A3.1 Two state problem

There are only very few cases in which a problem with a time-dependent potential can be solved exactly and where one does not need to use perturbation theory. Consider a system with Hamiltonian H_0 and two states $|1\rangle$ and $|2\rangle$ with energies $E_1 < E_2$.

1. Show that

$$H_0 = E_1|1\rangle\langle 1| + E_2|2\rangle\langle 2|.$$

2. Since $V(t)$ and thus $H = H_0 + V(t)$ are time-dependent, the problem is no longer stationary, in particular the time evolution operator is not $e^{-iHt/\hbar}$ anymore. Therefore, one switches to the so-called interaction picture. Show that for a state

$$|\alpha(t)\rangle_I := e^{iH_0t/\hbar}|\alpha(t)\rangle$$

one has:

$$i\hbar \frac{\partial}{\partial t} |\alpha(t)\rangle_I = V_I(t)|\alpha(t)\rangle_I \quad \text{with} \quad V_I(t) = e^{iH_0t/\hbar}V(t)e^{-iH_0t/\hbar}.$$

In particular, $|\alpha(t)\rangle_I$ remains unchanged for $V = 0$.

3. In addition, show that $\frac{d}{dt} V_I(t) = \frac{1}{\hbar}[V_I(t), H_0] + \frac{\partial}{\partial t} V_I(t)$.

4. The interaction picture, where the time dependence is distributed to both states and operators, may be mixed up with the Heisenberg picture, there one defines (for constant H) the operators as $A_H(t) = e^{iHt/\hbar}Ae^{-iHt/\hbar}$, i.e. with the full H, whereas the states stay unchanged in time. Show the so-called Heisenberg equation of motion $\frac{d}{dt} A_H(t) = \frac{1}{\hbar}[A_H(t), H] + \frac{\partial}{\partial t} A_H(t)$, again the full H appears.

5. Now, write $|\alpha(t)\rangle_I$ in terms of the basis $|n\rangle$:

$$|\alpha(t)\rangle_I = \sum_n c_n(t)|n\rangle.$$

Deduce the coupled differential equation system

$$i\hbar \frac{d}{dt} c_n(t) = \sum_m \langle n|V(t)|m\rangle c_i \frac{E_n - E_m}{\hbar} c_m(t) =: \sum_m V_{nm}(t) e^{i\omega_{nm} t} c_m(t).$$

6. Let $V(t) = \gamma e^{i\omega t}|1\rangle\langle 2| + \gamma e^{-i\omega t}|2\rangle\langle 1|$, where $\gamma, \omega > 0$, be a sine-like potential. What does the presence of this potential cause?

7. At $t = 0$ let the system be in the state $|1\rangle$: $c_1(0) = 1$, $c_2(0) = 0$. Solve the equation system from (5) for the potential from (6) and obtain Rabi’s formula

$$|c_2(t)|^2 = \frac{\gamma^2}{\hbar^2 + (\omega - \omega_2)^2} \sin^2 \left(\frac{\sqrt{\gamma^2 + (\omega - \omega_2)^2}}{4} t\right), \quad |c_1(t)|^2 = 1 - |c_2(t)|^2.$$

8. Interpret the result. When is the oscillation particularly large?

9. An example for such a system is spin resonance, a particle with spin $\frac{1}{2}$ in a magnetic field $\vec{B} = B_0\hat{z}_3 + B_1(\vec{e}_3 \cos \omega t + \vec{e}_5 \sin \omega t)$, i.e. a constant, homogeneous field in z direction, superposed by a field rotation in the xy plane. State H_0 and $V(t)$. Which quantity does play the role of γ?
In experiment, such a rotating field is difficult to produce, one takes a field oscillating in \(x\) direction instead. This can be written as superposition of a clockwise and a counterclockwise rotating field, where the change of rotational direction is given by \(\omega \rightarrow -\omega\). Due to the resonance condition \(\omega \approx \omega_2\), only one of the two components is really relevant.

Homework III
Return: November 11th

H3.1 *Excitation of an atom by collision with a heavy charged particle*

The motion \(\mathbf{R}(t)\) of a heavy particle (charge \(Z\)) is quasiclassical, thus the particle moves on a straight line, uniformly with the constant velocity \(v\), e.g. \(\mathbf{R}(t) = (vt, b, 0)\). The potential of the interaction between an electron of an hydrogen atom (with nucleus at the origin) and the particle reads: \(\mathbf{V}(t) = -\frac{Z e^2}{|\mathbf{R}(t) - \mathbf{r}|}\).

1. Show that a potential not depending on \(\mathbf{r}\) only influences the phase of the wave function of the electron. Thus we do our computation with \(V(t) = \mathbf{V}(t) + \frac{Ze^2}{|\mathbf{R}(t)|}\).

2. Show that for \(|\mathbf{R}(t)| \gg |\mathbf{r}|\), taking into account dipole and quadrupole, we have

\[
V(t) \approx -Ze^2 \left(\frac{vt x_1 + bx_2}{|\mathbf{R}(t)|^3} + \frac{2x_1^2 - x_2^2 - x_3^2}{2|\mathbf{R}(t)|^5} + \frac{3x_2^2(x_3^2 - x_1^2)}{2|\mathbf{R}(t)|^5} + \frac{3vtbx_1x_2}{|\mathbf{R}(t)|^5} \right).
\]

3. The transition probability \(w_{nm}^{(1)}\) from the state \(|m\rangle\) to the state \(|n\rangle\) reads

\[
w_{nm}^{(1)} = |c_{nm}^{(1)}|^2, \quad c_{nm}^{(1)} = -\frac{i}{\hbar} \int_{-\infty}^{\infty} dt \langle n|V(t)|m \rangle e^{i(E_m - E_n)t/\hbar}
\]

in first order time dependent perturbation theory. Show with \(\omega = \frac{E_m - E_n}{\hbar}\) that

\[
c_{nm}^{(1)} = \frac{i}{\hbar} Ze^2 \int \left(\frac{|\omega|}{v^2} \left(2x_2 + \frac{2x_1^2 - x_2^2 - x_3^2}{b} \right) K_1 \left(\frac{|\omega|}{v} \right) + \frac{\omega^2}{v^3} (x_2^2 - x_1^2) K_2 \left(\frac{|\omega|}{v} \right) \right)
\]

\[
+ 2i \left(\frac{\omega}{v^3} x_1 K_0 \left(\frac{|\omega|}{v} \right) + \text{sign}(\omega) \frac{\omega^2}{v^3} x_1 x_2 K_1 \left(\frac{|\omega|}{v} \right) \right) \psi_n^{*}(r) \psi_m(r) d^3r,
\]

where \(K_n(\alpha z) = \frac{\Gamma(n + \frac{1}{2})(2z)^n}{\sqrt{\pi} \alpha^n} \int_0^\infty \frac{dt \cos(\alpha t)}{(t^2 + z^2)^{n+\frac{1}{2}}}, \quad \alpha > 0\).

4. Discuss the value of the transition amplitude \(c_{nm}^{(1)}\) for the inverse process.

5. Estimate the size of the argument \(\frac{|\omega|}{v}\) of the modified Bessel functions \(K_i\). Compare the orders of magnitude of the contributions of dipole and quadrupole to \(c_{nm}^{(1)}\). Estimate the coordinates by Bohr’s radius and use the asymptotic behaviour \(K_n(z) \sim \frac{e^{-z}}{\sqrt{\pi}z^n}(z \to \infty)\) and \(K_n(z) \sim z^{-n}\), \(K_0(z) = -\ln z\) \((z \to 0)\).

6. With the help of the Wigner/Eckart theorem decide between which states the dipole and quadrupole term in \(V(t)\) makes transitions possible (cf. H2.2.4).

7. Compute with (3) and (6) \(c_{2\ell m,1S}^{(1)}\) explicitly and discuss the result.

(30 points)