the question of the sensi-

tivity of gravitational lensing measurements to

possible deviations from Newtonian gravity.
Admittedly, cosmological theories do not have the

same theoretical precision of theories like the SM

but it will still be useful to know the nature of

deviations from Newtonian gravity that current

precision of gravitational lensing data can

accommodate.

In this note we focus our attention to a very

recent measurement of gravitational lensing para-
meters by a cluster of stars at around an average

redshift of z ¼ 1:2 [3] to evaluate the compatibil-

ity of the data with a ‘massive’ graviton. We fol-

low the standard treatment of the relationship

between the ‘lensing’ parameters and density fluc-

tuations [6]. In the standard gravitational sce-

nario, the power spectrum PjðlÞ of the effective

convergence is given by, assuming a flat universe
[6]:

PjðlÞ ¼
9H 4

0X
2
m

4c4

Z wH

0

dw
W 2ðwÞ
a2ðwÞ Pd

l
w
;w

� �
ð3Þ

In the last equation, Xm is the matter density

scaled to the critical density, wH is the horizon
distance, aðwÞ is the scale factor related to the

redshift by the relation a�1 ¼ ð1þ zÞ, W ðwÞ is re-

lated to the normalized source distribution func-

tion GðwÞ by
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W ðwÞ ¼
Z wH

w
dw0Gðw0Þ 1

�
� w
w0

�
ð4Þ

and Pdðk;wÞ is the density contrast function at a

distance w. For a single source at w ¼ ws, we have

GðwÞ ¼ dðw� wsÞ
and Pj reduces to

Pj ¼
9H 4

0X
2
m

4c4

Z ws

0

dw 1

�
� w
ws

�2
1

a2ðwÞ Pd
l
w
;w

� �
ð5Þ

The modification of this last equation, if the

graviton has a mass m is easily obtained by

observing that the density contrast function enters
the rhs of the equation through the relation be-

tween the gravitational potential U and the density

fluctuation d:

r2U ¼ 3H 2
0X

2
m

2a
d ð6Þ

which becomes a simple multiplicative relation in

Fourier space. This last equation gets modified, if

the gravitation field has the Yukawa form e�lr

r in-

stead of a pure 1=r form, into

ðr2 � m2ÞU ¼ 3H 2
0X

2
m

2a
d ð7Þ

so that the power spectrum PjðlÞ gets modified t

Pm
j ðlÞ given by

Pm
j ðlÞ ¼

9H 4
0X

2

4c4

Z ws

0

dw
Pd l

w ;w
� �
a2ðwÞ

l2

w2

l2
w2 þ m2

" #2

ð8Þ

The equations for Pj and Pm
j are the two basic

results that we shall use to compute the effect of

massive gravitons. For this purpose, we focus our

attention on a recent extensive measurement of

lensing data from a cluster at around an average

redshift of z ¼ 1:2. In particular we shall concen-

trate on the measured values of the variance of the
power spectrum c2 smoothed over a filter of radius

h which is related to the Pj by:

c2ðhÞ ¼ 2

ph2

Z 1

0

dlPjðlÞJ 2
1 ðlhÞ; ð9Þ

where for simplicity we ignore the variation of the
redshifts of the sources and assume that the entire
cluster is at z ¼ 1:2. For the density contrast

spectrum Pd, we assume a form:

Pdðk;wÞ ¼ N :kT 2
k ðqÞa2ðwÞ

q ¼ k
Xh2

;
ð10Þ

where N is the normalization constant and TkðqÞ is
given by [8]

TkðqÞ ¼
logð1þ 2:34qÞ

2:34q
½1þ 3:89qþ ð16:1qÞ2

þ ð5:46qÞ3 þ ð6:71qÞ4��
1
4 ð11Þ

N is determined as usual by a r8 normalization

procedure so that it is determined with the value of

r8 as a parameter. To account for the non-linear
evolution, we do not use the expression for Pdðk;wÞ
as above directly but use it to determine the

expression for the density power spectrum evolved

according to the HKLM procedure [8]. This in-

volves defining an integration variable knl in the

integrals above and a non-linear power-spectrum

D2
nlðknlÞ as follows [8]:

D2
l ðkl;wÞ ¼

k3l
2p2

Pdðk;wÞ

D2
nlðknl;wÞ ¼ fnlðD2

l ðkl;wÞÞ

fnlðxÞ ¼ x
1þ NðxÞ
1þ DðxÞ

� �1
b

NðxÞ ¼ Bbxþ ðAxÞab

DðxÞ ¼ ðAxÞag3ðXÞ
V

ffiffi
ð

p
xÞ

" #b

ð12Þ

The constants A, B, V , a, b and g are defined as

follows [10]:

A ¼ 0:482ð1þ n=3Þ�0:947

B ¼ 0:226ð1þ n=3Þ�1:778

a ¼ 3:310ð1þ n=3Þ�0:344

b ¼ 0:862ð1þ n=3Þ�0:287

V ¼ 11:55ð1þ n=3Þ�0:423

g ¼ 5

2
Xm X

4
7
m

�
� Xv þ 1

�
þ 1

2
Xm

�
1

�
þ Xv

70

���1

:

ð13Þ
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X in the above equations is the sum of the matter

density Xm and the vacuum contribution Xv. Fi-

nally the spectral index n used above is determined

as a function of k via the equation

n ¼ d logðPdðkÞÞ
d logðkÞ : ð14Þ

The numerical calculation above thus involves

four parameters, r8, h, and Xm assuming a flat

universe and also assuming the form of the Dark

matter spectrum given above. At first it seems

hopeless to obtain any useful information for the

mass m but it is not actually so. Looking at the
graph of the measured variable c2 versus the angle
h as shown in Fig. 1, it is clear that at low angles

the value of c2 is not affected by the presence of the

mass or otherwise. In other words, we can use

the value of c2 in effect to fix our parameters. With

the parameters fixed thus, we can estimate the

values of the same quantity c2 at larger angles

which now is sensitive to the presence or otherwise
of a graviton mass.

Fig. 1 summarizes our result for the best fit

obtained with values of h ¼ 0:21, r8 ¼ 0:85 and

Xm ¼ 0:3 in the context of our flat universe model.
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Fig. 1. Our fit to the variance data referred to in the text for

values of h ¼ 0:21, r8 ¼ 0:85 and Xm ¼ 0:3. The points marked

refer to the usual Newtonian gravity, whereas the points

marked + uses a modified Newtonian law with a mass m chosen

to be m�1 ¼ 100 Mpc; this value is chosen so that the spread of

the points at the higher angle values along the x-axis approxi-
mately equals the error bars.
Using these, we see that at higher values of the

angle, the precision of the experimental values is

compatible with mass m such that

m�1 ¼ 100 Mpc ð15Þ
or higher i.e. masses heavier than about the inverse

of 100 Mpc seem to be ruled out. A similar limit

has been found in an analysis of planetary orbits
by Gruzinov [11]. It has been estimated by Bine-

truy and Silk [7] that current precision of Cosmic

microwave background gives some kind of a limit

once again on the effective graviton mass, which

according to their estimate is

m�1 P rh;ls ð16Þ
where rh;ls is the horizon distance at last scattering,

which is of order 3 Mpc for a Hubble Constant of

75 Km s�1 Mpc�1. Our estimate, although less di-
rect, provides a better limit to this quantity.

In conclusion, gravitational lensing data pro-

vide a window for the detection of deviations from

Newtonian gravity at large distances. A present

crude estimate is deviations if at all can occur at

distances beyond 100 Mpc. With more refined data

and some more definitive estimates of various

cosmological parameters, this can certainly be
improved.
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