Übungen zur Vorlesung

Theorie der Gravitationswellen

von Domenico Giulini

Blatt 2

Aufgabe 1

Sei $\{\vec{e}_a\}$ kanonische Basis des \mathbb{R}^3 mit Skalarprodukt $\delta(\vec{e}_a,\vec{e}_b)=\delta_{ab}$ ("Kronecker Delta"). Im Raum $T^2\mathbb{R}^3:=\mathbb{R}^3\otimes\mathbb{R}^3$ betrachte man die linearen Abbildungen P_A,P_S und P_T , deren Komponenten bezüglich der kanonischen Basis $\{\vec{e}_a\otimes\vec{e}_b\}$ von $T^2\mathbb{R}^3$ gegeben sind durch

$$P_{A_{nm}}^{ab} := \frac{1}{2} \left(\delta_n^a \delta_m^b - \delta_n^b \delta_m^a \right), \tag{1a}$$

$$P_{S_{nm}}^{ab} := \frac{1}{2} \left(\delta_n^a \delta_m^b + \delta_n^b \delta_m^a \right), \tag{1b}$$

$$P_{\mathsf{T}_{\mathsf{nm}}^{\mathsf{ab}}} := \frac{1}{3} \delta^{\mathsf{ab}} \delta_{\mathsf{nm}} \,. \tag{1c}$$

Zeigen Sie, dass es sich hierbei um Projektionsoperatoren handelt und interpretieren Sie diese. Zeigen Sie weiter, dass

$$P_{ST} = P_S - P_T \tag{1d}$$

ebenfalls ein Projektionsoperator ist und interpretieren Sie diesen. Zeigen Sie, dass die zu den Projektionsoperatoren P_{ST} , P_A , P_T gehörigen Unterräume V_{ST} , V_A , V_T von $T^2\mathbb{R}^3$ bezüglich des inneren Produktes $\delta\otimes\delta$ paarweise orthogonal liegen.

Sei $D^{(1)}:SO(3)\times\mathbb{R}^3\to\mathbb{R}^3$ die definierende Darstellung der Drehgruppe und $D^{(1)}\otimes D^{(1)}$ ihre Darstellung auf $T^2\mathbb{R}^3$. Zeigen Sie, dass V_{ST},V_A,V_T irreduzible Darstellungen der Drehgruppe zu den Werten (Drehimpulsen) 2,1,0 von ℓ tragen, was der Clebsch-Gordan-Reihe (orthogonale direkte Zerlegung)

$$D^{(1)} \otimes D^{(1)} = D^{(2)} \oplus D^{(1)} \oplus D^{(0)}$$
 (2)

entspricht.

Gehen Sie dazu wie folgt vor: Die Erzeugenden der Drehungen ("infinitesimale Drehungen") in \mathbb{R}^3 sind die antisymmetrischen 3×3 Matrizen (vgl. Aufgabe 3 von Blatt 1). Eine Basis ist gegeben durch die drei Matrizen $\{\lambda_1,\lambda_2,\lambda_3\}$, deren Komponenten $(\lambda_\alpha)_{bc}=-\epsilon_{\alpha bc}$ sind. Eine Basis für die Erzeugenden der Drehungen auf $T^2\mathbb{R}^3$ ist dann gegeben durch

$$\Lambda_{\alpha} = \lambda_{\alpha} \otimes \mathbf{1} + \mathbf{1} \otimes \lambda_{\alpha}. \tag{3}$$

(1 bezeichnet hier die 3×3 Einheitsmatrix.) Um eine irreduzible Darstellung der Drehgruppe in einem Unterraum von $T^2\mathbb{R}^3$ zu klassifizieren, müssen Sie den Eigenwert des Operators $\Lambda_{\alpha}\Lambda_{\alpha}$ (Summenkonvention) auf diesem Unterraum bestimmen, wobei der

zu $D^{(\ell)}$ gehörige Eigenwert durch $-\ell(\ell+1)$ gegeben ist. Beispielsweise rechnet man leicht nach, dass $\lambda_{\alpha}\lambda_{\alpha}=-2\cdot 1$. Also folgt aus (3), dass

$$\Lambda_{\alpha}\Lambda_{\alpha} = -4\mathbf{1} \otimes \mathbf{1} + 2\lambda_{\alpha} \otimes \lambda_{\alpha}. \tag{4}$$

Benutzen Sie nun $\mathbf{1} \otimes \mathbf{1} = P_A + P_S$ (trivial) und $\lambda_\alpha \otimes \lambda_\alpha = 3P_T - (P_S - P_A)$ (Multiplikation zweier ϵ_{abc} mit Kontraktion über einen Index) um die rechte Seite von (4) durch die Projektoren P_{ST} , P_A und P_T auszudrücken. Ihre Koeffizienten sind gerade die Eigenwerte $-\ell(\ell+1)$ der entsprechenden Unterräume. Machen Sie Sich die Dimensionsverhältnisse klar.

Aufgabe 2

In der Vorlesung wurde die Jacobi-Gleichung in der Form

$$\nabla_{\mathbf{u}}\nabla_{\mathbf{u}}\mathbf{n} = \mathbf{R}(\mathbf{u}, \mathbf{n})\mathbf{u} \tag{5}$$

bewiesen, wobei u das normierte Tangentialvektorfeld entlang der Geodätischen ist und n das dazu orthogonale Vektorfeld, das sie mit einer infinitesimal benachbarten Geodätischen 'verbindet'. Der Krümmungstensor ist wie in der Vorlesung definiert durch

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{6}$$

Zeigen Sie, dass für jedes fest gewählte Paar (X,Y) von Vektoren die "Krümmungsabbildung" $Z \mapsto R(X,Y)Z$ bezüglich der Metrik g antisymmetrisch ist. Zu welcher Symmetrieeigenschaft des Krümmungstensors korrespondiert diese Aussage? Nehmen Sie nun die in der Vorlesung angegebenen Symmetrieeigenschaften des Krümmungstensors an und zeigen Sie damit, dass für jedes gegebene X die "Jacobi-Abbildung"

$$Y \mapsto R(X, Y)X \tag{7}$$

symmetrisch bezüglich g ist und X im Kern hat. Was bedeutet das für den in (5) vorliegenden Fall, in dem $X = \mathfrak{u}$ zeitartig ist, für die Diagonalisierbarkeit der Jacobi-Abbildung?

Benutzen Sie die in der Vorlesung angegebene Zerlegung des Riemann-Tensors in den Weyl-Tensor und weitere, nur vom Ricci-Tensor abhängige Anteile, sowie die Einstein-Gleichungen, um die rechte Seite von (5) durch den Weyl-Tensor und den Energie-Impuls-Tensor auszudrücken.