The free scalar Boson

THE FREE SCALAR BOSON

So far, we have analysed conformal symmetry transformations and invariance of a (classical) field theory under them with the help of Weyl-scalings. In this tutorial, we discuss one very important example of a conformally invariant theory, the free massless scalar Boson. This theory is governed by the action

$$S = \int \mathrm{d}^d x \, \sqrt{\det g} \, g^{\mu\nu} \partial_\mu \phi(x) \partial_\nu \phi(x) \,,$$

where we omit a factor of proportionality for the sake of simplicity. We will also assume, for this tutorial, that we chose the signature of the metric $g_{\mu\nu}$ such that det g > 0.

[P1] Variation of the action

Let $\delta g_{\mu\nu}$ be a given variation of the metric (note that the indices are lower one). In order to compute

$$\delta S = \frac{1}{2} \int \mathrm{d}^d x \, \sqrt{\det g} \, T^{\mu\nu} \delta g_{\mu\nu} \,,$$

proceed in the following way:

- (a) Compute $\delta g^{\mu\nu}$ by using the triviality $\delta(\delta_{\mu}^{\nu}) = 0$.
- (b) Compute $\delta\sqrt{\det g}$ by using the relation $\sqrt{\det g} = \exp(\frac{1}{2}\log(\det g))$. Use the chain rule and compute first $\delta \log(\deg g)$. For this, you will need the important relation $\det A = \exp(\operatorname{tr} \log A)$.
- (c) Put things together and find δS . Read off the energy-momentum tensor.

[P2] Energy-momentum tensor

In the preceding exercise, you should have obtained the energy-momentum tensor for the theory of the free massless scalar Boson to read

$$T_{\mu\nu} = -\partial_{\mu}\phi\partial_{\nu}\phi + \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\partial_{\rho}\phi\partial_{\sigma}\phi \,.$$

To find the symmetry invariances of this theory, proceed as follows:

- (a) First, compute further the equation of motion for the free massless scalar Boson.
- (b) Show that the energy-momentum tensor is conserved on-shell, i.e. that $\partial^{\mu}T_{\mu\nu} = 0$.
- (c) Compute the trace of the energy-momentum tensor. For which dimension of space-time is the energy-momentum tensor traceless?

[P3] Explicit check in flat space-time

Check the validity of the results from the preceding exercise by computing the transformation of the action under a conformal coordinate transformation in case of the flat metric $g_{\mu\nu} = \eta_{\mu\nu}$. Use a convention such that $\sqrt{\det \eta} = 1$. Show that indeed the theory is conformally invariant if and only if d = 2.

[P4] Massive case

Contemplate, why in the case d = 2 the action $S_m = S + \int d^2 x m^2 \phi^2$ is no longer conformally invariant.