In the lecture course, we encountered the Virasoro algebra \(\mathfrak{Vir} \), given by

\[
[L_n, L_m] = (n - m)L_{n+m} + C \frac{1}{12} (n^3 - n) \delta_{n+m,0}, \\
[L_n, C] = 0.
\]

This is the one important algebra in two-dimensional conformal field theory, since it is the algebra of the generators of arbitrary locally conformal (i.e. locally holomorphic) transformations.

In order to further analyse the nature of a two-dimensional conformally invariant quantum field theory, one has to know how physically relevant representations of the algebra \(\mathfrak{Vir} \) on a space of states look like. We assume the following for a physical sensible space of states:

(1) There exists precisely one state \(|0\rangle \) with the property \(L_n|0\rangle = 0 \forall n \geq -1 \). This state is called the vacuum.

(2) Each representation shall contain precisely one state \(|h\rangle \) with the properties \(L_n|h\rangle = 0 \forall n > 0 \) and \(L_0|h\rangle = h|h\rangle \). Such states are called highest weight states. The \(L_0 \) eigenvalue \(h \) is called the highest weight. As we will see, such representations have an energy spectrum which is bounded from below admitting thus stable ground states. Finally, if \(h = 0 \), the representation is then the vacuum representation built upon the state \(|0\rangle \), since the vacuum is unique.

(3) In the case of unitary representations, we have that \(L_{-n} = L_n^\dagger \). We have seen in the lecture, that unitary representations require \(C, h \geq 0 \).

\[\text{[P1] Field state isomorphism}\]

One important thing is the so-called field-state isomorphism. Suppose we have a primary field \(\Phi_h(z) \) of conformal weight \(h \). This field corresponds one-to-one to a highest weight state \(|h\rangle \) via

\[|h\rangle = \lim_{z \to 0} \Phi_h(z)|0\rangle. \]

Use the commutator \([L_n, \Phi_h(w)]\) from the lecture to show that the state \(|h\rangle \) defined via the field state isomorphism is indeed a highest weight state, i.e. that it satisfies \(L_n|h\rangle = 0 \forall n > 0 \).

\[\text{[P2] Universal enveloping algebra}\]

Given a highest weight state \(|h\rangle \), we can construct representations with the universal enveloping algebra \(U(\mathfrak{Vir}) \). This is the algebra of all words \(L_{n_1}L_{n_2} \ldots L_{n_k} \) for \(k \in \mathbb{Z}_+ \). Convince yourself that the highest weight representation is formally given by

\[V|h\rangle = \text{span} \{ L_{-n_1}L_{-n_2} \ldots L_{-n_k}|h\rangle : n_i \geq n_{i+1} > 0 \land k \in \mathbb{Z}_+ \} \]

Such formal representations are called Verma modules.

\[\text{[P3] Gradation}\]

Show that the state \(L_{-n}|h\rangle \) has weight \(h + n \). Convince you that the same is true for a state \(L_{-n_1}L_{-n_2} \ldots L_{-n_k}|h\rangle \) if \(\sum_{i=1}^k n_i = n \). This implements a natural gradation on the Verma modules. Namely, defining

\[U_n(\mathfrak{Vir}) = \text{span} \left\{ L_{-n_1}L_{-n_2} \ldots L_{-n_k} : n_i \geq n_{i+1} \land k \in \mathbb{Z}_+ \land \sum_{i=1}^k n_i = n \right\}, \]
we may write

\[V_\langle h \rangle = \bigoplus_{n=0}^{\infty} U_n(\mathfrak{Vir}) | h \rangle . \]

Verify that for any given level \(n \), the vector space \(U_n(\mathfrak{Vir}) \) is finite dimensional. This means that on each level of excitation above the energy of the ground states, only finitely many different excitation states exist. Determine explicitly the dimensions for \(n = 1, 2, \ldots, 5 \). Do you have an idea what the dimension is for generic \(n \)?

\[\text{[P4] Kac determinant} \]

Let us now concentrate specifically on \(U_1(\mathfrak{Vir}) \) and \(U_2(\mathfrak{Vir}) \). Construct for these vector spaces the (Hermitean) matrices

\[K_n = \left(\langle h | (L_{-\{n\}_a})^\dagger L_{-\{n\}_b} | h \rangle \right), \]

where \(L_{-\{n\}_a} \) denotes an arbitrary enumeration of the words in \(U_n(\mathfrak{Vir}) \). Then, compute \(\det(K_n) \) and find their zeroes. For \(K_2 \), the set of zeroes will turn out to be functions \(h(c) \). Hint: It is generally true that \(K_n \) factorizes in a certain form such that it contains all zeroes of \(K_{n-1} \). The remaining new zeroes are, in the case of \(K_2 \) then easily found by solving a quadratic equation. It is customary to parametrize the zeroes in the form

\[h_{r,s}(c) = \frac{(m + 1)r - ms)^2 - 1}{4m(m + 1)}, \]

where

\[m = \frac{1}{2} \pm \frac{1}{2} \sqrt{\frac{25 - c}{1 - c}}. \]

The choice of sign simply interchanges \(r \leftrightarrow s \) and \(m \leftrightarrow m - 1 \). With these notations, your final result should read \(\det(K_2) = 32(h - h_{1,1})(h - h_{1,2})(h - h_{2,1}) \langle h | h \rangle^2 \). One can show that the general Kac determinant at level \(n \) is of the form

\[\det(K_n) \propto \det(K_{n-1}) \prod_{r,s=n} (h - h_{r,s}). \]