TENSOREN, ELEMENTARE FUNKTIONEN

Wir schließen das Kapitel Tensoren ab und beschäftigen uns mit Funktionen. Viele physikalische Phänomene werden letztlich durch eine recht überschaubare Anzahl von Funktionen beschrieben.

[P20] Leitfähigkeitstensor

Durch ein anisotropes Medium fließt proportional zum angelegten elektrischen Feld \vec{E} die folgende Ladung pro Zeit und Fläche:

$$\begin{split} j_1 &= 6\sigma_0 E_1 + 4\sigma_0 E_2 \\ j_2 &= 4\sigma_0 E_1 + 6\sigma_0 E_2 + 3\sigma_0 E_3 \\ j_3 &= 3\sigma_0 E_2 + 6\sigma_0 E_3 \,. \end{split}$$

Die Stromdichte und das elektrische Feld stehen also über das Ohmsche Gesetz $\vec{j} = \hat{\sigma} \cdot \vec{E}$ in Beziehung.

- (a) Welchen Leitfähigkeitstensor $\hat{\sigma}$ hat das Medium?
- (b) In Richtung welchen Einheitsvektors \vec{f} fließt der Strom am besten? Wenden Sie anschließend zur Probe $\hat{\sigma}$ auf \vec{f} an.
- (c) Wie lang sind die Halbachsen des Maßellipsoids $\vec{E} \cdot \hat{\sigma} \cdot \vec{E} = 1 = \text{konstant}$?
- (d) Die inverse Beziehung $\vec{E} = \hat{\rho} \cdot \vec{j}$ definiert den Widerstandstensor $\hat{\rho} \doteq \frac{1}{66\sigma_0} \begin{pmatrix} 27 & -24 & 12 \\ -24 & 36 & -18 \\ 12 & -18 & 20 \end{pmatrix}$. In Richtung welches Einheitsvektors \vec{g} ist der Widerstand am größten und hat welchen Wert $\rho_{\rm max}$? Hinweis: Anstatt die Eigenwerte und eine Hauptachse von $\hat{\rho}$ zu berechnen, nutzen Sie die Relation $\hat{\rho} = \hat{\sigma}^{-1}$.

[P21] Grundlegendes zu Funktionen

In der Vorlesung wurden einige grundlegende Eigenschaften von Funktionen vorgestellt, so die Ableitung von Umkehrfunktionen, Reihenentwicklungen usw.

- (a) Wir wollen spaßeshalber die Exponentialfunktion als Umkehrfunktion von $\ln x$ einführen. Wenn wir wissen, dass $\partial_x \ln x = 1/x$ ist, dann können wir damit $\partial_y \exp(y)$ bestimmen.
- (b) Bestimmen Sie die Reihenentwicklung von $\arctan y$ aus derjenigen von $\partial_y \arctan y = \frac{1}{1+y^2}$.
- (c) Gehen Sie mit dem Ansatz $\tan x = c_1 x + c_3 x^3 + c_5 x^5 + \dots$ und der Reihenentwicklung von $\arctan y$ aus (b) in die Gleichung $x = \arctan(\tan x)$ und bestimmen Sie c_1, c_3 und c_5 .

Hinweis: Erinnern Sie sich an die geometrische Reihe $\frac{1}{1-q}=1+q+q^2+q^3+q^4+q^5+\ldots$, wobei diese Gleichheit nur für |q|<1 gilt.